Towards effective assessment of steady state performance in Java software: are we there yet?

Microbenchmarking is a widely used form of performance testing in Java software. A microbenchmark repeatedly executes a small chunk of code while collecting measurements related to its performance. Due to Java Virtual Machine optimizations, microbenchmarks are usually subject to severe performance f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Empirical software engineering : an international journal Ročník 28; číslo 1; s. 13
Hlavní autoři: Traini, Luca, Cortellessa, Vittorio, Di Pompeo, Daniele, Tucci, Michele
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2023
Springer Nature B.V
Témata:
ISSN:1382-3256, 1573-7616
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Microbenchmarking is a widely used form of performance testing in Java software. A microbenchmark repeatedly executes a small chunk of code while collecting measurements related to its performance. Due to Java Virtual Machine optimizations, microbenchmarks are usually subject to severe performance fluctuations in the first phase of their execution (also known as warmup). For this reason, software developers typically discard measurements of this phase and focus their analysis when benchmarks reach a steady state of performance. Developers estimate the end of the warmup phase based on their expertise, and configure their benchmarks accordingly. Unfortunately, this approach is based on two strong assumptions: (i) benchmarks always reach a steady state of performance and (ii) developers accurately estimate warmup. In this paper, we show that Java microbenchmarks do not always reach a steady state, and often developers fail to accurately estimate the end of the warmup phase. We found that a considerable portion of studied benchmarks do not hit the steady state, and warmup estimates provided by software developers are often inaccurate (with a large error). This has significant implications both in terms of results quality and time-effort. Furthermore, we found that dynamic reconfiguration significantly improves warmup estimation accuracy, but still it induces suboptimal warmup estimates and relevant side-effects. We envision this paper as a starting point for supporting the introduction of more sophisticated automated techniques that can ensure results quality in a timely fashion.
AbstractList Microbenchmarking is a widely used form of performance testing in Java software. A microbenchmark repeatedly executes a small chunk of code while collecting measurements related to its performance. Due to Java Virtual Machine optimizations, microbenchmarks are usually subject to severe performance fluctuations in the first phase of their execution (also known as warmup). For this reason, software developers typically discard measurements of this phase and focus their analysis when benchmarks reach a steady state of performance. Developers estimate the end of the warmup phase based on their expertise, and configure their benchmarks accordingly. Unfortunately, this approach is based on two strong assumptions: (i) benchmarks always reach a steady state of performance and (ii) developers accurately estimate warmup. In this paper, we show that Java microbenchmarks do not always reach a steady state, and often developers fail to accurately estimate the end of the warmup phase. We found that a considerable portion of studied benchmarks do not hit the steady state, and warmup estimates provided by software developers are often inaccurate (with a large error). This has significant implications both in terms of results quality and time-effort. Furthermore, we found that dynamic reconfiguration significantly improves warmup estimation accuracy, but still it induces suboptimal warmup estimates and relevant side-effects. We envision this paper as a starting point for supporting the introduction of more sophisticated automated techniques that can ensure results quality in a timely fashion.
ArticleNumber 13
Author Cortellessa, Vittorio
Di Pompeo, Daniele
Tucci, Michele
Traini, Luca
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0003-3676-0645
  surname: Traini
  fullname: Traini, Luca
  email: luca.traini@univaq.it
  organization: Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila
– sequence: 2
  givenname: Vittorio
  orcidid: 0000-0002-4507-464X
  surname: Cortellessa
  fullname: Cortellessa, Vittorio
  organization: Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila
– sequence: 3
  givenname: Daniele
  orcidid: 0000-0003-2041-7375
  surname: Di Pompeo
  fullname: Di Pompeo, Daniele
  organization: Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila
– sequence: 4
  givenname: Michele
  orcidid: 0000-0002-0329-1101
  surname: Tucci
  fullname: Tucci, Michele
  organization: Department of Distributed and Dependable Systems, Faculty of Mathematics and Physics, Charles University
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA59V87Ca7XkSKnxS89CiENJnolnZTk_Tr3xtdQfDQy8wc3mdm3neIjjvfAUIXlFxRQuR1pESIsiCMFZSwUha7IzSgleSFFFQc55nXrOCsEqdoGOOcENLIshqgt6nf6mAjBufApHYDWMcIMS6hS9g7HBNou89NJ8ArCM6Hpe4M4LbDL3qjcfQu5RVwg3PBW8DpA_Kwh3R7hk6cXkQ4_-0jNH24n46fisnr4_P4blIYLngqrK1tTfiM1rYRteCWcadd6WZWW9EQ42relJWQYCphmeG8nBnWOArSUmYqPkKX_dpV8J9riEnN_Tp0-aJisiTZp5Q8q-peZYKPMYBTps2mWt-loNuFokR9R6n6KFWOUv1EqXYZZf_QVWiXOuwPQ7yHYhZ37xD-vjpAfQHTnYov
CitedBy_id crossref_primary_10_1109_TSE_2024_3380836
crossref_primary_10_1145_3715727
crossref_primary_10_3390_electronics14102067
crossref_primary_10_1145_3729349
crossref_primary_10_3390_en17225631
crossref_primary_10_1007_s10664_025_10712_3
crossref_primary_10_1007_s10791_024_09483_0
Cites_doi 10.1145/3427921.3450243
10.1017/CBO9780511984679.011
10.1214/aoms/1177729694
10.1109/ICSME.2017.13
10.1109/TSE.2015.2445340
10.1002/smr.2276
10.1016/j.sigpro.2005.01.012
10.1109/MSR.2017.62
10.1145/3485136
10.1007/s10515-015-0188-0
10.1145/2884781.2884871
10.1109/ICSME.2017.67
10.1145/3377811.3380351
10.1145/1508244.1508275
10.1145/3196398.3196407
10.1109/MSR.2017.54
10.1080/01621459.2017.1385466
10.1007/s10664-021-10037-x
10.1080/01621459.2012.737745
10.1109/ASE.2019.00123
10.1145/2491894.2464160
10.1145/3338906.3338912
10.1016/S0378-3758(96)00138-3
10.1145/3030207.3030213
10.1145/3133876
10.1007/s10664-019-09681-1
10.1109/TSE.2019.2927908
10.1145/3368089.3409683
10.1109/TSE.2019.2925345
10.1145/3417990.3418743
10.1016/j.jss.2021.111084
10.1111/j.2517-6161.1954.tb00159.x
10.1109/ICDCSW.2011.20
10.1145/3092703.3092725
10.1145/3030207.3030226
10.1145/1297027.1297033
10.1007/978-3-319-22183-0_29
10.1016/j.scico.2013.02.001
10.1017/CBO9780511802843
10.1007/s10664-021-10069-3
10.4324/9780203771587
10.1145/2884781.2884830
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-022-10247-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_022_10247_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-dd8d803b18d96863d23faf4fbdad690cf8394567ec56d2c334bc29f1e7d12c53
IEDL.DBID M7S
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889551000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 16:28:12 EST 2025
Sat Nov 29 05:37:46 EST 2025
Tue Nov 18 22:01:39 EST 2025
Fri Feb 21 02:45:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance evaluation
Performance testing
Java
Microbenchmarking
JMH
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-dd8d803b18d96863d23faf4fbdad690cf8394567ec56d2c334bc29f1e7d12c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0329-1101
0000-0003-3676-0645
0000-0003-2041-7375
0000-0002-4507-464X
OpenAccessLink https://link.springer.com/10.1007/s10664-022-10247-x
PQID 2740745773
PQPubID 326341
ParticipantIDs proquest_journals_2740745773
crossref_citationtrail_10_1007_s10664_022_10247_x
crossref_primary_10_1007_s10664_022_10247_x
springer_journals_10_1007_s10664_022_10247_x
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AntochJHuškovaMPráškováZEffect of dependence on statistics for determination of changeJ Stat Plan Inference1997602291310145663310.1016/S0378-3758(96)00138-31003.62537https://doi.org/10.1016/S0378-3758(96)00138-3. https://www.sciencedirect.com/science/article/pii/S0378375896001383
DavisonACHinkleyDVBootstrap methods and their application. Cambridge Series in Statistical and Probabilistic Mathematics1997CambridgeCambridge University Press10.1017/CBO97805118028430886.62001https://doi.org/10.1017/CBO9780511802843
VarghaADelaneyHDA critique and improvement of the “cl” common language effect size statistics of Mcgraw and WongJ Educ Behav Stat2000252101132http://www.jstor.org/stable/1165329
AlGhamdi H M, Bezemer C P, Shang W, Hassan A E, Flora P (2020) Towards reducing the time needed for load testing. J Softw: Evol Process e2276. https://doi.org/10.1002/smr.2276. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2276, smr.2276
Ding Z, Chen J, Shang W (2020) Towards the use of the readily available tests from the release pipeline as performance tests: are we there yet? In: Rothermel G, Bae D (eds) ICSE ’20: 42nd international conference on software engineering, Seoul, South Korea, 27 June–19 July, 2020. https://doi.org/10.1145/3377811.3380351. ACM, pp 1435–1446
Mytkowicz T, Diwan A, Hauswirth M, Sweeney P F (2009b) Producing wrong data without doing anything obviously wrong!. In: Soffa ML, Irwin MJ (eds) Proceedings of the 14th international conference on architectural support for programming languages and operating systems, ASPLOS 2009, Washington, DC, USA, March 7–11, 2009. https://doi.org/10.1145/1508244.1508275. ACM, pp 265–276
Samoaa H, Leitner P (2021) An exploratory study of the impact of parameterization on jmh measurement results in open-source projects. In: Proceedings of the ACM/SPEC international conference on performance engineering, ICPE ’21. https://doi.org/10.1145/3427921.3450243. Association for Computing Machinery, New York, pp 213–224
FiellerECSome problems in interval estimationJ R Stat Soc B: Stat (Methodol)1954162175185930760057.35311http://www.jstor.org/stable/2984043
TrainiLExploring performance assurance practices and challenges in agile software development: an ethnographic studyEmpir Softw Eng20222737410.1007/s10664-021-10069-3https://doi.org/10.1007/s10664-021-10069-3
Bagley D, Fulgham B, Gouy I (2004) The computer language benchmarks game. https://benchmarksgame-team.pages.debian.net/benchmarksgame. Accessed: 2021-10-12
BulejLBuresTHorkýVKotrcJMarekLTrojánekTTumaPUnit testing performance with stochastic performance logicAutom Softw Eng201724113918710.1007/s10515-015-0188-0https://doi.org/10.1007/s10515-015-0188-0
Rubin J, Rinard M (2016) The challenges of staying together while moving fast: an exploratory study. In: Proceedings of the 38th international conference on software engineering, ICSE ’16. https://doi.org/10.1145/2884781.2884871. Association for Computing Machinery, New York, pp 982–993
BolzCFTrattLThe impact of meta-tracing on vm design and implementationSci Comput Program201598P340842110.1016/j.scico.2013.02.001https://doi.org/10.1016/j.scico.2013.02.001
Cohen J (2013) Statistical power analysis for the behavioral sciences. Taylor & Francis
LavielleMUsing penalized contrasts for the change-point problemSignal Process200585815011510331575310.1016/j.sigpro.2005.01.0121160.94341https://doi.org/10.1016/j.sigpro.2005.01.012
Maricq A, Duplyakin D, Jimenez I, Maltzahn C, Stutsman R, Ricci R (2018) Taming performance variability. In: 13th USENIX symposium on operating systems design and implementation (OSDI 18). https://www.usenix.org/conference/osdi18/presentation/maricq. USENIX Association, Carlsbad, pp 409–425
Leitner P, Bezemer C P (2017) An exploratory study of the state of practice of performance testing in java-based open source projects. In: Proceedings of the 8th ACM/SPEC on international conference on performance engineering, ICPE ’17. https://doi.org/10.1145/3030207.3030213. Association for Computing Machinery, New York, pp 373–384
Mytkowicz T, Diwan A, Hauswirth M, Sweeney P F (2009a) Producing wrong data without doing anything obviously wrong! In: Soffa ML, Irwin MJ (eds) Proceedings of the 14th international conference on architectural support for programming languages and operating systems, ASPLOS 2009, Washington, DC, USA, March 7–11, 2009. https://doi.org/10.1145/1508244.1508275. ACM, pp 265–276
KillickRFearnheadPEckleyIAOptimal detection of changepoints with a linear computational costJ Am Stat Assoc201210750015901598303641810.1080/01621459.2012.7377451258.62091https://doi.org/10.1080/01621459.2012.737745
Laaber C, Leitner P (2018) An evaluation of open-source software microbenchmark suites for continuous performance assessment. In: Proceedings of the 15th international conference on mining software repositories, MSR ’18. https://doi.org/10.1145/3196398.3196407. Association for Computing Machinery, New York, pp 119–130
Tukey J W et al (1977) Exploratory data analysis, vol 2. Reading
Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of travis ci with github. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR). https://doi.org/10.1109/MSR.2017.62, pp 356–367
Kalibera T, Jones R (2013) Rigorous benchmarking in reasonable time. In: Proceedings of the 2013 international symposium on memory management, ISMM ’13, pp 63–74. https://doi.org/10.1145/2491894.2464160. Association for Computing Machinery, New York
Sarro F, Petrozziello A, Harman M (2016) Multi-objective software effort estimation. In: Proceedings of the 38th international conference on software engineering, ICSE ’16. https://doi.org/10.1145/2884781.2884830. Association for Computing Machinery, New York, pp 619–630
Kalibera T, Jones R (2020) Quantifying performance changes with effect size confidence intervals. 2007.10899
Suchanek M, Navratil M, Bailey L, Boyle C (2017) Performance tuning guide (red hat enterprise Linux 7). https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/, (Online; accessed 28 June 2021)
EckleyIAFearnheadPKillickRAnalysis of changepoint models2011CambridgeCambridge University Press205224https://doi.org/10.1017/CBO9780511984679.011
Oaks S (2014) Java performance—the definitive guide: getting the most out of your code. O’Reilly. http://shop.oreilly.com/product/0636920028499.do
Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous java performance evaluation. In: Proceedings of the 22nd annual ACM SIGPLAN conference on object-oriented programming systems, languages and applications, OOPSLA ’07. https://doi.org/10.1145/1297027.1297033. Association for Computing Machinery, New York, pp 57–76
FearnheadPRigaillGChangepoint detection in the presence of outliersJ Am Stat Assoc2019114525169183394124610.1080/01621459.2017.13854661478.62238
Reichelt D G, Kühne S, Hasselbring W (2019) Peass: a tool for identifying performance changes at code level. In: 34th IEEE/ACM international conference on automated software engineering, ASE 2019, San Diego, CA, USA, November 11–15, 2019. https://doi.org/10.1109/ASE.2019.00123. IEEE, pp 1146–1149
Satopaa V, Albrecht J R, Irwin D E, Raghavan B (2011) Finding a “kneedle” in a haystack: detecting knee points in system behavior. In: 31st IEEE international conference on distributed computing systems workshops (ICDCS 2011 workshops), 20–24 June 2011, Minneapolis, Minnesota, USA. https://doi.org/10.1109/ICDCSW.2011.20. IEEE Computer Society, pp 166–171
Fowler M (2006) Continuous integration. https://www.martinfowler.com/articles/continuousIntegration.html. Accessed: 25 Jan 2022
Laaber C, Würsten S, Gall H C, Leitner P (2020) Dynamically reconfiguring software microbenchmarks: reducing execution time without sacrificing result quality. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2020. https://doi.org/10.1145/3368089.3409683. Association for Computing Machinery, New York, pp 989–1001
Vassallo C, Schermann G, Zampetti F, Romano D, Leitner P, Zaidman A, Di Penta M, Panichella S (2017) A tale of ci build failures: an open source and a financial organization perspective. In: 2017 IEEE International conference on software maintenance and evolution (ICSME). https://doi.org/10.1109/ICSME.2017.67, pp 183–193
CortellessaVDi PompeoDEramoRTucciMA model-driven approach for continuous performance engineering in microservice-based systemsJ Syst Softw202218311108410.1016/j.jss.2021.111084https://doi.org/10.1016/j.jss.2021.111084. https://www.sciencedirect.com/science/article/pii/S0164121221001813
Mostafa S, Wang X, Xie T (2017) Perfranker: prioritization of performance regression tests for collection-intensive software. In: Bultan T, Sen K (eds) Proceedings of the 26th ACM SIGSOFT international symposium on software testing and analysis, Santa Barbara, CA, USA, July 10–14, 2017. https://doi.org/10.1145/3092703.3092725. ACM, pp 23–34
Neumann G, Harman M, Poulding S Barros M, Labiche Y (eds) (2015) Transformed vargha-delaney effect size. Springer International Publishing, Cham
Giese H, Lambers L, Zöllner C (2020) From classic to agile: experiences from more than a decade of project-based modeling education. In: Guerra E, Iovino L (eds) MODELS ’20: ACM/IEEE 23rd international conference on model driven engineering languages and systems, virtual event, Canada, 18–23 October, 2020, companion proceedings. https://doi.org/10.1145/3417990.3418743. ACM, pp 22:1–22:10
Traini L, Di Pompeo D, Tucci M, Lin B, Scalabrino S, Bavota G, Lanza M, Oliveto R, Cortellessa V (2021) How software refactoring impacts execution time. ACM Trans Softw Eng Methodol 31(2). https://doi.org/10.1145/3485136
Barrett E, Bolz-Tereick C F, Killick R, Mount S, Tratt L (2017) Virtual machine warmup blows hot and cold. Proc ACM Program Lang 1(OOPSLA). https://doi.org/10.1145/3133876
JiangZMHassanAEA survey on load testing
10247_CR21
10247_CR20
M Lavielle (10247_CR31) 2005; 85
10247_CR29
AV Papadopoulos (10247_CR39) 2021; 47
10247_CR27
IA Eckley (10247_CR14) 2011
10247_CR24
10247_CR23
C Laaber (10247_CR28) 2019; 24
C Laaber (10247_CR30) 2021; 26
10247_CR19
10247_CR8
S Kullback (10247_CR26) 1951; 22
10247_CR9
R Killick (10247_CR25) 2012; 107
CF Bolz (10247_CR6) 2015; 98
10247_CR32
10247_CR1
EC Fieller (10247_CR16) 1954; 16
V Cortellessa (10247_CR10) 2022; 183
10247_CR3
10247_CR4
10247_CR5
10247_CR38
10247_CR37
10247_CR36
10247_CR35
10247_CR34
10247_CR33
D Costa (10247_CR11) 2021; 47
10247_CR43
10247_CR42
10247_CR41
10247_CR40
L Traini (10247_CR49) 2022; 27
10247_CR48
10247_CR47
10247_CR46
10247_CR45
10247_CR44
P Fearnhead (10247_CR15) 2019; 114
J Antoch (10247_CR2) 1997; 60
A Vargha (10247_CR52) 2000; 25
AC Davison (10247_CR12) 1997
L Bulej (10247_CR7) 2017; 24
10247_CR53
10247_CR51
10247_CR50
10247_CR18
10247_CR17
10247_CR13
ZM Jiang (10247_CR22) 2015; 41
References_xml – reference: Tukey J W et al (1977) Exploratory data analysis, vol 2. Reading
– reference: Mytkowicz T, Diwan A, Hauswirth M, Sweeney P F (2009a) Producing wrong data without doing anything obviously wrong! In: Soffa ML, Irwin MJ (eds) Proceedings of the 14th international conference on architectural support for programming languages and operating systems, ASPLOS 2009, Washington, DC, USA, March 7–11, 2009. https://doi.org/10.1145/1508244.1508275. ACM, pp 265–276
– reference: BolzCFTrattLThe impact of meta-tracing on vm design and implementationSci Comput Program201598P340842110.1016/j.scico.2013.02.001https://doi.org/10.1016/j.scico.2013.02.001
– reference: AlGhamdi H M, Bezemer C P, Shang W, Hassan A E, Flora P (2020) Towards reducing the time needed for load testing. J Softw: Evol Process e2276. https://doi.org/10.1002/smr.2276. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2276, smr.2276
– reference: Laaber C, Leitner P (2018) An evaluation of open-source software microbenchmark suites for continuous performance assessment. In: Proceedings of the 15th international conference on mining software repositories, MSR ’18. https://doi.org/10.1145/3196398.3196407. Association for Computing Machinery, New York, pp 119–130
– reference: Ratanaworabhan P, Livshits B, Simmons D, Ba Zorn (2009) Jsmeter: characterizing real-world behavior of javascript programs. Tech. Rep. MSR-TR-2009-173. https://www.microsoft.com/en-us/research/publication/jsmeter-characterizing-real-world-behavior-of-javascript-programs/
– reference: LaaberCScheunerJLeitnerPSoftware microbenchmarking in the cloud. how bad is it really?Empir Softw Eng20192442469250810.1007/s10664-019-09681-1https://doi.org/10.1007/s10664-019-09681-1
– reference: Laaber C, Würsten S, Gall H C, Leitner P (2020) Dynamically reconfiguring software microbenchmarks: reducing execution time without sacrificing result quality. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2020. https://doi.org/10.1145/3368089.3409683. Association for Computing Machinery, New York, pp 989–1001
– reference: Leitner P, Bezemer C P (2017) An exploratory study of the state of practice of performance testing in java-based open source projects. In: Proceedings of the 8th ACM/SPEC on international conference on performance engineering, ICPE ’17. https://doi.org/10.1145/3030207.3030213. Association for Computing Machinery, New York, pp 373–384
– reference: Mostafa S, Wang X, Xie T (2017) Perfranker: prioritization of performance regression tests for collection-intensive software. In: Bultan T, Sen K (eds) Proceedings of the 26th ACM SIGSOFT international symposium on software testing and analysis, Santa Barbara, CA, USA, July 10–14, 2017. https://doi.org/10.1145/3092703.3092725. ACM, pp 23–34
– reference: KillickRFearnheadPEckleyIAOptimal detection of changepoints with a linear computational costJ Am Stat Assoc201210750015901598303641810.1080/01621459.2012.7377451258.62091https://doi.org/10.1080/01621459.2012.737745
– reference: Suchanek M, Navratil M, Bailey L, Boyle C (2017) Performance tuning guide (red hat enterprise Linux 7). https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/, (Online; accessed 28 June 2021)
– reference: Barrett E, Bolz-Tereick C F, Killick R, Mount S, Tratt L (2017) Virtual machine warmup blows hot and cold. Proc ACM Program Lang 1(OOPSLA). https://doi.org/10.1145/3133876
– reference: TrainiLExploring performance assurance practices and challenges in agile software development: an ethnographic studyEmpir Softw Eng20222737410.1007/s10664-021-10069-3https://doi.org/10.1007/s10664-021-10069-3
– reference: Kalibera T, Jones R (2020) Quantifying performance changes with effect size confidence intervals. 2007.10899
– reference: Vassallo C, Schermann G, Zampetti F, Romano D, Leitner P, Zaidman A, Di Penta M, Panichella S (2017) A tale of ci build failures: an open source and a financial organization perspective. In: 2017 IEEE International conference on software maintenance and evolution (ICSME). https://doi.org/10.1109/ICSME.2017.67, pp 183–193
– reference: Bagley D, Fulgham B, Gouy I (2004) The computer language benchmarks game. https://benchmarksgame-team.pages.debian.net/benchmarksgame. Accessed: 2021-10-12
– reference: JiangZMHassanAEA survey on load testing of large-scale software systemsIEEE Trans Softw Eng201541111091111810.1109/TSE.2015.2445340https://doi.org/10.1109/TSE.2015.2445340
– reference: Oaks S (2014) Java performance—the definitive guide: getting the most out of your code. O’Reilly. http://shop.oreilly.com/product/0636920028499.do
– reference: Haynes K, Eckley I A, Fearnhead P (2014) Efficient penalty search for multiple changepoint problems. 1412.3617
– reference: Rubin J, Rinard M (2016) The challenges of staying together while moving fast: an exploratory study. In: Proceedings of the 38th international conference on software engineering, ICSE ’16. https://doi.org/10.1145/2884781.2884871. Association for Computing Machinery, New York, pp 982–993
– reference: Sarro F, Petrozziello A, Harman M (2016) Multi-objective software effort estimation. In: Proceedings of the 38th international conference on software engineering, ICSE ’16. https://doi.org/10.1145/2884781.2884830. Association for Computing Machinery, New York, pp 619–630
– reference: Reichelt D G, Kühne S, Hasselbring W (2019) Peass: a tool for identifying performance changes at code level. In: 34th IEEE/ACM international conference on automated software engineering, ASE 2019, San Diego, CA, USA, November 11–15, 2019. https://doi.org/10.1109/ASE.2019.00123. IEEE, pp 1146–1149
– reference: FearnheadPRigaillGChangepoint detection in the presence of outliersJ Am Stat Assoc2019114525169183394124610.1080/01621459.2017.13854661478.62238
– reference: Mytkowicz T, Diwan A, Hauswirth M, Sweeney P F (2009b) Producing wrong data without doing anything obviously wrong!. In: Soffa ML, Irwin MJ (eds) Proceedings of the 14th international conference on architectural support for programming languages and operating systems, ASPLOS 2009, Washington, DC, USA, March 7–11, 2009. https://doi.org/10.1145/1508244.1508275. ACM, pp 265–276
– reference: Rausch T, Hummer W, Leitner P, Schulte S (2017) An empirical analysis of build failures in the continuous integration workflows of java-based open-source software. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR). https://doi.org/10.1109/MSR.2017.54, pp 345–355
– reference: LavielleMUsing penalized contrasts for the change-point problemSignal Process200585815011510331575310.1016/j.sigpro.2005.01.0121160.94341https://doi.org/10.1016/j.sigpro.2005.01.012
– reference: Cohen J (2013) Statistical power analysis for the behavioral sciences. Taylor & Francis
– reference: Traini L, Di Pompeo D, Tucci M, Lin B, Scalabrino S, Bavota G, Lanza M, Oliveto R, Cortellessa V (2021) How software refactoring impacts execution time. ACM Trans Softw Eng Methodol 31(2). https://doi.org/10.1145/3485136
– reference: Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of travis ci with github. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR). https://doi.org/10.1109/MSR.2017.62, pp 356–367
– reference: LaaberCGallHCLeitnerPApplying test case prioritization to software microbenchmarksEmpir Softw Eng202126613310.1007/s10664-021-10037-xhttps://doi.org/10.1007/s10664-021-10037-x
– reference: Chen J, Shang W (2017) An exploratory study of performance regression introducing code changes. In: 2017 IEEE International conference on software maintenance and evolution, ICSME 2017, Shanghai, China, September 17–22, 2017. https://doi.org/10.1109/ICSME.2017.13. IEEE Computer Society, pp 341–352
– reference: Satopaa V, Albrecht J R, Irwin D E, Raghavan B (2011) Finding a “kneedle” in a haystack: detecting knee points in system behavior. In: 31st IEEE international conference on distributed computing systems workshops (ICDCS 2011 workshops), 20–24 June 2011, Minneapolis, Minnesota, USA. https://doi.org/10.1109/ICDCSW.2011.20. IEEE Computer Society, pp 166–171
– reference: BulejLBuresTHorkýVKotrcJMarekLTrojánekTTumaPUnit testing performance with stochastic performance logicAutom Softw Eng201724113918710.1007/s10515-015-0188-0https://doi.org/10.1007/s10515-015-0188-0
– reference: KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122179863996810.1214/aoms/11777296940042.38403
– reference: EckleyIAFearnheadPKillickRAnalysis of changepoint models2011CambridgeCambridge University Press205224https://doi.org/10.1017/CBO9780511984679.011
– reference: PapadopoulosAVVersluisLBauerAHerbstNvon KistowskiJAli-EldinAAbadCLAmaralJNTumaPIosupAMethodological principles for reproducible performance evaluation in cloud computingIEEE Trans Softw Eng20214781528154310.1109/TSE.2019.2927908https://doi.org/10.1109/TSE.2019.2927908
– reference: AntochJHuškovaMPráškováZEffect of dependence on statistics for determination of changeJ Stat Plan Inference1997602291310145663310.1016/S0378-3758(96)00138-31003.62537https://doi.org/10.1016/S0378-3758(96)00138-3. https://www.sciencedirect.com/science/article/pii/S0378375896001383
– reference: Samoaa H, Leitner P (2021) An exploratory study of the impact of parameterization on jmh measurement results in open-source projects. In: Proceedings of the ACM/SPEC international conference on performance engineering, ICPE ’21. https://doi.org/10.1145/3427921.3450243. Association for Computing Machinery, New York, pp 213–224
– reference: Stefan P, Horký V, Bulej L, Tuma P (2017) Unit testing performance in java projects: are we there yet? In: Binder W, Cortellessa V, Koziolek A, Smirni E, Poess M (eds) Proceedings of the 8th ACM/SPEC on international conference on performance engineering, ICPE 2017, L’Aquila, Italy, April 22–26, 2017. https://doi.org/10.1145/3030207.3030226. ACM, pp 401–412
– reference: Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous java performance evaluation. In: Proceedings of the 22nd annual ACM SIGPLAN conference on object-oriented programming systems, languages and applications, OOPSLA ’07. https://doi.org/10.1145/1297027.1297033. Association for Computing Machinery, New York, pp 57–76
– reference: FiellerECSome problems in interval estimationJ R Stat Soc B: Stat (Methodol)1954162175185930760057.35311http://www.jstor.org/stable/2984043
– reference: VarghaADelaneyHDA critique and improvement of the “cl” common language effect size statistics of Mcgraw and WongJ Educ Behav Stat2000252101132http://www.jstor.org/stable/1165329
– reference: Fowler M (2006) Continuous integration. https://www.martinfowler.com/articles/continuousIntegration.html. Accessed: 25 Jan 2022
– reference: Neumann G, Harman M, Poulding S Barros M, Labiche Y (eds) (2015) Transformed vargha-delaney effect size. Springer International Publishing, Cham
– reference: Kalibera T, Jones R (2013) Rigorous benchmarking in reasonable time. In: Proceedings of the 2013 international symposium on memory management, ISMM ’13, pp 63–74. https://doi.org/10.1145/2491894.2464160. Association for Computing Machinery, New York
– reference: Maricq A, Duplyakin D, Jimenez I, Maltzahn C, Stutsman R, Ricci R (2018) Taming performance variability. In: 13th USENIX symposium on operating systems design and implementation (OSDI 18). https://www.usenix.org/conference/osdi18/presentation/maricq. USENIX Association, Carlsbad, pp 409–425
– reference: He S, Manns G, Saunders J, Wang W, Pollock L, Soffa M L (2019) A statistics-based performance testing methodology for cloud applications. In: Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2019. https://doi.org/10.1145/3338906.3338912. Association for Computing Machinery, New York, pp 188–199
– reference: DavisonACHinkleyDVBootstrap methods and their application. Cambridge Series in Statistical and Probabilistic Mathematics1997CambridgeCambridge University Press10.1017/CBO97805118028430886.62001https://doi.org/10.1017/CBO9780511802843
– reference: Giese H, Lambers L, Zöllner C (2020) From classic to agile: experiences from more than a decade of project-based modeling education. In: Guerra E, Iovino L (eds) MODELS ’20: ACM/IEEE 23rd international conference on model driven engineering languages and systems, virtual event, Canada, 18–23 October, 2020, companion proceedings. https://doi.org/10.1145/3417990.3418743. ACM, pp 22:1–22:10
– reference: CortellessaVDi PompeoDEramoRTucciMA model-driven approach for continuous performance engineering in microservice-based systemsJ Syst Softw202218311108410.1016/j.jss.2021.111084https://doi.org/10.1016/j.jss.2021.111084. https://www.sciencedirect.com/science/article/pii/S0164121221001813
– reference: Ding Z, Chen J, Shang W (2020) Towards the use of the readily available tests from the release pipeline as performance tests: are we there yet? In: Rothermel G, Bae D (eds) ICSE ’20: 42nd international conference on software engineering, Seoul, South Korea, 27 June–19 July, 2020. https://doi.org/10.1145/3377811.3380351. ACM, pp 1435–1446
– reference: CostaDBezemerCPLeitnerPAndrzejakAWhat’s wrong with my benchmark results? Studying bad practices in jmh benchmarksIEEE Trans Softw Eng20214771452146710.1109/TSE.2019.2925345https://doi.org/10.1109/TSE.2019.2925345
– ident: 10247_CR44
  doi: 10.1145/3427921.3450243
– start-page: 205
  volume-title: Analysis of changepoint models
  year: 2011
  ident: 10247_CR14
  doi: 10.1017/CBO9780511984679.011
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10247_CR26
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– ident: 10247_CR8
  doi: 10.1109/ICSME.2017.13
– volume: 41
  start-page: 1091
  issue: 11
  year: 2015
  ident: 10247_CR22
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2015.2445340
– ident: 10247_CR48
– ident: 10247_CR1
  doi: 10.1002/smr.2276
– volume: 85
  start-page: 1501
  issue: 8
  year: 2005
  ident: 10247_CR31
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2005.01.012
– ident: 10247_CR5
  doi: 10.1109/MSR.2017.62
– ident: 10247_CR50
  doi: 10.1145/3485136
– volume: 24
  start-page: 139
  issue: 1
  year: 2017
  ident: 10247_CR7
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-015-0188-0
– ident: 10247_CR3
– ident: 10247_CR43
  doi: 10.1145/2884781.2884871
– ident: 10247_CR53
  doi: 10.1109/ICSME.2017.67
– ident: 10247_CR13
  doi: 10.1145/3377811.3380351
– ident: 10247_CR35
  doi: 10.1145/1508244.1508275
– ident: 10247_CR27
  doi: 10.1145/3196398.3196407
– ident: 10247_CR41
  doi: 10.1109/MSR.2017.54
– volume: 114
  start-page: 169
  issue: 525
  year: 2019
  ident: 10247_CR15
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2017.1385466
– volume: 26
  start-page: 133
  issue: 6
  year: 2021
  ident: 10247_CR30
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-021-10037-x
– volume: 25
  start-page: 101
  issue: 2
  year: 2000
  ident: 10247_CR52
  publication-title: J Educ Behav Stat
– volume: 107
  start-page: 1590
  issue: 500
  year: 2012
  ident: 10247_CR25
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2012.737745
– ident: 10247_CR42
  doi: 10.1109/ASE.2019.00123
– ident: 10247_CR23
  doi: 10.1145/2491894.2464160
– ident: 10247_CR21
  doi: 10.1145/3338906.3338912
– volume: 60
  start-page: 291
  issue: 2
  year: 1997
  ident: 10247_CR2
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(96)00138-3
– ident: 10247_CR32
  doi: 10.1145/3030207.3030213
– ident: 10247_CR4
  doi: 10.1145/3133876
– volume: 24
  start-page: 2469
  issue: 4
  year: 2019
  ident: 10247_CR28
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-019-09681-1
– volume: 47
  start-page: 1528
  issue: 8
  year: 2021
  ident: 10247_CR39
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2019.2927908
– ident: 10247_CR29
  doi: 10.1145/3368089.3409683
– volume: 47
  start-page: 1452
  issue: 7
  year: 2021
  ident: 10247_CR11
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2019.2925345
– ident: 10247_CR19
  doi: 10.1145/3417990.3418743
– volume: 183
  start-page: 111084
  year: 2022
  ident: 10247_CR10
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2021.111084
– volume: 16
  start-page: 175
  issue: 2
  year: 1954
  ident: 10247_CR16
  publication-title: J R Stat Soc B: Stat (Methodol)
  doi: 10.1111/j.2517-6161.1954.tb00159.x
– ident: 10247_CR33
– ident: 10247_CR46
  doi: 10.1109/ICDCSW.2011.20
– ident: 10247_CR34
  doi: 10.1145/3092703.3092725
– ident: 10247_CR47
  doi: 10.1145/3030207.3030226
– ident: 10247_CR18
  doi: 10.1145/1297027.1297033
– ident: 10247_CR36
  doi: 10.1145/1508244.1508275
– ident: 10247_CR38
– ident: 10247_CR37
  doi: 10.1007/978-3-319-22183-0_29
– volume: 98
  start-page: 408
  issue: P3
  year: 2015
  ident: 10247_CR6
  publication-title: Sci Comput Program
  doi: 10.1016/j.scico.2013.02.001
– ident: 10247_CR40
– volume-title: Bootstrap methods and their application. Cambridge Series in Statistical and Probabilistic Mathematics
  year: 1997
  ident: 10247_CR12
  doi: 10.1017/CBO9780511802843
– volume: 27
  start-page: 74
  issue: 3
  year: 2022
  ident: 10247_CR49
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-021-10069-3
– ident: 10247_CR24
– ident: 10247_CR51
– ident: 10247_CR9
  doi: 10.4324/9780203771587
– ident: 10247_CR20
– ident: 10247_CR17
– ident: 10247_CR45
  doi: 10.1145/2884781.2884830
SSID ssj0009745
Score 2.4759612
Snippet Microbenchmarking is a widely used form of performance testing in Java software. A microbenchmark repeatedly executes a small chunk of code while collecting...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Automation
Benchmarks
Compilers
Computer Science
Estimates
Interpreters
Java
Programming Languages
Reconfiguration
Software
Software development
Software Engineering/Programming and Operating Systems
Steady state
Virtual environments
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kevBifWK1yh686UKS3Ww2XkTEIh6KaJEehLDZBxSkLU2s9t872SSNigp6ySGZDGFmZ-bb7DwQOqEmTrk0KeGeUITZOCYy5JZYzwYe05rGTLthE1G_L4bD-K4qCsvqbPf6SNJ56g_FbpwzUmSfQ1BkEQHkuArhThTmeP_w2LTajdxo4qK5HqEQ0atSme95fA5HDcb8cizqok2v_b_v3EQbFbrEl-Vy2EIrZryN2vXkBlwZ8g56Grhs2QyX6Rzg8bBctujEE4ud7hfYlRvhaVNcgEdjfCvnEmfgvoGFOcdwwa8GF0DS4IXJL3bRoHc9uLoh1ZwFoiinOdFaaOHR1Bc65oJTHVArLbOplho2z8oCiAKcFRkVch0oSlmqgtj6JtJ-oEK6h1rjydjsI8wtE0DEqIoYSwG5Scpi7ckC9cE93kF-Le1EVT3Ii1EYz0nTPbmQXgLSS5z0krcOOl2-My07cPxK3a2VmFTWmCWw8wakFEYR7aCzWmnN45-5HfyN_BCtF9Poyz80XdTKZy_mCK2peT7KZsdulb4D7qTh-A
  priority: 102
  providerName: Springer Nature
Title Towards effective assessment of steady state performance in Java software: are we there yet?
URI https://link.springer.com/article/10.1007/s10664-022-10247-x
https://www.proquest.com/docview/2740745773
Volume 28
WOSCitedRecordID wos000889551000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hbz4FtcXOXjTYLdJ09aLqCjiYVl0ERGhpHnAguyudn39eyfZ1KKgFy85tGkonWTmazLzfQB7zOSlkKakIsoU5TbPqUyEpTayccS1ZjnXXmwi7XSyu7u8GzbcqpBWWftE76j1ULk98kP8e8Jol6QpOx49Uaca5U5Xg4TGNMw6loTYp-7dNKS7qRcpdjR7lGFsD0UzoXROCE5dLjuGWJ7S9--BqUGbPw5Ifdy5WPzvGy_BQkCc5GQyRZZhygxWYLFWcyBhca_CQ89n0FZkkuKBXpDIL9pOMrTEz4cP4kuQyKgpOCD9AbmSr5JU6NJxCHNEsCFvhjhwaciHGR-vQe_ivHd2SYP2AlVMsDHVOtNZxMp2pnORCaZjZqXlttRS4w-1sgisEHulRiVCx4oxXqo4t22T6nasErYOM4PhwGwAEZZn2IkzlXJeIpqTjOc6kg4J4jXRgnb93QsVeMmdPMZj0TAqO1sVaKvC26p4b8H-1zOjCSvHn723awMVYYVWRWOdFhzUJm5u_z7a5t-jbcG8U6Sf7NJsw8z4-cXswJx6Hfer512YPT3vdK93_TzFtpvcY3t9c_sJPkzvBw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQkuFCioWwrMoZzAIht7nQQJVQio-sWqUvfQA5Ll-EOqVO0uzXa3-6P6Hzt2kkZForceuOSQOJYSP8882zPzALa5K0qpXclkkhsmfFEwPZCe-cSnibCWF8JGsYlsOMxPT4vjFbhuc2FCWGVrE6OhthMT9sg_0-qJvN0gy_jO9A8LqlHhdLWV0KhhceiWC1qyVV_3f9D4fkjT3Z-j73usURVghks-Y9bmNk942c9tIXPJbcq99sKXVltaKhpPlIFYRebMQNrUcC5Kkxa-7zLbT00QiSCL_0gE4x8jBU-6Gr9Z1EQOVf0YJyrR5Og0mXpSChZC58mji4xd3fWDHbn96zw2urndtf_sBz2HZw2fxm_1BHgBK278EtZarQpsTNc6_B7F-OAK6wAWsvGob4uS4sRjRPsSY4IVTrt0Cjwb44Gea6zIYVEX7gvSBRcOA3V2uHSznVcweohPfA2r48nYbQBKL3JqJLjJhCiJq2ouCpvowHPpnuxBvx1mZZqq60H841x19aIDNBRBQ0VoqKsefLx9Z1rXHLm39VaLB9XYn0p1YOjBpxZR3eN_97Z5f2_v4cne6NeROtofHr6Bpykxvno_agtWZxeX7i08NvPZWXXxLk4NBPXASLsBkspIsQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLUJcaPkSS1uYA5zAajb22gkSqhBlRSla7WEPFUKyHH9IldDu0ixt96fx7xg7SSOQ6K0HLjkkjqXEzzNvkpl5AC-5LytpfMVkVlgmQlkyM5KBhSzkmXCOl8IlsQk1mRSnp-V0A351tTAxrbKziclQu4WN38gPKHoibzdSih-ENi1iejQ-XP5gUUEq_mnt5DQaiJz49SWFb_W74yNa61d5Pv44-_CJtQoDzHLJV8y5whUZr4aFK2Uhuct5MEGEyhlHYaMNRB-IYShvR9LllnNR2bwMQ6_cMLdRMIKs_5aiEDPGfdPR177fr0r6yLHDH-NEK9p6nbZqT0rBYho9eXeh2NWfPrEnun_9m00ub7z9H7-sHbjf8mx832yMB7Dh5w9hu9OwwNakPYJvs5Q3XGOT2EK2H811s1JcBEy7YI2p8AqXfZkFns3xs7kwWJMjoyn8W6QDXnqMlNrj2q8OH8PsNh7xCWzOF3P_FFAGUdAgwa0SoiIOa7goXWYi_6VzcgDDbsm1bbuxR1GQ77rvIx1hogkmOsFEXw3g9fU9y6YXyY2j9zps6NYu1boHxgDedOjqL_97tmc3z_YC7hLA9Jfjycku3MuJCDafqfZgc3X-0-_DHXuxOqvPn6ddgqBvGWi_ASSUUZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+effective+assessment+of+steady+state+performance+in+Java+software%3A+are+we+there+yet%3F&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Traini%2C+Luca&rft.au=Cortellessa%2C+Vittorio&rft.au=Di+Pompeo%2C+Daniele&rft.au=Tucci%2C+Michele&rft.date=2023-01-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10664-022-10247-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_022_10247_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon