Learning variational autoencoders via MCMC speed measures
Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained by maximising an evidence lower bound. There has been much progress in improving the expressiveness of the variational distribution to obtain tighter variational bounds and increased gener...
Uložené v:
| Vydané v: | Statistics and computing Ročník 34; číslo 5 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained by maximising an evidence lower bound. There has been much progress in improving the expressiveness of the variational distribution to obtain tighter variational bounds and increased generative performance. Whilst previous work has leveraged Markov chain Monte Carlo methods for constructing variational densities, gradient-based methods for adapting the proposal distributions for deep latent variable models have received less attention. This work suggests an entropy-based adaptation for a short-run metropolis-adjusted Langevin or Hamiltonian Monte Carlo (HMC) chain while optimising a tighter variational bound to the log-evidence. Experiments show that this approach yields higher held-out log-likelihoods as well as improved generative metrics. Our implicit variational density can adapt to complicated posterior geometries of latent hierarchical representations arising in hierarchical VAEs. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0960-3174 1573-1375 |
| DOI: | 10.1007/s11222-024-10481-x |