SAINT-IIOT: Elk herd optimized deep learning model for efficient anomaly detection in the IIoT

Industrial Internet of Things (IIoT) is an innovative technology that may mitigate manufacturing costs, increase production efficiency, and foster the growth of industrial intelligence. IIoT applications face security and privacy risks as a result of IIoT device abnormalities reveal sensitive inform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ain Shams Engineering Journal Jg. 16; H. 12; S. 103625
Hauptverfasser: Mahalakshmi, K., Jaison, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2025
Elsevier
Schlagworte:
ISSN:2090-4479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Industrial Internet of Things (IIoT) is an innovative technology that may mitigate manufacturing costs, increase production efficiency, and foster the growth of industrial intelligence. IIoT applications face security and privacy risks as a result of IIoT device abnormalities reveal sensitive information with high authenticity and validity. To address these issues, a novel cascaded Stacked Autoencoder INtegrated aTtention CNN-BiGRU for IIoT (SAINT-IIoT) model has been proposed in this paper to improve the real-time detection of cyber threats in IIoT environments. The proposed methodology employs an Elk Herd Optimization (EHO) algorithm for effectively selecting the features, which address the issue of irrelevant and noisy features. The Deep Learning (DL) technique is used for real-time anomaly classification to handle complex, nonlinear, and time-dependent attack patterns that traditional models often fail to identify. The accuracy of the suggested framework is 7.04%, 12.11%, and 3.26% higher than the existing techniques including DRL-GAN, AIm-ADS, and EPOA-EVAD.
AbstractList Industrial Internet of Things (IIoT) is an innovative technology that may mitigate manufacturing costs, increase production efficiency, and foster the growth of industrial intelligence. IIoT applications face security and privacy risks as a result of IIoT device abnormalities reveal sensitive information with high authenticity and validity. To address these issues, a novel cascaded Stacked Autoencoder INtegrated aTtention CNN-BiGRU for IIoT (SAINT-IIoT) model has been proposed in this paper to improve the real-time detection of cyber threats in IIoT environments. The proposed methodology employs an Elk Herd Optimization (EHO) algorithm for effectively selecting the features, which address the issue of irrelevant and noisy features. The Deep Learning (DL) technique is used for real-time anomaly classification to handle complex, nonlinear, and time-dependent attack patterns that traditional models often fail to identify. The accuracy of the suggested framework is 7.04%, 12.11%, and 3.26% higher than the existing techniques including DRL-GAN, AIm-ADS, and EPOA-EVAD.
ArticleNumber 103625
Author Jaison, B.
Mahalakshmi, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Mahalakshmi
  fullname: Mahalakshmi, K.
  email: mahalakshmi1586@gmail.com
  organization: Department of Computer Science and Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu 600062, India
– sequence: 2
  givenname: B.
  surname: Jaison
  fullname: Jaison, B.
  email: bjn.cse@rmkec.ac.in
  organization: Department of Computer Science and Engineering, R.M.K. Engineering College, Kavaraipettai, Tamil Nadu 601206, India
BookMark eNp9kE1PAyEQhjnUxM8_4Ik_sBVYYMF4McaPTYw9WK8SFoZK3S4NuzHRXy-1xqOnmUzmfWfe5xjNhjQAQueUzCmh8mI9tyOs54wwUQa1ZGKGjhjRpOK80YfobBxjR0rPlFDiCL0-X7dPy6ptF8tLfNu_4zfIHqftFDfxCzz2AFvcg81DHFZ4kzz0OKSMIYToIgwTtkPa2P6zbE7gppgGHAc8vQFu27Q8RQfB9iOc_dYT9HJ3u7x5qB4X9-3N9WPlallPFVAZOLNAXC2otIorJ7mTdWgo0ayRjdKh5t6VHI0spzXVjVNeOeq9FhzqE9TufX2ya7PNcWPzp0k2mp9Byitj8xRdD6ZrqFfKdUJb4Fwq29WdZNxSKwTRwRYvtvdyOY1jhvDnR4nZQTZrs4NsdpDNHnIRXe1FUFJ-RMhm3OFx4GMuWMob8T_5NxJNh8k
Cites_doi 10.1016/j.eswa.2024.123808
10.3390/s25072146
10.1016/j.future.2023.06.011
10.1007/s10586-024-04303-y
10.1109/TII.2022.3224981
10.1016/j.cose.2024.104130
10.1007/s10586-023-04163-y
10.3390/s22218085
10.1109/TNSM.2024.3447532
10.1007/s10586-024-04529-w
10.1038/s41598-023-46746-0
10.1016/j.neunet.2025.107400
10.1016/j.procs.2023.01.153
10.1109/JIOT.2024.3384374
10.1016/j.iot.2024.101446
10.1016/j.cose.2023.103174
10.3390/app15063121
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.asej.2025.103625
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai_doaj_org_article_b71d88cb59ae4468ab3b624a1a5509fa
10_1016_j_asej_2025_103625
S2090447925003661
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c363t-e16f42ae0c3516a848c64c63f7109276789f34dc09076eff9197c8d8c1dd954e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587767000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-4479
IngestDate Tue Oct 07 09:25:07 EDT 2025
Thu Oct 16 04:31:52 EDT 2025
Sat Nov 01 16:45:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Deep learning
Synthetic minority over-sampling technique
Elk Herd optimization
Cascaded stacked autoencoder
Anomaly detection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e16f42ae0c3516a848c64c63f7109276789f34dc09076eff9197c8d8c1dd954e3
OpenAccessLink https://doaj.org/article/b71d88cb59ae4468ab3b624a1a5509fa
ParticipantIDs doaj_primary_oai_doaj_org_article_b71d88cb59ae4468ab3b624a1a5509fa
crossref_primary_10_1016_j_asej_2025_103625
elsevier_sciencedirect_doi_10_1016_j_asej_2025_103625
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Ain Shams Engineering Journal
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Orman (b0055) 2025; 15
Raeiszadeh, Ebrahimzadeh, Glitho, Eker, Mini (b0140) 2024
Wu, Zheng, Wong, Wang, Hu (b0100) 2025
Li, Chang, Huang, Li, Li, Chen (b0125) 2023; 148
Alanazi, Aljuhani (b0130) 2023; 44
Jhansi Bharathi Madavarapu (b0010) 2023; 01
Nandanwar, Katarya (b0070) 2024; 249
Attique, Hao, Ping, Javeed, Kumar (b0030) 2024
Karacayılmaz, Artuner (b0020) 2024; 27
Zeng, Yang, Lu, Geng, Weng (b0145) 2025
Arat, Akleylek (b0025) 2023; 128
Chen, Xu, Li, Hu, Guo, Liu (b0160) 2025
Rodríguez, Tobón, Múnera (b0150) 2025; 29
Chander, Upendra Kumar (b0135) 2024; 27
Desikan, Singh, Jayanthiladevi, Bhushan, Rishiwal, Kumar (b0075) 2025; 25
Golchha, Joshi, Gupta (b0005) 2023; 218
Souri, Norouzi, Alsenani (b0015) 2024; 27
Bulla, Birje (b0110) 2021
De Vita, Nocera, Bruneo, Das (b0115) 2022; 19
Arya, Gupta (b0050) 2023
Ellappan, Mahendran, Subramanian, Jotheeswaran, Khadidos, Khadidos (b0080) 2023; 13
Abudurexiti, Han, Zhang, Liu (b0040) 2025; 148
Eugine Prince, Josephin Shermila, Sajithra Varun, Anna Devi, Sujatha Therese, Ahilan (b0045) 2023
Jeyaraman Sathiamoorthy, Usha, Senthilraja (b0065) 2024; 02
Zhai, Wang, Zhai, Xu, Qi, Yang (b0085) 2025; 111207
Sankaran, Kim (b0120) 2023; 56
Benaddi, Jouhari, Ibrahimi, Ben Othman, Amhoud (b0105) 2022; 22
Dhaouadi, Mrabet, Alhomoud, Jemai (b0090) 2025; 82
Chen, Cao, He, Xu, Liu (b0155) 2025; 187
Anusha, Muthu Kumar, Ragaventhiran (b0095) 2024; 02
Chen, Liu, Zou, Tang, Liu, Hu (b0060) 2025; 74
Sreetha, Santhiya (b0035) 2024; 02
Chen (10.1016/j.asej.2025.103625_b0160) 2025
Chander (10.1016/j.asej.2025.103625_b0135) 2024; 27
Souri (10.1016/j.asej.2025.103625_b0015) 2024; 27
Eugine Prince (10.1016/j.asej.2025.103625_b0045) 2023
Nandanwar (10.1016/j.asej.2025.103625_b0070) 2024; 249
Jeyaraman Sathiamoorthy (10.1016/j.asej.2025.103625_b0065) 2024; 02
Arya (10.1016/j.asej.2025.103625_b0050) 2023
Zeng (10.1016/j.asej.2025.103625_b0145) 2025
Rodríguez (10.1016/j.asej.2025.103625_b0150) 2025; 29
Attique (10.1016/j.asej.2025.103625_b0030) 2024
De Vita (10.1016/j.asej.2025.103625_b0115) 2022; 19
Sankaran (10.1016/j.asej.2025.103625_b0120) 2023; 56
Chen (10.1016/j.asej.2025.103625_b0060) 2025; 74
Zhai (10.1016/j.asej.2025.103625_b0085) 2025; 111207
Anusha (10.1016/j.asej.2025.103625_b0095) 2024; 02
Chen (10.1016/j.asej.2025.103625_b0155) 2025; 187
Arat (10.1016/j.asej.2025.103625_b0025) 2023; 128
Karacayılmaz (10.1016/j.asej.2025.103625_b0020) 2024; 27
Abudurexiti (10.1016/j.asej.2025.103625_b0040) 2025; 148
Golchha (10.1016/j.asej.2025.103625_b0005) 2023; 218
Alanazi (10.1016/j.asej.2025.103625_b0130) 2023; 44
Li (10.1016/j.asej.2025.103625_b0125) 2023; 148
Jhansi Bharathi Madavarapu (10.1016/j.asej.2025.103625_b0010) 2023; 01
Sreetha (10.1016/j.asej.2025.103625_b0035) 2024; 02
Bulla (10.1016/j.asej.2025.103625_b0110) 2021
Orman (10.1016/j.asej.2025.103625_b0055) 2025; 15
Benaddi (10.1016/j.asej.2025.103625_b0105) 2022; 22
Raeiszadeh (10.1016/j.asej.2025.103625_b0140) 2024
Dhaouadi (10.1016/j.asej.2025.103625_b0090) 2025; 82
Ellappan (10.1016/j.asej.2025.103625_b0080) 2023; 13
Desikan (10.1016/j.asej.2025.103625_b0075) 2025; 25
Wu (10.1016/j.asej.2025.103625_b0100) 2025
References_xml – volume: 01
  start-page: 63
  year: 2023
  end-page: 68
  ident: b0010
  article-title: CAB-IDS: IoT-based intrusion detection using bacteria foraging optimized BiGRU-CNN network
  publication-title: Internat. J. Comput. Eng. Optimizat.
– start-page: 465
  year: 2023
  end-page: 472
  ident: b0045
  article-title: Jasmine Gnana Malar, an optimized deep learning algorithm for cyber-attack detection
  publication-title: International Conference on Frontiers of Intelligent Computing: Theory and Applications
– volume: 148
  start-page: 367
  year: 2023
  end-page: 379
  ident: b0125
  article-title: Artificial immunity based distributed and fast anomaly detection for industrial internet of things
  publication-title: Futur. Gener. Comput. Syst.
– volume: 15
  start-page: 3121
  year: 2025
  ident: b0055
  article-title: Cyberattack detection systems in industrial internet of things (IIoT) networks in big data environments
  publication-title: Appl. Sci.
– volume: 02
  start-page: 20
  year: 2024
  end-page: 26
  ident: b0035
  article-title: SAFE-ACID: a novel security assessment framework for Iot intrusion detection via deep learning
  publication-title: Internat. J. Data Sci. Artif. Intell.
– volume: 148
  year: 2025
  ident: b0040
  article-title: An explainable unsupervised anomaly detection framework for industrial internet of things
  publication-title: Comput. Secur.
– volume: 27
  start-page: 6491
  year: 2024
  end-page: 6509
  ident: b0135
  article-title: Enhanced pelican optimization algorithm with ensemble-based anomaly detection in industrial internet of things environment
  publication-title: Clust. Comput.
– volume: 27
  start-page: 3639
  year: 2024
  end-page: 3655
  ident: b0015
  article-title: A new cloud-based cyber-attack detection architecture for hyper-automation process in industrial internet of things
  publication-title: Clust. Comput.
– year: 2025
  ident: b0100
  article-title: TRACER: attack-aware divide-and-conquer transformer for intrusion detection in industrial internet of things
  publication-title: IEEE Trans. Ind. Inf.
– year: 2025
  ident: b0160
  article-title: Privacy-preserving lightweight time-series anomaly detection for resource-limited Industrial IoT edge devices
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 834
  year: 2023
  end-page: 840
  ident: b0050
  article-title: Ensemble filter-based feature selection model for cyber attack detection in industrial Internet of Things
  publication-title: 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS)
– start-page: 127
  year: 2021
  end-page: 147
  ident: b0110
  article-title: Anomaly detection in industrial IoT applications using deep learning approach
  publication-title: Artificial Intelligence in Industrial Applications: Approaches to Solve the Intrinsic Industrial Optimization Problems
– volume: 44
  year: 2023
  ident: b0130
  article-title: Anomaly detection for industrial internet of things cyberattacks
  publication-title: Comput. Syst. Sci. Eng.
– volume: 56
  year: 2023
  ident: b0120
  article-title: Deep learning based energy efficient optimal RMC-CNN model for secured data transmission and anomaly detection in industrial IOT
  publication-title: Sustainable Energy Technol. Assess.
– volume: 111207
  year: 2025
  ident: b0085
  article-title: Industrial IoT intrusion attack detection based on composite attention-driven multi-layer pyramid features
  publication-title: Comput. Netw.
– year: 2024
  ident: b0140
  article-title: Real-time adaptive anomaly detection in industrial IoT environments
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 13
  start-page: 20843
  year: 2023
  ident: b0080
  article-title: Sliding principal component and dynamic reward reinforcement learning based IIoT attack detection
  publication-title: Sci. Rep.
– volume: 22
  start-page: 8085
  year: 2022
  ident: b0105
  article-title: Anomaly detection in industrial IoT using distributional reinforcement learning and generative adversarial networks
  publication-title: Sensors
– volume: 249
  year: 2024
  ident: b0070
  article-title: Deep learning enabled intrusion detection system for Industrial IOT environment
  publication-title: Expert Syst. Appl.
– volume: 02
  start-page: 74
  year: 2024
  end-page: 80
  ident: b0065
  article-title: Selective forwarding attacks detection in wireless sensor networks using blue monkey optimized ghost network
  publication-title: Internat. J. Data Sci. Artif. Intell.
– volume: 218
  start-page: 1752
  year: 2023
  end-page: 1759
  ident: b0005
  article-title: Voting-based ensemble learning approach for cyber attacks detection in industrial internet of things
  publication-title: Proc. Comput. Sci.
– volume: 74
  year: 2025
  ident: b0060
  article-title: Frequency-domain spectrum discrepancy-based fast anomaly detection for IIoT sensor time-series signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 27
  start-page: 10467
  year: 2024
  end-page: 10485
  ident: b0020
  article-title: A novel approach detection for IIoT attacks via artificial intelligence
  publication-title: Clust. Comput.
– year: 2025
  ident: b0145
  article-title: Evolutionary adversarial autoencoder for unsupervised anomaly detection of industrial internet of things
  publication-title: IEEE Trans. Reliab.
– volume: 82
  year: 2025
  ident: b0090
  article-title: An intrusion detection system based on HiTar-2024 dataset generation from LOG files for smart industrial internet-of-things environment, computers
  publication-title: Mater. Cont.
– volume: 187
  year: 2025
  ident: b0155
  article-title: A lightweight All-MLP time–frequency anomaly detection for IIoT time series
  publication-title: Neural Netw.
– volume: 02
  start-page: 07
  year: 2024
  end-page: 12
  ident: b0095
  article-title: INDIA-NET: IOT intrusion detection via enhanced transient search optimized advanced deep learning technique
  publication-title: Internat. J. Data Sci. Artif. Intell.
– volume: 29
  year: 2025
  ident: b0150
  article-title: A framework for anomaly classification in Industrial internet of things systems
  publication-title: Internet Things
– year: 2024
  ident: b0030
  article-title: Explainable and data-efficient deep learning for enhanced attack detection in IIoT ecosystem
  publication-title: IEEE Internet Things J.
– volume: 19
  start-page: 8985
  year: 2022
  end-page: 8994
  ident: b0115
  article-title: A novel echo state network autoencoder for anomaly detection in industrial IoT systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 25
  start-page: 2146
  year: 2025
  ident: b0075
  article-title: Hybrid machine learning-based fault-tolerant sensor data fusion and anomaly detection for fire risk mitigation in IIoT environment
  publication-title: Sensors
– volume: 128
  year: 2023
  ident: b0025
  article-title: Attack path detection for IIoT enabled cyber physical systems: Revisited
  publication-title: Comput. Secur.
– volume: 249
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0070
  article-title: Deep learning enabled intrusion detection system for Industrial IOT environment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123808
– volume: 25
  start-page: 2146
  issue: 7
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0075
  article-title: Hybrid machine learning-based fault-tolerant sensor data fusion and anomaly detection for fire risk mitigation in IIoT environment
  publication-title: Sensors
  doi: 10.3390/s25072146
– volume: 02
  start-page: 74
  issue: 03
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0065
  article-title: Selective forwarding attacks detection in wireless sensor networks using blue monkey optimized ghost network
  publication-title: Internat. J. Data Sci. Artif. Intell.
– year: 2025
  ident: 10.1016/j.asej.2025.103625_b0145
  article-title: Evolutionary adversarial autoencoder for unsupervised anomaly detection of industrial internet of things
  publication-title: IEEE Trans. Reliab.
– volume: 148
  start-page: 367
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0125
  article-title: Artificial immunity based distributed and fast anomaly detection for industrial internet of things
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2023.06.011
– start-page: 465
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0045
  article-title: Jasmine Gnana Malar, an optimized deep learning algorithm for cyber-attack detection
– volume: 02
  start-page: 07
  issue: 01
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0095
  article-title: INDIA-NET: IOT intrusion detection via enhanced transient search optimized advanced deep learning technique
  publication-title: Internat. J. Data Sci. Artif. Intell.
– year: 2025
  ident: 10.1016/j.asej.2025.103625_b0100
  article-title: TRACER: attack-aware divide-and-conquer transformer for intrusion detection in industrial internet of things
  publication-title: IEEE Trans. Ind. Inf.
– volume: 27
  start-page: 6491
  issue: 5
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0135
  article-title: Enhanced pelican optimization algorithm with ensemble-based anomaly detection in industrial internet of things environment
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04303-y
– volume: 19
  start-page: 8985
  issue: 8
  year: 2022
  ident: 10.1016/j.asej.2025.103625_b0115
  article-title: A novel echo state network autoencoder for anomaly detection in industrial IoT systems
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3224981
– volume: 44
  issue: 3
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0130
  article-title: Anomaly detection for industrial internet of things cyberattacks
  publication-title: Comput. Syst. Sci. Eng.
– volume: 148
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0040
  article-title: An explainable unsupervised anomaly detection framework for industrial internet of things
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2024.104130
– volume: 27
  start-page: 3639
  issue: 3
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0015
  article-title: A new cloud-based cyber-attack detection architecture for hyper-automation process in industrial internet of things
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-023-04163-y
– start-page: 127
  year: 2021
  ident: 10.1016/j.asej.2025.103625_b0110
  article-title: Anomaly detection in industrial IoT applications using deep learning approach
– volume: 74
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0060
  article-title: Frequency-domain spectrum discrepancy-based fast anomaly detection for IIoT sensor time-series signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 111207
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0085
  article-title: Industrial IoT intrusion attack detection based on composite attention-driven multi-layer pyramid features
  publication-title: Comput. Netw.
– volume: 01
  start-page: 63
  issue: 02
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0010
  article-title: CAB-IDS: IoT-based intrusion detection using bacteria foraging optimized BiGRU-CNN network
  publication-title: Internat. J. Comput. Eng. Optimizat.
– volume: 22
  start-page: 8085
  issue: 21
  year: 2022
  ident: 10.1016/j.asej.2025.103625_b0105
  article-title: Anomaly detection in industrial IoT using distributional reinforcement learning and generative adversarial networks
  publication-title: Sensors
  doi: 10.3390/s22218085
– volume: 56
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0120
  article-title: Deep learning based energy efficient optimal RMC-CNN model for secured data transmission and anomaly detection in industrial IOT
  publication-title: Sustainable Energy Technol. Assess.
– year: 2024
  ident: 10.1016/j.asej.2025.103625_b0140
  article-title: Real-time adaptive anomaly detection in industrial IoT environments
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2024.3447532
– volume: 02
  start-page: 20
  issue: 01
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0035
  article-title: SAFE-ACID: a novel security assessment framework for Iot intrusion detection via deep learning
  publication-title: Internat. J. Data Sci. Artif. Intell.
– volume: 27
  start-page: 10467
  issue: 8
  year: 2024
  ident: 10.1016/j.asej.2025.103625_b0020
  article-title: A novel approach detection for IIoT attacks via artificial intelligence
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04529-w
– volume: 13
  start-page: 20843
  issue: 1
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0080
  article-title: Sliding principal component and dynamic reward reinforcement learning based IIoT attack detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-46746-0
– volume: 187
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0155
  article-title: A lightweight All-MLP time–frequency anomaly detection for IIoT time series
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2025.107400
– volume: 218
  start-page: 1752
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0005
  article-title: Voting-based ensemble learning approach for cyber attacks detection in industrial internet of things
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2023.01.153
– year: 2024
  ident: 10.1016/j.asej.2025.103625_b0030
  article-title: Explainable and data-efficient deep learning for enhanced attack detection in IIoT ecosystem
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2024.3384374
– volume: 82
  issue: 3
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0090
  article-title: An intrusion detection system based on HiTar-2024 dataset generation from LOG files for smart industrial internet-of-things environment, computers
  publication-title: Mater. Cont.
– volume: 29
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0150
  article-title: A framework for anomaly classification in Industrial internet of things systems
  publication-title: Internet Things
  doi: 10.1016/j.iot.2024.101446
– volume: 128
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0025
  article-title: Attack path detection for IIoT enabled cyber physical systems: Revisited
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103174
– year: 2025
  ident: 10.1016/j.asej.2025.103625_b0160
  article-title: Privacy-preserving lightweight time-series anomaly detection for resource-limited Industrial IoT edge devices
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 834
  year: 2023
  ident: 10.1016/j.asej.2025.103625_b0050
  article-title: Ensemble filter-based feature selection model for cyber attack detection in industrial Internet of Things
– volume: 15
  start-page: 3121
  issue: 6
  year: 2025
  ident: 10.1016/j.asej.2025.103625_b0055
  article-title: Cyberattack detection systems in industrial internet of things (IIoT) networks in big data environments
  publication-title: Appl. Sci.
  doi: 10.3390/app15063121
SSID ssib044728585
Score 2.3567743
Snippet Industrial Internet of Things (IIoT) is an innovative technology that may mitigate manufacturing costs, increase production efficiency, and foster the growth...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 103625
SubjectTerms Anomaly detection
Cascaded stacked autoencoder
Deep learning
Elk Herd optimization
Synthetic minority over-sampling technique
Title SAINT-IIOT: Elk herd optimized deep learning model for efficient anomaly detection in the IIoT
URI https://dx.doi.org/10.1016/j.asej.2025.103625
https://doaj.org/article/b71d88cb59ae4468ab3b624a1a5509fa
Volume 16
WOSCitedRecordID wos001587767000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2090-4479
  databaseCode: M~E
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044728585
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ixy8SbFt0vzwNmXDgk7BCTtZ0iSVza0bcwp68G_3pemkJ714KbSEpHwv5fsefXkfQqegkFkeWREYovOARrkIhKTOzIwYoowU0veZveH9vhgO5X3D6svVhPn2wB6485xHRgidJ1JZSF2EyknOYqoiBdpaFpU0CrlsJFOwkyjlsfvh5ZzlQhkGcC_rEzO-uAsYYgzJYZy4Q-fM-WQ3WKlq3t8gpwbh9LbQZq0Ucce_4TZas-UOenropP1BkKZ3gwvcnbxggNzgGXz309GnNdhYO8e1E8QzrmxuMMhSbKtOEUAwWJWzqZp8wMhlVYVV4lGJQQXiNJ0NdtFjrzu4ug5qi4RAE0aWgY1YQWNlQ02SiClBhWZUM1K4EsuYAxPJglCjAQTOYCkZSa6FEToyRibUkj3UKmel3UfYAKBxKKwOWU4h6xJay4KLIrGcJgVP2uhsBVE2950wslWJ2DhzgGYO0MwD2kaXDsWfka6LdfUAYpvVsc3-im0bJasYZLUg8EQPU41-WfzgPxY_RBtuSl-6coRay8WbPUbr-n05el2cVNsNrrdf3W9NWdeC
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAINT-IIOT%3A+Elk+herd+optimized+deep+learning+model+for+efficient+anomaly+detection+in+the+IIoT&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Mahalakshmi%2C+K.&rft.au=Jaison%2C+B.&rft.date=2025-12-01&rft.issn=2090-4479&rft.volume=16&rft.issue=12&rft.spage=103625&rft_id=info:doi/10.1016%2Fj.asej.2025.103625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asej_2025_103625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon