Learning variational autoencoders via MCMC speed measures

Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained by maximising an evidence lower bound. There has been much progress in improving the expressiveness of the variational distribution to obtain tighter variational bounds and increased gener...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 34; číslo 5
Hlavní autoři: Hirt, Marcel, Kreouzis, Vasileios, Dellaportas, Petros
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2024
Springer Nature B.V
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained by maximising an evidence lower bound. There has been much progress in improving the expressiveness of the variational distribution to obtain tighter variational bounds and increased generative performance. Whilst previous work has leveraged Markov chain Monte Carlo methods for constructing variational densities, gradient-based methods for adapting the proposal distributions for deep latent variable models have received less attention. This work suggests an entropy-based adaptation for a short-run metropolis-adjusted Langevin or Hamiltonian Monte Carlo (HMC) chain while optimising a tighter variational bound to the log-evidence. Experiments show that this approach yields higher held-out log-likelihoods as well as improved generative metrics. Our implicit variational density can adapt to complicated posterior geometries of latent hierarchical representations arising in hierarchical VAEs.
AbstractList Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained by maximising an evidence lower bound. There has been much progress in improving the expressiveness of the variational distribution to obtain tighter variational bounds and increased generative performance. Whilst previous work has leveraged Markov chain Monte Carlo methods for constructing variational densities, gradient-based methods for adapting the proposal distributions for deep latent variable models have received less attention. This work suggests an entropy-based adaptation for a short-run metropolis-adjusted Langevin or Hamiltonian Monte Carlo (HMC) chain while optimising a tighter variational bound to the log-evidence. Experiments show that this approach yields higher held-out log-likelihoods as well as improved generative metrics. Our implicit variational density can adapt to complicated posterior geometries of latent hierarchical representations arising in hierarchical VAEs.
ArticleNumber 164
Author Hirt, Marcel
Kreouzis, Vasileios
Dellaportas, Petros
Author_xml – sequence: 1
  givenname: Marcel
  surname: Hirt
  fullname: Hirt, Marcel
  organization: School of Social Sciences and School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 2
  givenname: Vasileios
  surname: Kreouzis
  fullname: Kreouzis, Vasileios
  organization: Department of Statistical Science, University College London
– sequence: 3
  givenname: Petros
  surname: Dellaportas
  fullname: Dellaportas, Petros
  email: p.dellaportas@ucl.ac.uk
  organization: Department of Statistical Science, University College London, Department of Statistics, Athens University of Economics and Business
BookMark eNp9kMFKw0AQhhepYFt9AU8Bz6s7u8lm9yhBrdDiRc_LJJmUlDapu0mpb29sBMFDT3OY_xv--WZs0rQNMXYL4h6ESB8CgJSSCxlzELEBfrxgU0hSxUGlyYRNhdWCK0jjKzYLYSMEgFbxlNkloW_qZh0d0NfY1W2D2wj7rqWmaEvyITrUGK2yVRaFPVEZ7QhD7ylcs8sKt4FufuecfTw_vWcLvnx7ec0el7xQWnWcRAJSlUbrKgdbJlrJ3KBF0hVQURltcgNVLnBYWmshlrnCVEOSW6xA5WrO7sa7e99-9hQ6t2l7P7QMTgljjZbSJkPKjKnCtyF4qlxRd6d3Oo_11oFwP6LcKMoNotxJlDsOqPyH7n29Q_91HlIjFIZwsyb_1-oM9Q0463zY
CitedBy_id crossref_primary_10_3390_pr13030861
crossref_primary_10_3390_en17205088
Cites_doi 10.1111/1467-9868.00196
10.1214/088342307000000014
10.24963/ijcai.2017/273
10.1137/21M1450604
10.1007/978-3-030-58539-6_22
10.1007/s10107-007-0149-x
10.1162/NECO_a_00142
10.1017/S0962492902000144
10.1109/CVPR52688.2022.01042
10.1609/aaai.v31i1.10902
10.3150/18-BEJ1083
10.1109/ICCV51070.2023.00393
10.3390/e23030269
10.1017/S0962492917000101
10.1109/FOCS57990.2023.00134
10.1111/j.1467-9868.2009.00736.x
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11222-024-10481-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_024_10481_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-e05123d866fb19d5632b8a9ae6f1ecf868b81fb0a19d999142b3a7615b9af13b3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284919200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Sun Nov 09 08:18:20 EST 2025
Tue Nov 18 20:47:43 EST 2025
Sat Nov 29 03:32:46 EST 2025
Fri Feb 21 02:40:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Adaptive MCMC
MALA
Generative models
Hierarchical models
HMC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e05123d866fb19d5632b8a9ae6f1ecf868b81fb0a19d999142b3a7615b9af13b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11222-024-10481-x
PQID 3089862295
PQPubID 2043829
ParticipantIDs proquest_journals_3089862295
crossref_citationtrail_10_1007_s11222_024_10481_x
crossref_primary_10_1007_s11222_024_10481_x
springer_journals_10_1007_s11222_024_10481_x
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kuzina, A., Welling, M., Tomczak, J.M.: Alleviating adversarial attacks on variational autoencoders with MCMC. In: Advances in Neural Information Processing Systems (2022)
Du, Y., Mordatch, I.: Implicit generation and modeling with energy based models. Advances in Neural Information Processing Systems 32, pp. 3608–3618 (2019)
Guo, F., Wang, X., Fan, K., et al: Boosting variational inference (2016). arXiv:1611.05559
MaaløeLFraccaroMLiévinVBiva: a very deep hierarchy of latent variables for generative modelingAdv. Neural. Inf. Process. Syst.20193265516562
Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of The 32nd International Conference on Machine Learning, pp. 1530–1538 (2015)
HagemannPHertrichJSteidlGStochastic normalizing flows for inverse problems: a Markov Chains viewpointSIAM/ASA J. Uncertain. Quantif.202210311621190449032010.1137/21M1450604
Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to carve up the variational evidence lower bound. In: Workshop in Advances in Approximate Bayesian Inference, NIPS (2016)
Dilokthanakul, N., Mediano, P.A., Garnelo, M., et al: Deep unsupervised clustering with Gaussian mixture Variational Autoencoders (2016). arXiv:1611.02648
Klushyn, A., Chen, N., Kurle, R., et al: Learning hierarchical priors in VAEs. Advances in Neural Information Processing Systems 32, pp. 2870–2879 (2019)
Papamakarios, G., Nalisnick, E., Rezende, D.J., et al: Normalizing flows for probabilistic modeling and inference (2019). arXiv:1912.02762
AmbrosioLGigliNSavaréGGradient flows: in Metric Spaces and in the Space of Probability Measures2005BerlinSpringer
HirtMTitsiasMDellaportasPEntropy-based adaptive Hamiltonian Monte CarloAdv. Neural. Inf. Process. Syst.2021342848228495
Finke, A., Thiery, A.H.: On importance-weighted autoencoders (2019). arXiv:1907.10477
Rosca, M., Lakshminarayanan, B., Mohamed, S.: Distribution matching in variational inference (2018). arXiv:1802.06847
Singhal, R., Goldstein, M., Ranganath, R.: Where to diffuse, how to diffuse and how to get back: automated learning in multivariate diffusions. In: International Conference on Learning Representations (2023)
LivingstoneSBetancourtMByrneSOn the geometric ergodicity of Hamiltonian Monte CarloBernoulli2019254A31093138400357610.3150/18-BEJ1083
Altschuler, J.M., Chewi, S.: Faster high-accuracy log-concave sampling via algorithmic warm starts. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, pp. 2169–2176 (2023)
AnejaJSchwingAKautzJA contrastive learning approach for training Variational Autoencoder priorsAdv. Neural. Inf. Process. Syst.202134480493
Hoffman, M, Sountsov, P., Dillon, J.V., et al: Neutra-lizing bad geometry in Hamiltonian Monte Carlo using neural transport (2019). arXiv:1903.03704
Bou-RabeeNSanz-SernaJMGeometric integrators and the Hamiltonian Monte Carlo methodActa Numer201827113206382650710.1017/S0962492917000101
Nijkamp, E., Pang, B., Han, T., et al: Learning multi-layer latent variable model via variational optimization of short run MCMC for approximate inference. In: European Conference on Computer Vision. Springer, pp. 361–378 (2020)
Taniguchi, S., Iwasawa, Y., Kumagai, W., et al: Langevin autoencoders for learning deep latent variable models (2022). arXiv:2209.07036
Durmus, A., Moulines, E., Saksman, E.: On the convergence of Hamiltonian Monte Carlo (2017). arXiv:1705.00166
Barber, D., Bishop, C.M. Ensemble learning for multi-layer networks. In: Advances in Neural Information Processing Systems, pp. 395–401 (1998)
Titsias MK (2017) Learning model reparametrizations: implicit variational inference by fitting MCMC distributions. arXiv:1708.01529
WuHKöhlerJNoéFStochastic normalizing flowsAdv. Neural. Inf. Process. Syst.20203359335944
Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems 32, pp. 11918–11930 (2019)
Chen, T.Q., Behrmann, J., Duvenaud, D.K., et al: Residual flows for invertible generative modeling. In: Advances in Neural Information Processing Systems, pp. 9913–9923 (2019a)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., et al: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, PMLR, pp. 2256–2265 (2015)
Ranganath, R., Tran, D., Blei, D.M.: Hierarchical variational models. In: International Conference on Machine Learning (2016)
Bińkowski, M., Sutherland, D.J., Arbel, M., et al: Demystifying MMD GANs. (2018) arXiv:1801.01401
Salimans, T., Kingma, D.P., Welling, M., et al: Markov Chain Monte Carlo and variational inference: bridging the gap. In: ICML, pp. 1218–1226 (2015)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1278–1286 (2014)
Thin, A., Kotelevskii, N., Denain, J.S., et al: Metflow: a new efficient method for bridging the gap between Markov Chain Monte Carlo and variational inference (2020). arXiv:2002.12253
DaiBWangYAstonJConnections with robust PCA and the role of emergent sparsity in variational autoencoder modelsJ. Mach. Learn. Res.2018191157316143862448
Chen, Y., Gatmiry, K.: A simple proof of the mixing of metropolis-adjusted langevin algorithm under smoothness and isoperimetry (2023). arXiv:2304.04095
Child, R.: Very deep VAEs generalize autoregressive models and can outperform them on images. In: International Conference on Learning Representations (2021)
HoffmanMDGelmanAThe No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte CarloJ. Mach. Learn. Res.2014151159316233214779
Han, T., Lu, Y., Zhu, S.C., et al: Alternating back-propagation for generator network. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)
Tran, D., Ranganath, R., Blei, D.M.: Deep and hierarchical implicit models. arXiv:1702.08896 (2017)
Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in latent space. Advances in Neural Information Processing Systems 34 (2021)
Ruiz, F., Titsias, M.: A Contrastive divergence for combining variational inference and MCMC. In: International Conference on Machine Learning, pp. 5537–5545 (2019)
Lee, Y.T., Shen, R., Tian, K.: Logsmooth gradient concentration and tighter runtimes for metropolized Hamiltonian Monte Carlo. In: Conference on Learning Theory, PMLR, pp. 2565–2597 (2020)
Levy, D., Hoffman, M.D., Sohl-Dickstein, J.: Generalizing Hamiltonian Monte Carlo with neural networks. In: International Conference on Learning Representations (2018)
Rombach, R., Blattmann, A., Lorenz, D., et al: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Behrmann, J., Grathwohl, W., Chen, R.T., et al: Invertible residual networks. In: International Conference on Machine Learning, pp. 573–582 (2019)
Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational Bayes: unifying variational autoencoders and generative adversarial networks. In: International Conference on Machine learning (ICML) (2017)
Falck, F., Williams, C., Danks, D., et al: A multi-resolution framework for U-Nets with applications to hierarchical VAEs. In: Advances in Neural Information Processing Systems (2022)
Tran, D., Blei, D., Airoldi, E.M.: Copula variational inference. In: Advances in Neural Information Processing Systems, pp. 3564–3572 (2015)
AndrieuCDoucetAHolensteinRParticle Markov Chain Monte Carlo methodsJ. R. Stat. Soc. Ser. B (Stat. Methodol.)2010723269342275811510.1111/j.1467-9868.2009.00736.x
Han, S., Liao, X., Dunson, D., et al: Variational Gaussian copula inference. In: Artificial Intelligence and Statistics, pp. 829–838 (2016)
Louizos, C., Welling, M.: Structured and efficient variational deep learning with matrix Gaussian posteriors. In: Proceedings of the 33rd International Conference on Machine Learning (2016)
Molchanov, D., Kharitonov, V., Sobolev, A., et al: Doubly semi-implicit variational inference. In: The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, pp. 2593–2602 (2019)
SinhaASongJMengCD2c: diffusion-decoding models for few-shot conditional generationAdv. Neural. Inf. Process. Syst.2021341253312548
HoJJainAAbbeelPDenoising diffusion probabilistic modelsAdv. Neural. Inf. Process. Syst.20203368406851
Titsias, M., Lázaro-Gredilla, M.: Doubly stochastic variational bayes for non-conjugate inference. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1971–1979 (2014)
RobertsGGelmanAGilksWWeak convergence and optimal scaling of random walk metropolis algorithmsAnn. Appl. Probab.1997711101201428751
WuKSchmidlerSChenYMinimax mixing time of the metropolis-adjusted Langevin algorithm for log-concave samplingJ. Mach. Learn. Res.2022232701634577709
Hernandez-Lobato, J., Li, Y., Rowland, M., et al: Black-box alpha divergence minimization. In: International Conference on Machine Learning, PMLR, pp. 1511–1520 (2016)
Kingma, D.P., Welling, M.: Auto-encoding Variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR) (2014)
Lucas, J., Tucker, G., Grosse, R.B., et al: Don’t blame the ELBO! a linear VAE perspective on posterior collapse. In: Advances in Neural Information Processing Systems, pp. 9408–9418 (2019)
Papaspiliopoulos, O., Roberts, G.O., Sköld, M.: A general framework for the parametrization of hierarchical models. Statistical Science, pp. 59–73 (2007)
Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder (2020). arXiv:2007.03898
NesterovYPrimal-dual subgradient methods for convex problemsMath. Program.20091201221259249643410.1007/s10107-007-0149-x
Yin, M., Zhou, M.: Semi-implicit variational inference. In: International Conference on Machine Learning, pp. 5646–5655 (2018)
Pang, B., Han, T., Nijkamp, E., et al,: Learning latent space energy-based prior model. Advances in Neural
10481_CR30
10481_CR32
10481_CR31
10481_CR2
10481_CR26
10481_CR1
P Hagemann (10481_CR27) 2022; 10
10481_CR29
10481_CR7
10481_CR23
10481_CR6
10481_CR25
10481_CR24
10481_CR8
L Maaløe (10481_CR54) 2019; 32
10481_CR21
10481_CR20
10481_CR16
10481_CR15
10481_CR18
10481_CR12
10481_CR11
10481_CR14
ME Tipping (10481_CR83) 1999; 61
10481_CR13
P Vincent (10481_CR93) 2011; 23
10481_CR19
10481_CR90
L Ambrosio (10481_CR3) 2005
10481_CR10
10481_CR98
10481_CR97
10481_CR92
10481_CR91
10481_CR94
10481_CR89
10481_CR88
S Livingstone (10481_CR49) 2019; 25
10481_CR85
10481_CR84
10481_CR87
10481_CR86
10481_CR81
10481_CR80
10481_CR82
10481_CR77
N Bou-Rabee (10481_CR9) 2018; 27
10481_CR79
Y Nesterov (10481_CR58) 2009; 120
10481_CR74
10481_CR73
10481_CR75
10481_CR70
G Roberts (10481_CR68) 1997; 7
10481_CR72
10481_CR71
10481_CR67
10481_CR66
10481_CR69
K Wu (10481_CR96) 2022; 23
C Andrieu (10481_CR4) 2010; 72
YT Lee (10481_CR45) 2021; 34
CK Sønderby (10481_CR78) 2016; 29
10481_CR63
10481_CR62
10481_CR65
10481_CR64
10481_CR61
10481_CR60
10481_CR59
R Dwivedi (10481_CR22) 2019; 20
10481_CR56
10481_CR55
10481_CR57
E Hairer (10481_CR28) 2003; 12
10481_CR52
J Aneja (10481_CR5) 2021; 34
10481_CR51
10481_CR53
M Hirt (10481_CR33) 2021; 34
10481_CR50
MD Hoffman (10481_CR37) 2014; 15
10481_CR48
10481_CR44
10481_CR47
10481_CR46
J Ho (10481_CR34) 2020; 33
A Sinha (10481_CR76) 2021; 34
10481_CR41
B Dai (10481_CR17) 2018; 19
10481_CR40
H Wu (10481_CR95) 2020; 33
10481_CR43
10481_CR42
10481_CR38
10481_CR39
10481_CR36
10481_CR35
References_xml – reference: WuHKöhlerJNoéFStochastic normalizing flowsAdv. Neural. Inf. Process. Syst.20203359335944
– reference: Hernandez-Lobato, J., Li, Y., Rowland, M., et al: Black-box alpha divergence minimization. In: International Conference on Machine Learning, PMLR, pp. 1511–1520 (2016)
– reference: LivingstoneSBetancourtMByrneSOn the geometric ergodicity of Hamiltonian Monte CarloBernoulli2019254A31093138400357610.3150/18-BEJ1083
– reference: Dockhorn, T., Vahdat, A., Kreis, K.: Score-based generative modeling with critically-damped langevin diffusion. In: International Conference on Learning Representations (2021)
– reference: Salimans, T., Kingma, D.P., Welling, M., et al: Markov Chain Monte Carlo and variational inference: bridging the gap. In: ICML, pp. 1218–1226 (2015)
– reference: Falck, F., Williams, C., Danks, D., et al: A multi-resolution framework for U-Nets with applications to hierarchical VAEs. In: Advances in Neural Information Processing Systems (2022)
– reference: Tran, D., Blei, D., Airoldi, E.M.: Copula variational inference. In: Advances in Neural Information Processing Systems, pp. 3564–3572 (2015)
– reference: Levy, D., Hoffman, M.D., Sohl-Dickstein, J.: Generalizing Hamiltonian Monte Carlo with neural networks. In: International Conference on Learning Representations (2018)
– reference: Song, Y., Sohl-Dickstein, J., Kingma, D.P., et al: Score-based generative modeling through stochastic differential equations. In: International Conference on Learning Representations (2020)
– reference: DaiBWangYAstonJConnections with robust PCA and the role of emergent sparsity in variational autoencoder modelsJ. Mach. Learn. Res.2018191157316143862448
– reference: Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in latent space. Advances in Neural Information Processing Systems 34 (2021)
– reference: Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., et al: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, PMLR, pp. 2256–2265 (2015)
– reference: Han, S., Liao, X., Dunson, D., et al: Variational Gaussian copula inference. In: Artificial Intelligence and Statistics, pp. 829–838 (2016)
– reference: Salimans, T., Karpathy, A., Chen, X., et al: Pixelcnn++: improving the pixelcnn with discretized logistic mixture likelihood and other modifications. In: International Conference on Learning Representations (2017)
– reference: Bińkowski, M., Sutherland, D.J., Arbel, M., et al: Demystifying MMD GANs. (2018) arXiv:1801.01401
– reference: Titsias, M., Dellaportas, P.: Gradient-based adaptive Markov chain Monte Carlo. In: Advances in Neural Information Processing Systems, pp. 15704–15713 (2019)
– reference: Abadi, M., Barham, P., Chen, J., et al: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)
– reference: Hoffman, M, Sountsov, P., Dillon, J.V., et al: Neutra-lizing bad geometry in Hamiltonian Monte Carlo using neural transport (2019). arXiv:1903.03704
– reference: Hoffman, M.D.: Learning deep latent Gaussian models with Markov chain Monte Carlo. In: International Conference on Machine Learning, pp. 1510–1519 (2017)
– reference: WuKSchmidlerSChenYMinimax mixing time of the metropolis-adjusted Langevin algorithm for log-concave samplingJ. Mach. Learn. Res.2022232701634577709
– reference: Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. (2015) arXiv:1509.00519
– reference: Klushyn, A., Chen, N., Kurle, R., et al: Learning hierarchical priors in VAEs. Advances in Neural Information Processing Systems 32, pp. 2870–2879 (2019)
– reference: Rosca, M., Lakshminarayanan, B., Mohamed, S.: Distribution matching in variational inference (2018). arXiv:1802.06847
– reference: AmbrosioLGigliNSavaréGGradient flows: in Metric Spaces and in the Space of Probability Measures2005BerlinSpringer
– reference: Du, Y., Mordatch, I.: Implicit generation and modeling with energy based models. Advances in Neural Information Processing Systems 32, pp. 3608–3618 (2019)
– reference: AndrieuCDoucetAHolensteinRParticle Markov Chain Monte Carlo methodsJ. R. Stat. Soc. Ser. B (Stat. Methodol.)2010723269342275811510.1111/j.1467-9868.2009.00736.x
– reference: Mangoubi, O., Vishnoi, N.K.: Nonconvex sampling with the metropolis-adjusted langevin algorithm. In: Conference on Learning Theory, PMLR, pp. 2259–2293 (2019)
– reference: RobertsGGelmanAGilksWWeak convergence and optimal scaling of random walk metropolis algorithmsAnn. Appl. Probab.1997711101201428751
– reference: Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1278–1286 (2014)
– reference: Ranganath, R., Tran, D., Blei, D.M.: Hierarchical variational models. In: International Conference on Machine Learning (2016)
– reference: Rombach, R., Blattmann, A., Lorenz, D., et al: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
– reference: DwivediRChenYWainwrightMJLog-concave sampling: metropolis-hastings algorithms are fastJ. Mach. Learn. Res.2019201831423911408
– reference: Thin, A., Kotelevskii, N., Denain, J.S., et al: Metflow: a new efficient method for bridging the gap between Markov Chain Monte Carlo and variational inference (2020). arXiv:2002.12253
– reference: Tran, D., Ranganath, R., Blei, D.M.: Deep and hierarchical implicit models. arXiv:1702.08896 (2017)
– reference: Chen, Y., Gatmiry, K.: A simple proof of the mixing of metropolis-adjusted langevin algorithm under smoothness and isoperimetry (2023). arXiv:2304.04095
– reference: Li, C., Wang, Y., Li, W., et al Forward chi-squared divergence based variational importance sampling (2023). arXiv:2311.02516
– reference: Taniguchi, S., Iwasawa, Y., Kumagai, W., et al: Langevin autoencoders for learning deep latent variable models (2022). arXiv:2209.07036
– reference: Barber, D., Bishop, C.M. Ensemble learning for multi-layer networks. In: Advances in Neural Information Processing Systems, pp. 395–401 (1998)
– reference: Li, Z., Chen, Y., Sommer, F.T.P: A neural network MCMC sampler that maximizes proposal entropy (2020). arXiv:2010.03587
– reference: Chewi, S., Lu, C., Ahn, K., et al: Optimal dimension dependence of the metropolis-adjusted langevin algorithm. In: Conference on Learning Theory, PMLR, pp. 1260–1300 (2021)
– reference: Locatello, F., Dresdner, G., Khanna, R., et al Boosting black box variational inference. In: Advances in Neural Information Processing Systems, pp. 3401–3411 (2018)
– reference: Singhal, R., Goldstein, M., Ranganath, R.: Where to diffuse, how to diffuse and how to get back: automated learning in multivariate diffusions. In: International Conference on Learning Representations (2023)
– reference: Kingma, D.P., Welling, M.: Auto-encoding Variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR) (2014)
– reference: HoffmanMDGelmanAThe No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte CarloJ. Mach. Learn. Res.2014151159316233214779
– reference: Pandey, K., Mandt, S.: A complete recipe for diffusion generative models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4261–4272 (2023)
– reference: LeeYTShenRTianKLower bounds on metropolized sampling methods for well-conditioned distributionsAdv. Neural. Inf. Process. Syst.2021341881218824
– reference: Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational Bayes: unifying variational autoencoders and generative adversarial networks. In: International Conference on Machine learning (ICML) (2017)
– reference: HoJJainAAbbeelPDenoising diffusion probabilistic modelsAdv. Neural. Inf. Process. Syst.20203368406851
– reference: Bou-RabeeNSanz-SernaJMGeometric integrators and the Hamiltonian Monte Carlo methodActa Numer201827113206382650710.1017/S0962492917000101
– reference: Lee, Y.T., Shen, R., Tian, K.: Logsmooth gradient concentration and tighter runtimes for metropolized Hamiltonian Monte Carlo. In: Conference on Learning Theory, PMLR, pp. 2565–2597 (2020)
– reference: Han, T., Zhang, J., Wu, Y.N.: From EM-projections to variational auto-encoder. In: NeurIPS 2020 Workshop: Deep Learning through Information Geometry (2020)
– reference: Han, T., Lu, Y., Zhu, S.C., et al: Alternating back-propagation for generator network. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)
– reference: Titsias, M., Lázaro-Gredilla, M.: Doubly stochastic variational bayes for non-conjugate inference. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1971–1979 (2014)
– reference: HairerELubichCWannerGGeometric numerical integration illustrated by the Störmer–Verlet methodActa Numer200312399450224915910.1017/S0962492902000144
– reference: Peis, I., Ma, C., Hernández-Lobato, J.M.: Missing data imputation and acquisition with deep hierarchical models and Hamiltonian Monte Carlo (2022). arXiv:2202.04599
– reference: NesterovYPrimal-dual subgradient methods for convex problemsMath. Program.20091201221259249643410.1007/s10107-007-0149-x
– reference: Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to carve up the variational evidence lower bound. In: Workshop in Advances in Approximate Bayesian Inference, NIPS (2016)
– reference: SønderbyCKRaikoTMaaløeLLadder variational autoencodersAdv. Neural. Inf. Process. Syst.20162937383746
– reference: Guo, F., Wang, X., Fan, K., et al: Boosting variational inference (2016). arXiv:1611.05559
– reference: Durmus, A., Moulines, E., Saksman, E.: On the convergence of Hamiltonian Monte Carlo (2017). arXiv:1705.00166
– reference: Chen, T.Q., Behrmann, J., Duvenaud, D.K., et al: Residual flows for invertible generative modeling. In: Advances in Neural Information Processing Systems, pp. 9913–9923 (2019a)
– reference: Nijkamp, E., Pang, B., Han, T., et al: Learning multi-layer latent variable model via variational optimization of short run MCMC for approximate inference. In: European Conference on Computer Vision. Springer, pp. 361–378 (2020)
– reference: Pang, B., Han, T., Nijkamp, E., et al,: Learning latent space energy-based prior model. Advances in Neural Information Processing Systems 33, pp.21994–22008 (2020)
– reference: SinhaASongJMengCD2c: diffusion-decoding models for few-shot conditional generationAdv. Neural. Inf. Process. Syst.2021341253312548
– reference: Finke, A., Thiery, A.H.: On importance-weighted autoencoders (2019). arXiv:1907.10477
– reference: Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder (2020). arXiv:2007.03898
– reference: AnejaJSchwingAKautzJA contrastive learning approach for training Variational Autoencoder priorsAdv. Neural. Inf. Process. Syst.202134480493
– reference: Louizos, C., Welling, M.: Multiplicative normalizing flows for variational bayesian neural networks. In: International Conference on Machine Learning, pp. 2218–2227 (2017)
– reference: Kuzina, A., Welling, M., Tomczak, J.M.: Alleviating adversarial attacks on variational autoencoders with MCMC. In: Advances in Neural Information Processing Systems (2022)
– reference: Tomczak, J.M., Welling, M.: VAE with a VampPrior (2017). arXiv:1705.07120
– reference: Yu, L., Xie, T., Zhu, Y., et al: Hierarchical semi-implicit variational iference with application to diffusion model acceleration. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023)
– reference: Child, R.: Very deep VAEs generalize autoregressive models and can outperform them on images. In: International Conference on Learning Representations (2021)
– reference: Geffner, T., Domke, J.: On the difficulty of unbiased alpha divergence minimization. In: International Conference on Machine Learning, PMLR, pp. 3650–3659 (2021)
– reference: Jiang, Z., Zheng, Y., Tan, H., et al: Variational deep embedding: an unsupervised and generative approach to clustering. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1965–1972 (2017)
– reference: Ruiz, F., Titsias, M.: A Contrastive divergence for combining variational inference and MCMC. In: International Conference on Machine Learning, pp. 5537–5545 (2019)
– reference: MaaløeLFraccaroMLiévinVBiva: a very deep hierarchy of latent variables for generative modelingAdv. Neural. Inf. Process. Syst.20193265516562
– reference: Kingma, D.P., Salimans, T., Jozefowicz, R., et al: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing Systems, pp. 4743–4751 (2016)
– reference: Louizos, C., Welling, M.: Structured and efficient variational deep learning with matrix Gaussian posteriors. In: Proceedings of the 33rd International Conference on Machine Learning (2016)
– reference: Molchanov, D., Kharitonov, V., Sobolev, A., et al: Doubly semi-implicit variational inference. In: The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, pp. 2593–2602 (2019)
– reference: Dilokthanakul, N., Mediano, P.A., Garnelo, M., et al: Deep unsupervised clustering with Gaussian mixture Variational Autoencoders (2016). arXiv:1611.02648
– reference: Titsias, M.K., Ruiz, F.: Unbiased implicit variational inference. In: The 22nd international conference on artificial intelligence and statistics, pp. 167–176 (2019)
– reference: Behrmann, J., Grathwohl, W., Chen, R.T., et al: Invertible residual networks. In: International Conference on Machine Learning, pp. 573–582 (2019)
– reference: Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of The 32nd International Conference on Machine Learning, pp. 1530–1538 (2015)
– reference: Titsias MK (2017) Learning model reparametrizations: implicit variational inference by fitting MCMC distributions. arXiv:1708.01529
– reference: Caterini, A.L., Doucet, A., Sejdinovic, D.: Hamiltonian variational auto-encoder. In: Advances in Neural Information Processing Systems, pp. 8167–8177 (2018)
– reference: TippingMEBishopCMProbabilistic principal component analysisJ. R. Stat. Soc. Ser. B (Stat. Methodol.)1999613611622170786410.1111/1467-9868.00196
– reference: Papaspiliopoulos, O., Roberts, G.O., Sköld, M.: A general framework for the parametrization of hierarchical models. Statistical Science, pp. 59–73 (2007)
– reference: Papamakarios, G., Nalisnick, E., Rezende, D.J., et al: Normalizing flows for probabilistic modeling and inference (2019). arXiv:1912.02762
– reference: Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems 32, pp. 11918–11930 (2019)
– reference: Chen, Y., Dwivedi, R., Wainwright, M.J., et al: Fast mixing of metropolized Hamiltonian Monte Carlo: benefits of multi-step gradients (2019b). arXiv:1905.12247
– reference: Lucas, J., Tucker, G., Grosse, R.B., et al: Don’t blame the ELBO! a linear VAE perspective on posterior collapse. In: Advances in Neural Information Processing Systems, pp. 9408–9418 (2019)
– reference: HagemannPHertrichJSteidlGStochastic normalizing flows for inverse problems: a Markov Chains viewpointSIAM/ASA J. Uncertain. Quantif.202210311621190449032010.1137/21M1450604
– reference: Altschuler, J.M., Chewi, S.: Faster high-accuracy log-concave sampling via algorithmic warm starts. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, pp. 2169–2176 (2023)
– reference: HirtMTitsiasMDellaportasPEntropy-based adaptive Hamiltonian Monte CarloAdv. Neural. Inf. Process. Syst.2021342848228495
– reference: Wolf, C., Karl, M., van der Smagt, P.: Variational inference with Hamiltonian Monte Carlo (2016). arXiv:1609.08203
– reference: Ruiz, F.J., Titsias, M.K., Cemgil, T., et al: Unbiased gradient estimation for variational auto-encoders using coupled Markov chains. In: Uncertainty in Artificial Intelligence, PMLR, pp. 707–717 (2021)
– reference: VincentPA connection between score matching and denoising autoencodersNeural Comput.201123716611674283954310.1162/NECO_a_00142
– reference: Yin, M., Zhou, M.: Semi-implicit variational inference. In: International Conference on Machine Learning, pp. 5646–5655 (2018)
– ident: 10481_CR90
– volume: 34
  start-page: 480
  year: 2021
  ident: 10481_CR5
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR55
– ident: 10481_CR32
– volume: 15
  start-page: 1593
  issue: 1
  year: 2014
  ident: 10481_CR37
  publication-title: J. Mach. Learn. Res.
– ident: 10481_CR52
– ident: 10481_CR75
– volume-title: Gradient flows: in Metric Spaces and in the Space of Probability Measures
  year: 2005
  ident: 10481_CR3
– volume: 23
  start-page: 1
  issue: 270
  year: 2022
  ident: 10481_CR96
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 1573
  issue: 1
  year: 2018
  ident: 10481_CR17
  publication-title: J. Mach. Learn. Res.
– ident: 10481_CR98
– ident: 10481_CR46
– volume: 34
  start-page: 28482
  year: 2021
  ident: 10481_CR33
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR23
– ident: 10481_CR84
– ident: 10481_CR8
– volume: 34
  start-page: 12533
  year: 2021
  ident: 10481_CR76
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  ident: 10481_CR83
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/1467-9868.00196
– ident: 10481_CR61
– ident: 10481_CR41
– ident: 10481_CR63
  doi: 10.1214/088342307000000014
– ident: 10481_CR14
– ident: 10481_CR66
– ident: 10481_CR87
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10481_CR34
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR39
  doi: 10.24963/ijcai.2017/273
– volume: 10
  start-page: 1162
  issue: 3
  year: 2022
  ident: 10481_CR27
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/21M1450604
– ident: 10481_CR35
– ident: 10481_CR72
– volume: 7
  start-page: 110
  issue: 1
  year: 1997
  ident: 10481_CR68
  publication-title: Ann. Appl. Probab.
– ident: 10481_CR20
– volume: 33
  start-page: 5933
  year: 2020
  ident: 10481_CR95
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR15
– ident: 10481_CR40
– ident: 10481_CR57
– ident: 10481_CR59
  doi: 10.1007/978-3-030-58539-6_22
– volume: 32
  start-page: 6551
  year: 2019
  ident: 10481_CR54
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR77
– volume: 120
  start-page: 221
  issue: 1
  year: 2009
  ident: 10481_CR58
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0149-x
– ident: 10481_CR82
– ident: 10481_CR21
– ident: 10481_CR29
– ident: 10481_CR91
– ident: 10481_CR12
– ident: 10481_CR74
– volume: 29
  start-page: 3738
  year: 2016
  ident: 10481_CR78
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR85
– ident: 10481_CR43
– volume: 34
  start-page: 18812
  year: 2021
  ident: 10481_CR45
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10481_CR26
– volume: 23
  start-page: 1661
  issue: 7
  year: 2011
  ident: 10481_CR93
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00142
– ident: 10481_CR65
– ident: 10481_CR88
– ident: 10481_CR13
– volume: 12
  start-page: 399
  year: 2003
  ident: 10481_CR28
  publication-title: Acta Numer
  doi: 10.1017/S0962492902000144
– ident: 10481_CR1
– ident: 10481_CR69
  doi: 10.1109/CVPR52688.2022.01042
– ident: 10481_CR71
– ident: 10481_CR94
– ident: 10481_CR30
  doi: 10.1609/aaai.v31i1.10902
– ident: 10481_CR36
– ident: 10481_CR79
– ident: 10481_CR80
– ident: 10481_CR42
– volume: 20
  start-page: 1
  issue: 183
  year: 2019
  ident: 10481_CR22
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 3109
  issue: 4A
  year: 2019
  ident: 10481_CR49
  publication-title: Bernoulli
  doi: 10.3150/18-BEJ1083
– ident: 10481_CR60
  doi: 10.1109/ICCV51070.2023.00393
– ident: 10481_CR48
  doi: 10.3390/e23030269
– volume: 27
  start-page: 113
  year: 2018
  ident: 10481_CR9
  publication-title: Acta Numer
  doi: 10.1017/S0962492917000101
– ident: 10481_CR10
– ident: 10481_CR18
– ident: 10481_CR31
– ident: 10481_CR2
  doi: 10.1109/FOCS57990.2023.00134
– ident: 10481_CR56
– ident: 10481_CR51
– ident: 10481_CR97
– ident: 10481_CR7
– ident: 10481_CR24
– ident: 10481_CR62
– ident: 10481_CR86
– ident: 10481_CR11
– ident: 10481_CR92
– ident: 10481_CR50
– ident: 10481_CR73
– ident: 10481_CR38
– ident: 10481_CR19
– ident: 10481_CR53
– volume: 72
  start-page: 269
  issue: 3
  year: 2010
  ident: 10481_CR4
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2009.00736.x
– ident: 10481_CR6
– ident: 10481_CR67
– ident: 10481_CR25
– ident: 10481_CR44
– ident: 10481_CR16
– ident: 10481_CR64
– ident: 10481_CR89
– ident: 10481_CR70
– ident: 10481_CR81
– ident: 10481_CR47
SSID ssj0011634
Score 2.389387
Snippet Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained by maximising an evidence lower bound. There...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Computer Science
Lower bounds
Markov chains
Monte Carlo simulation
Optimization
Original Paper
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title Learning variational autoencoders via MCMC speed measures
URI https://link.springer.com/article/10.1007/s11222-024-10481-x
https://www.proquest.com/docview/3089862295
Volume 34
WOSCitedRecordID wos001284919200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6keqgHq1WxWiUHbxrYbLZJ9ijF4sEW8VF6W5J9iKBt6bbFn-9kN9uiqKDnZMMyk5n5Jsl8A3Aee9IIowIqYj-hloCOGh5o6iWZ5cJL07DoGTm8lYOBGo3CO1cUllev3asrycJTr4vdGMYyijEFXUegGEXkuInhTllzvH8Yru4OEGEUpFGIzdHDyMCVyny_xudwtMaYX65Fi2jTa_zvP3dhx6FLclVuhz3YSMdNaFSdG4gz5CZs91dsrXkT6hZxloTN-xA6xtVnssQ02h0VEr2YTyzlpX32TJYvmvS7_S7Jpxj7yFt5zJgfwFPv-rF7Q11_BRpzwec0RYP0eaKEyAwLk47gvlGWrVtkLI0zJZRRLDOexkGLIwPfcC0RAplQZ4wbfgi18WScHgHBpJKzAFMfxJeBjKUWHe3LzJdhLJkWSQtYJeYoduTjtgfGa7SmTbZii1BsUSG26L0FF6tvpiX1xq-z25X2ImeGecQ9FWLK5oedFlxW2loP_7za8d-mn0DdLxVOPdaG2ny2SE9hK16i8mZnxfb8AFmD3JU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EBfVgtSrWZw7eNLDZbJPsUYqlYlvER_G2JPsQQat02-LPd7KbbVFU0HOyYZlJMt9kZr4BOIk9aYRRARWxn1BLQEcNDzT1ksxy4aVpWPSMHHRlv68eHsJrVxSWV9nuVUiyuKnnxW4MbRlFm4JXR6AYReS4FKDFsol8N7eDWewAEUZBGoXYHG8YGbhSme_X-GyO5hjzS1i0sDbt2v_-cwPWHbok5-V22ISFdFiHWtW5gbiDXIe13oytNa_DqkWcJWHzFoSOcfWRTNGNdk-FRE_Gr5by0qY9k-mTJr1Wr0XyN7R95KV8Zsy34b59cdfqUNdfgcZc8DFN8UD6PFFCZIaFSVNw3yjL1i0ylsaZEsoolhlP46DFkYFvuJYIgUyoM8YN34HF4esw3QWCTiVnAbo-iC8DGUstmtqXmS_DWDItkgawSsxR7MjHbQ-M52hOm2zFFqHYokJs0XsDTmffvJXUG7_OPqi0F7ljmEfcUyG6bH7YbMBZpa358M-r7f1t-jGsdO563ah72b_ah1W_VD712AEsjkeT9BCW4ykqcnRUbNUPuVjfeQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5ERfRgtSrWZw7eNLjZbJPsUapFsS2CD7wtyT5E0G3ptsWf72QfrYoK4jnZsMxkMt9kMt8AHIWONMIoj4rQjagloKOGe5o6UWK58OLYz3tGPnRkr6ceH_2bD1X8-Wv3KiVZ1DRYlqZ0dDqIktNZ4RtDv0bRv-Ax4ilGEUUueLZpkI3Xbx-meQREGzmBFOJ0PG2kV5bNfL_GZ9c0w5tfUqS552nX_v_Pa7Baok5yVmyTdZiL0zrUqo4OpDTwOqx0pyyuWR2WLRItiJw3wC-ZWJ_IBMPr8gqR6PGob6kw7XNoMnnWpNvqtkg2QJ9IXovrx2wT7tsXd61LWvZdoCEXfERjNFSXR0qIxDA_agruGmVZvEXC4jBRQhnFEuNoHLT40nMN1xKhkfF1wrjhWzCf9tN4GwgGm5x5GBIh7vRkKLVoalcmrvRDybSIGsAqkQdhSUpue2O8BDM6ZSu2AMUW5GIL3hpwPP1mUFBy_Dp7r9JkUJpnFnBH-RjKuX6zASeV5mbDP6-287fph7B0c94OOle9611YdgvdU4ftwfxoOI73YTGcoB6HB_mufQdJU-hd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+variational+autoencoders+via+MCMC+speed+measures&rft.jtitle=Statistics+and+computing&rft.au=Hirt%2C+Marcel&rft.au=Kreouzis%2C+Vasileios&rft.au=Dellaportas%2C+Petros&rft.date=2024-10-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1007%2Fs11222-024-10481-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_024_10481_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon