Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment
•FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction accuracy.•Feature-weighting based on the sum of pos and neg sentiment scores is effective.•Feature-reduction based on maximum optimization for prediction-tar...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 42; číslo 1; s. 306 - 324 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
01.01.2015
Elsevier |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction accuracy.•Feature-weighting based on the sum of pos and neg sentiment scores is effective.•Feature-reduction based on maximum optimization for prediction-target is crucial.
In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold: First, although market-prediction through text-mining is shown to be a promising area of work in the literature, the text-mining approaches utilized in it at this stage are not much beyond basic ones as it is still an emerging field. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. This research assumes that addressing these aspects of text-mining have an impact on the quality of the achieved results. The proposed system proves this assumption to be right. The second part of the motivation is to research a specific market, namely, the foreign exchange market, which seems not to have been researched in the previous works based on predictive text-mining. Therefore, results of this work also successfully demonstrate a predictive relationship between this specific market-type and the textual data of news. Besides the above two main components of the motivation, there are other specific aspects that make the setup of the proposed system and the conducted experiment unique, for example, the use of news article-headlines only and not news article-bodies, which enables usage of short pieces of text rather than long ones; or the use of general financial breaking news without any further filtration.
In order to accomplish the above, this work produces a multi-layer algorithm that tackles each of the mentioned aspects of the text-mining problem at a designated layer. The first layer is termed the Semantic Abstraction Layer and addresses the problem of co-reference in text mining that is contributing to sparsity. Co-reference occurs when two or more words in a text corpus refer to the same concept. This work produces a custom approach by the name of Heuristic-Hypernyms Feature-Selection which creates a way to recognize words with the same parent-word to be regarded as one entity. As a result, prediction accuracy increases significantly at this layer which is attributed to appropriate noise-reduction from the feature-space.
The second layer is termed Sentiment Integration Layer, which integrates sentiment analysis capability into the algorithm by proposing a sentiment weight by the name of SumScore that reflects investors’ sentiment. Additionally, this layer reduces the dimensions by eliminating those that are of zero value in terms of sentiment and thereby improves prediction accuracy.
The third layer encompasses a dynamic model creation algorithm, termed Synchronous Targeted Feature Reduction (STFR). It is suitable for the challenge at hand whereby the mining of a stream of text is concerned. It updates the models with the most recent information available and, more importantly, it ensures that the dimensions are reduced to the absolute minimum.
The algorithm and each of its layers are extensively evaluated using real market data and news content across multiple years and have proven to be solid and superior to any other comparable solution. The proposed techniques implemented in the system, result in significantly high directional-accuracies of up to 83.33%.
On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments. |
|---|---|
| AbstractList | In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments. •FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction accuracy.•Feature-weighting based on the sum of pos and neg sentiment scores is effective.•Feature-reduction based on maximum optimization for prediction-target is crucial. In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold: First, although market-prediction through text-mining is shown to be a promising area of work in the literature, the text-mining approaches utilized in it at this stage are not much beyond basic ones as it is still an emerging field. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. This research assumes that addressing these aspects of text-mining have an impact on the quality of the achieved results. The proposed system proves this assumption to be right. The second part of the motivation is to research a specific market, namely, the foreign exchange market, which seems not to have been researched in the previous works based on predictive text-mining. Therefore, results of this work also successfully demonstrate a predictive relationship between this specific market-type and the textual data of news. Besides the above two main components of the motivation, there are other specific aspects that make the setup of the proposed system and the conducted experiment unique, for example, the use of news article-headlines only and not news article-bodies, which enables usage of short pieces of text rather than long ones; or the use of general financial breaking news without any further filtration. In order to accomplish the above, this work produces a multi-layer algorithm that tackles each of the mentioned aspects of the text-mining problem at a designated layer. The first layer is termed the Semantic Abstraction Layer and addresses the problem of co-reference in text mining that is contributing to sparsity. Co-reference occurs when two or more words in a text corpus refer to the same concept. This work produces a custom approach by the name of Heuristic-Hypernyms Feature-Selection which creates a way to recognize words with the same parent-word to be regarded as one entity. As a result, prediction accuracy increases significantly at this layer which is attributed to appropriate noise-reduction from the feature-space. The second layer is termed Sentiment Integration Layer, which integrates sentiment analysis capability into the algorithm by proposing a sentiment weight by the name of SumScore that reflects investors’ sentiment. Additionally, this layer reduces the dimensions by eliminating those that are of zero value in terms of sentiment and thereby improves prediction accuracy. The third layer encompasses a dynamic model creation algorithm, termed Synchronous Targeted Feature Reduction (STFR). It is suitable for the challenge at hand whereby the mining of a stream of text is concerned. It updates the models with the most recent information available and, more importantly, it ensures that the dimensions are reduced to the absolute minimum. The algorithm and each of its layers are extensively evaluated using real market data and news content across multiple years and have proven to be solid and superior to any other comparable solution. The proposed techniques implemented in the system, result in significantly high directional-accuracies of up to 83.33%. On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments. |
| Author | Khadjeh Nassirtoussi, Arman Aghabozorgi, Saeed Ying Wah, Teh Ngo, David Chek Ling |
| Author_xml | – sequence: 1 givenname: Arman surname: Khadjeh Nassirtoussi fullname: Khadjeh Nassirtoussi, Arman email: armankhnt@gmail.com organization: Department of Information Science, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 2 givenname: Saeed surname: Aghabozorgi fullname: Aghabozorgi, Saeed organization: Department of Information Science, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 3 givenname: Teh surname: Ying Wah fullname: Ying Wah, Teh organization: Department of Information Science, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 4 givenname: David Chek Ling surname: Ngo fullname: Ngo, David Chek Ling organization: Research & Higher Degrees, Sunway University, No. 5, Jalan University, Bandar Sunway, 46150 Petaling Jaya, Selangor DE, Malaysia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28843403$$DView record in Pascal Francis |
| BookMark | eNp9kU9vFCEYh4mpidvVL-CJi4mXGWFgBzBeNv2jJjVNmpp4Iwy8tKwzzAqsa89-cVm38eChF17I-zwcfr9TdBLnCAi9pqSlhPbvNi3kvWk7QnlLZEsIf4YWVArW9EKxE7QgaiUaTgV_gU5z3hBCBSFigX7fwq-CpxBDvMOzxxH2ubkH48YQIWM_J3x5fXPxDU8mfYeCtwlcsCXM8T1e4y-7sYRmNA-Q8HmYIOa6wDfgdn8RvB7v5hTK_YT39cQZJhNLsBmb6Oqr3qtTXqLn3owZXj3OJfp6eXF79qm5uv74-Wx91VjWs9I4S_tBCW7BeLeS3PnOG9VJv1L9ACA60wMMnHQEeuWY59aDEWpgzEvluoEt0dvjv9s0_9hBLnoK2cI4mgjzLmvaryhTsquxLdGbR9Rka0afTLQh620KNYcH3UnJGSesct2Rs2nOOYH_h1CiD83ojT40ow_NaCJ1baZK8j_JhmIOgZVkwvi0-uGoQs3pZ4Cksw0QbS0lgS3azeEp_Q-9KK67 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2016_10_003 crossref_primary_10_1016_j_eswa_2015_02_007 crossref_primary_10_1016_j_knosys_2023_111347 crossref_primary_10_24891_udzypb crossref_primary_10_1007_s10844_020_00630_9 crossref_primary_10_1109_JIOT_2021_3085714 crossref_primary_10_1016_j_eswa_2016_02_006 crossref_primary_10_3233_WEB_170349 crossref_primary_10_1016_j_eswa_2020_114053 crossref_primary_10_1177_0047287518772361 crossref_primary_10_1007_s00146_016_0672_5 crossref_primary_10_1016_j_eneco_2021_105140 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1007_s11192_020_03807_9 crossref_primary_10_1145_3649451 crossref_primary_10_1016_j_ijforecast_2018_07_006 crossref_primary_10_3233_JIFS_211295 crossref_primary_10_3390_systems10060243 crossref_primary_10_1109_TCSS_2023_3323885 crossref_primary_10_1016_j_measurement_2020_108468 crossref_primary_10_1007_s12559_023_10129_4 crossref_primary_10_1016_j_techfore_2018_06_009 crossref_primary_10_3390_asi4010009 crossref_primary_10_1007_s13042_018_0805_x crossref_primary_10_1016_j_eswa_2018_10_002 crossref_primary_10_1007_s11276_018_01909_0 crossref_primary_10_1016_j_inffus_2024_102755 crossref_primary_10_1111_acfi_12373 crossref_primary_10_1007_s10844_018_0504_9 crossref_primary_10_1016_j_eswa_2020_113704 crossref_primary_10_1016_j_knosys_2021_107389 crossref_primary_10_1007_s42521_020_00018_y crossref_primary_10_1007_s13278_025_01463_6 crossref_primary_10_1016_j_eswa_2015_06_006 crossref_primary_10_3390_a13080186 crossref_primary_10_1007_s11356_023_25197_0 crossref_primary_10_1016_j_neucom_2016_10_103 crossref_primary_10_1007_s11227_017_2046_2 crossref_primary_10_1186_s40854_020_00205_1 crossref_primary_10_1186_s40854_022_00423_9 crossref_primary_10_1155_2019_9202457 crossref_primary_10_1016_j_procs_2019_09_157 crossref_primary_10_7717_peerj_cs_490 crossref_primary_10_1016_j_neucom_2021_09_072 crossref_primary_10_1177_0020720919894192 crossref_primary_10_1007_s11042_022_12181_y crossref_primary_10_1109_JIOT_2021_3100742 crossref_primary_10_1109_TKDE_2017_2763144 crossref_primary_10_1016_j_elerap_2020_101002 crossref_primary_10_1016_j_eswa_2023_119509 crossref_primary_10_1016_j_inffus_2023_101988 crossref_primary_10_1145_3588685 crossref_primary_10_3389_frai_2023_1225213 crossref_primary_10_1016_j_eswa_2023_122994 crossref_primary_10_1016_j_ijpe_2017_06_006 crossref_primary_10_1016_j_eswa_2017_05_002 crossref_primary_10_1109_ACCESS_2018_2886367 crossref_primary_10_3233_JIFS_219303 crossref_primary_10_1111_exsy_12641 crossref_primary_10_3390_math12101572 crossref_primary_10_1016_j_websem_2022_100722 crossref_primary_10_2478_sbe_2024_0049 crossref_primary_10_1007_s10660_017_9257_8 crossref_primary_10_1016_j_knosys_2017_03_019 crossref_primary_10_1016_j_iref_2024_103508 crossref_primary_10_1186_s40854_023_00567_2 crossref_primary_10_1007_s43621_025_01258_x crossref_primary_10_1016_j_neucom_2017_02_097 crossref_primary_10_1016_j_eswa_2025_127864 crossref_primary_10_1016_j_iswa_2025_200518 crossref_primary_10_1016_j_najef_2020_101181 crossref_primary_10_1109_ACCESS_2024_3441029 crossref_primary_10_1016_j_simpat_2018_04_008 crossref_primary_10_1186_s13173_017_0058_7 crossref_primary_10_1016_j_neucom_2020_07_108 crossref_primary_10_3390_info13100466 crossref_primary_10_1016_j_eswa_2025_128271 crossref_primary_10_1108_EL_08_2017_0182 crossref_primary_10_3390_electronics10212717 crossref_primary_10_1057_s41599_025_04850_8 crossref_primary_10_1108_IMDS_06_2017_0287 crossref_primary_10_1016_j_eswa_2020_113988 crossref_primary_10_1007_s12652_018_0862_8 crossref_primary_10_1007_s40745_020_00272_2 crossref_primary_10_1177_0165551518761013 crossref_primary_10_1016_j_eswa_2020_113463 crossref_primary_10_1016_j_physa_2020_125728 crossref_primary_10_1016_j_ejor_2019_02_045 crossref_primary_10_2139_ssrn_5380505 crossref_primary_10_1080_00036846_2022_2061904 crossref_primary_10_1016_j_econmod_2023_106397 crossref_primary_10_1007_s11042_018_6388_4 crossref_primary_10_1007_s13748_018_0162_8 crossref_primary_10_1080_00036846_2022_2133897 crossref_primary_10_61882_jsdp_22_2_109 crossref_primary_10_1109_ACCESS_2025_3568300 crossref_primary_10_1016_j_asoc_2022_109673 crossref_primary_10_4018_IJSKD_2019040103 crossref_primary_10_1016_j_eswa_2018_06_016 crossref_primary_10_1108_K_11_2016_0307 crossref_primary_10_1016_j_knosys_2022_108742 crossref_primary_10_1111_acfi_12466 crossref_primary_10_1016_j_intfin_2024_102004 crossref_primary_10_1016_j_compbiomed_2021_104920 crossref_primary_10_1109_ACCESS_2024_3370444 crossref_primary_10_1002_jtr_2419 crossref_primary_10_1016_j_knosys_2016_03_005 crossref_primary_10_1186_s40854_021_00269_7 crossref_primary_10_1007_s10115_017_1052_2 crossref_primary_10_1007_s11704_019_9094_0 crossref_primary_10_1109_ACCESS_2020_2973735 crossref_primary_10_1007_s10462_020_09884_9 crossref_primary_10_1080_15548627_2021_1995151 crossref_primary_10_1109_TEM_2019_2949124 crossref_primary_10_3233_IDA_163316 crossref_primary_10_1080_03081079_2024_2409748 |
| Cites_doi | 10.1016/j.eswa.2010.09.037 10.1016/j.iref.2012.07.016 10.1109/MCDM.2007.369438 10.1016/j.eswa.2010.06.001 10.1016/j.eswa.2014.06.009 10.1016/j.eswa.2011.02.114 10.1016/j.camwa.2012.09.011 10.1016/S1005-8885(10)60196-3 10.1145/1462198.1462204 10.1016/j.eswa.2011.04.058 10.1109/HICSS.2004.1265201 10.1109/CIFER.2003.1196287 10.1016/j.eswa.2010.06.087 10.1016/j.ipm.2013.08.006 10.1016/j.jpdc.2012.08.008 10.1016/j.eswa.2012.02.162 10.1016/j.jfineco.2007.06.001 10.1109/MC.2011.323 10.1016/j.eswa.2010.02.114 10.1016/j.ejor.2012.10.020 10.1016/j.jocs.2010.12.007 10.1016/j.jimonfin.2013.08.018 10.1016/S0925-2312(03)00372-2 10.1016/j.jfineco.2004.06.004 10.1016/j.eswa.2013.05.037 10.1016/j.eswa.2013.02.019 10.1016/j.eswa.2013.05.057 10.1016/j.dss.2012.12.028 10.1109/CIDM.2007.368947 10.1016/j.ipm.2011.08.002 10.1016/j.knosys.2013.06.020 10.1109/ICSMC.1998.725072 10.1145/219717.219748 10.1016/S0305-0483(01)00026-3 10.1016/j.eswa.2010.02.078 10.1016/j.eswa.2011.08.040 10.1007/BF00994018 10.1109/MIS.2013.30 10.1016/j.eswa.2013.05.050 10.1111/j.1475-679X.2010.00382.x 10.1111/j.1540-6261.2008.01362.x 10.1016/j.dss.2010.08.019 10.1016/j.eswa.2013.01.019 10.1016/j.eswa.2008.08.022 10.1016/j.physa.2009.11.012 10.1016/j.eswa.2011.06.003 10.1109/WIIAT.2008.309 10.1287/mnsc.1070.0704 10.1016/j.eswa.2009.03.057 10.1016/j.physa.2012.11.038 10.1016/j.dss.2012.03.001 10.1016/j.eswa.2012.02.022 10.1016/j.finmar.2013.06.004 10.1016/j.eswa.2012.07.048 10.1016/j.eswa.2011.07.070 10.1016/j.eswa.2013.01.001 10.1016/j.eswa.2010.02.124 10.1016/j.dss.2013.02.006 10.1016/j.eswa.2008.06.054 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2014.08.004 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 324 |
| ExternalDocumentID | 28843403 10_1016_j_eswa_2014_08_004 S0957417414004801 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-dc16b974ceafd584df2fa928f596bee72a6eeb4020e69d3f4cfea79b33f89d2b3 |
| ISICitedReferencesCount | 170 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344034300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Sep 27 23:35:59 EDT 2025 Wed Apr 02 07:26:57 EDT 2025 Sat Nov 29 04:44:40 EST 2025 Tue Nov 18 20:42:36 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Market prediction FOREX prediction News mining Market sentiment analysis News semantic analysis Noise reduction Layer model Data mining Modeling Relevance Motivation Semantics News Sparse matrix Selection criterion Dynamic model Exchange rate Textual data Data analysis Dimensionality Integration Filtration Knowledge representation Financial market Text Market survey Abstraction Noise control Data reduction Social decision Dimension reduction Monetary market Heuristic method Foreign currency Prediction market Algorithm analysis Press |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-dc16b974ceafd584df2fa928f596bee72a6eeb4020e69d3f4cfea79b33f89d2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1651398287 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1651398287 pascalfrancis_primary_28843403 crossref_primary_10_1016_j_eswa_2014_08_004 crossref_citationtrail_10_1016_j_eswa_2014_08_004 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_08_004 |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 2015-01-00 2015 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Jin, Self, Saraf, Butler, Wang, Ramakrishnan (b0165) 2013 Peramunetilleke, Wong (b0255) 2002; 24 Bahrepour, Akbarzadeh, Yaghoobi, Naghibi (b0020) 2011; 38 Khadjeh Nassirtoussi, Aghabozorgi, Ying Wah, Ngo (b0175) 2014; 41 (pp. 395–402). Das, Chen (b0075) 2007; 53 Lupiani-Ruiz, García-Manotas, Valencia-García, García-Sánchez, Castellanos-Nieves, Fernández-Breis (b0215) 2011; 38 Taşcı, Güngör (b0320) 2013; 40 Evans, Lyons (b0090) 2008; 88 Cortes, Vapnik (b0070) 1995; 20 Moraes, Vasconcelos, Prado, Almeida, Gonçalves (b0240) 2013 Shi, He, Liu, Zhang, Song (b0305) 2011; 18 Soni, A., van Eck, N. J., & Kaymak, U. (2007). Prediction of stock price movements based on concept map information. In Vu, Chang, Ha, Collier (b0345) 2012 Khadjeh Nassirtoussi, Ying Wah, Ngo Chek Ling (b0180) 2011; 5 Mabu, Hirasawa, Obayashi, Kuremoto (b0220) 2013; 40 Groth, Muntermann (b0125) 2011; 50 Mittermayer, M. A. (2004). Forecasting intraday stock price trends with text mining techniques. In Reboredo, Rivera-Castro, Miranda, García-Rubio (b0280) 2013; 392 Zhai, Hsu, Halgamuge (b0370) 2007 Chatrath, Miao, Ramchander, Villupuram (b0050) 2014; 40 Li (b0195) 2010; 48 Pestov (b0260) 2013; 65 Mahajan, A., Dey, L., & Haque, S. M. (2008). Mining financial news for major events and their impacts on the market. In Cambria, Schuller, Yunqing, Havasi (b0045) 2013; 28 Mostafa (b0245) 2013; 40 Sermpinis, Laws, Karathanasopoulos, Dunis (b0295) 2012; 39 Butler, Kešelj (b0040) 2009; Vol. 5549 Chordia, Roll, Subrahmanyam (b0065) 2005; 76 Ikeda, Hattori, Ono, Asoh, Higashino (b0150) 2013; 51 . Feng, Guo, Jing, Hao (b0100) 2012; 48 Huang, Liao, Yang, Chang, Luo (b0145) 2010; 37 (pp. 205–211). Chordia, Goyal, Lehmann, Saar (b0060) 2013; 16 Li, Yang, Park (b0200) 2012; 39 Premanode, Toumazou (b0265) 2013; 40 Lugmayr, A., & Gossen, G. (2012). Evaluation of methods and techniques for language based sentiment analysis for DAX 30 stock exchange – a first concept of a “LUGO” sentiment indicator. In Lugmayr, A., Risse, T., Stockleben, B., Kaario, J., Pogorelc, B., & Serral Asensio, E. (Eds.). Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998). Daily stock market forecast from textual web data. In Hagenau, Liebmann, Neumann (b0135) 2013; 55 (p. 10). Rachlin, G., Last, M., Alberg, D., & Kandel, A. (2007). ADMIRAL: A data mining based financial trading system. In Vanstone, Finnie (b0340) 2010; 37 (pp. 417–422). (Vol. 1, pp. 423–426). Garcke, Gerstner, Griebel (b0110) 2013; Vol. 88 Miller (b0230) 1995; 38 Ghiassi, Skinner, Zimbra (b0120) 2013; 40 Schumaker, Chen (b0285) 2009; 27 Jeong, Myaeng (b0155) 2013; Vol. 7814 Jiang, Pang, Wu, Kuang (b0160) 2012; 39 Schumaker, Zhang, Huang, Chen (b0290) 2012; 53 Kim (b0185) 2003; 55 Aghdam, Ghasem-Aghaee, Basiri (b0005) 2009; 36 Sermpinis, Theofilatos, Karathanasopoulos, Georgopoulos, Dunis (b0300) 2013; 225 Fasanghari, Montazer (b0095) 2010; 37 Yu, Nartea, Gan, Yao (b0365) 2013; 25 Yu, Duan, Cao (b0360) 2013 Tan, Wang, Wu (b0315) 2011; 38 Desmet, Hoste (b0080) 2013; 40 Kaltwasser (b0170) 2010; 389 Nizer, Nievola (b0250) 2012; 39 Berka, Vajteršic (b0025) 2013; 73 Zhang (b0375) 2011 Pui Cheong Fung, G., Xu Yu, J., & Wai, L. (2003). Stock prediction: Integrating text mining approach using real-time news. In Tay, Cao (b0325) 2001; 29 (Vols. 3 and 2723, pp. 2720–2725). Anastasakis, Mort (b0010) 2009; 36 Kontopoulos, Berberidis, Dergiades, Bassiliades (b0190) 2013; 40 Huang, Chuang, Wu, Lai (b0140) 2010; 37 Fung, Yu, Lam (b0105) 2002; Vol. 2336 Uysal, Gunal (b0335) 2014; 50 Werner, Myrray (b0350) 2004 Luo, Chen, Xiong (b0210) 2011; 38 (pp. 720–725). Esuli, A., & Sebastiani, F. (2006). SENTIWORDNET: A publicly available lexical resource for opinion mining. In Baccianella, Sebastiani (b0015) 2010 Günal, Ergin, Gülmezoğlu, Gerek (b0130) 2006; Vol. 4105 Tetlock, Saar-Tsechansky, Macskassy (b0330) 2008; 63 Bollen, Huina (b0030) 2011; 44 Ghazali, Hussain, Liatsis (b0115) 2011; 38 Chen, Huang, Tian, Qu (b0055) 2009; 36 Bollen, Huina, Zeng (b0035) 2010; 2 Li (10.1016/j.eswa.2014.08.004_b0195) 2010; 48 Vu (10.1016/j.eswa.2014.08.004_b0345) 2012 Baccianella (10.1016/j.eswa.2014.08.004_b0015) 2010 Nizer (10.1016/j.eswa.2014.08.004_b0250) 2012; 39 Groth (10.1016/j.eswa.2014.08.004_b0125) 2011; 50 Anastasakis (10.1016/j.eswa.2014.08.004_b0010) 2009; 36 Khadjeh Nassirtoussi (10.1016/j.eswa.2014.08.004_b0175) 2014; 41 Peramunetilleke (10.1016/j.eswa.2014.08.004_b0255) 2002; 24 Taşcı (10.1016/j.eswa.2014.08.004_b0320) 2013; 40 Feng (10.1016/j.eswa.2014.08.004_b0100) 2012; 48 Reboredo (10.1016/j.eswa.2014.08.004_b0280) 2013; 392 Aghdam (10.1016/j.eswa.2014.08.004_b0005) 2009; 36 Bahrepour (10.1016/j.eswa.2014.08.004_b0020) 2011; 38 Cambria (10.1016/j.eswa.2014.08.004_b0045) 2013; 28 10.1016/j.eswa.2014.08.004_b0270 Werner (10.1016/j.eswa.2014.08.004_b0350) 2004 Chordia (10.1016/j.eswa.2014.08.004_b0065) 2005; 76 Desmet (10.1016/j.eswa.2014.08.004_b0080) 2013; 40 Jin (10.1016/j.eswa.2014.08.004_b0165) 2013 Kim (10.1016/j.eswa.2014.08.004_b0185) 2003; 55 Chatrath (10.1016/j.eswa.2014.08.004_b0050) 2014; 40 10.1016/j.eswa.2014.08.004_b0235 10.1016/j.eswa.2014.08.004_b0310 Vanstone (10.1016/j.eswa.2014.08.004_b0340) 2010; 37 Yu (10.1016/j.eswa.2014.08.004_b0360) 2013 10.1016/j.eswa.2014.08.004_b0355 10.1016/j.eswa.2014.08.004_b0275 Schumaker (10.1016/j.eswa.2014.08.004_b0285) 2009; 27 Ikeda (10.1016/j.eswa.2014.08.004_b0150) 2013; 51 Berka (10.1016/j.eswa.2014.08.004_b0025) 2013; 73 Zhai (10.1016/j.eswa.2014.08.004_b0370) 2007 Butler (10.1016/j.eswa.2014.08.004_b0040) 2009; Vol. 5549 Moraes (10.1016/j.eswa.2014.08.004_b0240) 2013 Sermpinis (10.1016/j.eswa.2014.08.004_b0295) 2012; 39 Pestov (10.1016/j.eswa.2014.08.004_b0260) 2013; 65 Luo (10.1016/j.eswa.2014.08.004_b0210) 2011; 38 Huang (10.1016/j.eswa.2014.08.004_b0145) 2010; 37 Tetlock (10.1016/j.eswa.2014.08.004_b0330) 2008; 63 Ghiassi (10.1016/j.eswa.2014.08.004_b0120) 2013; 40 10.1016/j.eswa.2014.08.004_b0225 Lupiani-Ruiz (10.1016/j.eswa.2014.08.004_b0215) 2011; 38 Li (10.1016/j.eswa.2014.08.004_b0200) 2012; 39 Miller (10.1016/j.eswa.2014.08.004_b0230) 1995; 38 Tan (10.1016/j.eswa.2014.08.004_b0315) 2011; 38 Premanode (10.1016/j.eswa.2014.08.004_b0265) 2013; 40 Uysal (10.1016/j.eswa.2014.08.004_b0335) 2014; 50 Garcke (10.1016/j.eswa.2014.08.004_b0110) 2013; Vol. 88 Shi (10.1016/j.eswa.2014.08.004_b0305) 2011; 18 Evans (10.1016/j.eswa.2014.08.004_b0090) 2008; 88 Hagenau (10.1016/j.eswa.2014.08.004_b0135) 2013; 55 Sermpinis (10.1016/j.eswa.2014.08.004_b0300) 2013; 225 Kontopoulos (10.1016/j.eswa.2014.08.004_b0190) 2013; 40 Ghazali (10.1016/j.eswa.2014.08.004_b0115) 2011; 38 Mostafa (10.1016/j.eswa.2014.08.004_b0245) 2013; 40 Bollen (10.1016/j.eswa.2014.08.004_b0030) 2011; 44 Zhang (10.1016/j.eswa.2014.08.004_b0375) 2011 Chen (10.1016/j.eswa.2014.08.004_b0055) 2009; 36 Cortes (10.1016/j.eswa.2014.08.004_b0070) 1995; 20 Mabu (10.1016/j.eswa.2014.08.004_b0220) 2013; 40 Jiang (10.1016/j.eswa.2014.08.004_b0160) 2012; 39 Chordia (10.1016/j.eswa.2014.08.004_b0060) 2013; 16 Kaltwasser (10.1016/j.eswa.2014.08.004_b0170) 2010; 389 Khadjeh Nassirtoussi (10.1016/j.eswa.2014.08.004_b0180) 2011; 5 Jeong (10.1016/j.eswa.2014.08.004_b0155) 2013; Vol. 7814 Schumaker (10.1016/j.eswa.2014.08.004_b0290) 2012; 53 Yu (10.1016/j.eswa.2014.08.004_b0365) 2013; 25 10.1016/j.eswa.2014.08.004_b0085 Das (10.1016/j.eswa.2014.08.004_b0075) 2007; 53 Günal (10.1016/j.eswa.2014.08.004_b0130) 2006; Vol. 4105 Bollen (10.1016/j.eswa.2014.08.004_b0035) 2010; 2 Huang (10.1016/j.eswa.2014.08.004_b0140) 2010; 37 10.1016/j.eswa.2014.08.004_b0205 Fasanghari (10.1016/j.eswa.2014.08.004_b0095) 2010; 37 Fung (10.1016/j.eswa.2014.08.004_b0105) 2002; Vol. 2336 Tay (10.1016/j.eswa.2014.08.004_b0325) 2001; 29 |
| References_xml | – volume: 76 start-page: 271 year: 2005 end-page: 292 ident: b0065 article-title: Evidence on the speed of convergence to market efficiency publication-title: Journal of Financial Economics – volume: 48 start-page: 283 year: 2012 end-page: 302 ident: b0100 article-title: A Bayesian feature selection paradigm for text classification publication-title: Information Processing & Management – reference: (pp. 720–725). – reference: (pp. 395–402). – start-page: 1087 year: 2007 end-page: 1096 ident: b0370 article-title: Combining news and technical indicators in daily stock price trends prediction publication-title: Proceedings of the fourth international symposium on neural networks: advances in neural networks, Part III – volume: 40 start-page: 42 year: 2014 end-page: 62 ident: b0050 article-title: Currency jumps, cojumps and the role of macro news publication-title: Journal of International Money and Finance – volume: 48 start-page: 1049 year: 2010 end-page: 1102 ident: b0195 article-title: The information content of forward-looking statements in corporate filings—a Naïve Bayesian machine learning approach publication-title: Journal of Accounting Research – start-page: 23 year: 2012 end-page: 38 ident: b0345 article-title: An experiment in integrating sentiment features for tech stock prediction in twitter publication-title: Proceedings of the workshop on information extraction and entity analytics on social media data – volume: 73 start-page: 341 year: 2013 end-page: 351 ident: b0025 article-title: Parallel rare term vector replacement: Fast and effective dimensionality reduction for text publication-title: Journal of Parallel and Distributed Computing – reference: (Vols. 3 and 2723, pp. 2720–2725). – volume: 51 start-page: 35 year: 2013 end-page: 47 ident: b0150 article-title: Twitter user profiling based on text and community mining for market analysis publication-title: Knowledge-Based Systems – reference: (p. 10). – volume: 53 start-page: 1375 year: 2007 end-page: 1388 ident: b0075 article-title: Yahoo! for Amazon: Sentiment extraction from small talk on the web publication-title: Management Science – reference: Pui Cheong Fung, G., Xu Yu, J., & Wai, L. (2003). Stock prediction: Integrating text mining approach using real-time news. In – volume: 38 start-page: 39 year: 1995 end-page: 41 ident: b0230 article-title: WordNet: A lexical database for English publication-title: Communications of the ACM – volume: 27 start-page: 1 year: 2009 end-page: 19 ident: b0285 article-title: Textual analysis of stock market prediction using breaking financial news: The AZF in text system publication-title: ACM Transactions on Information Systems – volume: 40 start-page: 4241 year: 2013 end-page: 4251 ident: b0245 article-title: More than words: Social networks’ text mining for consumer brand sentiments publication-title: Expert Systems with Applications – start-page: 1470 year: 2013 end-page: 1473 ident: b0165 article-title: Forex-foreteller: Currency trend modeling using news articles publication-title: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 53 start-page: 458 year: 2012 end-page: 464 ident: b0290 article-title: Evaluating sentiment in financial news articles publication-title: Decision Support Systems – reference: Soni, A., van Eck, N. J., & Kaymak, U. (2007). Prediction of stock price movements based on concept map information. In – volume: 38 start-page: 10264 year: 2011 end-page: 10273 ident: b0315 article-title: Adapting centroid classifier for document categorization publication-title: Expert Systems with Applications – volume: Vol. 2336 start-page: 481 year: 2002 end-page: 493 ident: b0105 article-title: News sensitive stock trend prediction publication-title: Advances in knowledge discovery and data mining – volume: 50 start-page: 680 year: 2011 end-page: 691 ident: b0125 article-title: An intraday market risk management approach based on textual analysis publication-title: Decision Support Systems – reference: Mahajan, A., Dey, L., & Haque, S. M. (2008). Mining financial news for major events and their impacts on the market. In – volume: 37 start-page: 6138 year: 2010 end-page: 6147 ident: b0095 article-title: Design and implementation of fuzzy expert system for Tehran stock exchange portfolio recommendation publication-title: Expert Systems with Applications – volume: 36 start-page: 12001 year: 2009 end-page: 12011 ident: b0010 article-title: Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach publication-title: Expert Systems with Applications – volume: 38 start-page: 475 year: 2011 end-page: 485 ident: b0020 article-title: An adaptive ordered fuzzy time series with application to FOREX publication-title: Expert Systems with Applications – year: 2013 ident: b0360 article-title: The impact of social and conventional media on firm equity value: A sentiment analysis approach publication-title: Decision Support Systems – volume: 36 start-page: 6843 year: 2009 end-page: 6853 ident: b0005 article-title: Text feature selection using ant colony optimization publication-title: Expert Systems with Applications – volume: 40 start-page: 4065 year: 2013 end-page: 4074 ident: b0190 article-title: Ontology-based sentiment analysis of twitter posts publication-title: Expert Systems with Applications – start-page: 1259 year: 2004 end-page: 1294 ident: b0350 article-title: Is all that talk just noise ? The information content of internet stock message boards publication-title: Journal of Finance – volume: 55 start-page: 685 year: 2013 end-page: 697 ident: b0135 article-title: Automated news reading: Stock price prediction based on financial news using context-capturing features publication-title: Decision Support Systems – volume: 65 start-page: 1427 year: 2013 end-page: 1437 ident: b0260 article-title: Is the NN classifier in high dimensions affected by the curse of dimensionality? publication-title: Computers & Mathematics with Applications – volume: 225 start-page: 528 year: 2013 end-page: 540 ident: b0300 article-title: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization publication-title: European Journal of Operational Research – volume: 36 start-page: 5432 year: 2009 end-page: 5435 ident: b0055 article-title: Feature selection for text classification with Naïve Bayes publication-title: Expert Systems with Applications – volume: Vol. 5549 start-page: 39 year: 2009 end-page: 51 ident: b0040 article-title: Financial forecasting using character N-gram analysis and readability scores of annual reports publication-title: Advances in artificial intelligence – volume: 392 start-page: 1631 year: 2013 end-page: 1637 ident: b0280 article-title: How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis publication-title: Physica A: Statistical Mechanics and its Applications – volume: 39 start-page: 8865 year: 2012 end-page: 8877 ident: b0295 article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and psi sigma neural networks publication-title: Expert Systems with Applications – volume: 37 start-page: 6602 year: 2010 end-page: 6610 ident: b0340 article-title: Enhancing stockmarket trading performance with ANNs publication-title: Expert Systems with Applications – volume: 5 start-page: 8322 year: 2011 end-page: 8330 ident: b0180 article-title: A novel FOREX prediction methodology based on fundamental data publication-title: African Journal of Business Management – reference: Rachlin, G., Last, M., Alberg, D., & Kandel, A. (2007). ADMIRAL: A data mining based financial trading system. In – year: 2010 ident: b0015 article-title: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining publication-title: Proceedings of the seventh conference on international language resources and evaluation LREC’10 – volume: 39 start-page: 1503 year: 2012 end-page: 1509 ident: b0160 article-title: An improved K-nearest-neighbor algorithm for text categorization publication-title: Expert Systems with Applications – reference: Esuli, A., & Sebastiani, F. (2006). SENTIWORDNET: A publicly available lexical resource for opinion mining. In – reference: (pp. 417–422). – volume: 37 start-page: 6409 year: 2010 end-page: 6413 ident: b0145 article-title: Realization of a news dissemination agent based on weighted association rules and text mining techniques publication-title: Expert Systems with Applications – volume: 50 start-page: 104 year: 2014 end-page: 112 ident: b0335 article-title: The impact of preprocessing on text classification publication-title: Information Processing & Management – year: 2011 ident: b0375 article-title: News based forecasting and modeling – volume: 38 start-page: 12708 year: 2011 end-page: 12716 ident: b0210 article-title: A semantic term weighting scheme for text categorization publication-title: Expert Systems with Applications – volume: 24 start-page: 131 year: 2002 end-page: 139 ident: b0255 article-title: Currency exchange rate forecasting from news headlines publication-title: Australian Computer Science Communications – volume: 40 start-page: 6351 year: 2013 end-page: 6358 ident: b0080 article-title: Emotion detection in suicide notes publication-title: Expert Systems with Applications – volume: 29 start-page: 309 year: 2001 end-page: 317 ident: b0325 article-title: Application of support vector machines in financial time series forecasting publication-title: Omega – volume: 28 start-page: 15 year: 2013 end-page: 21 ident: b0045 article-title: New avenues in opinion mining and sentiment analysis publication-title: IEEE Intelligent Systems – volume: Vol. 7814 start-page: 267 year: 2013 end-page: 278 ident: b0155 article-title: Using WordNet hypernyms and dependency features for phrasal-level event recognition and type classification publication-title: Advances in information retrieval – volume: 39 start-page: 10674 year: 2012 end-page: 10680 ident: b0250 article-title: Predicting published news effect in the Brazilian stock market publication-title: Expert Systems with Applications – reference: Lugmayr, A., & Gossen, G. (2012). Evaluation of methods and techniques for language based sentiment analysis for DAX 30 stock exchange – a first concept of a “LUGO” sentiment indicator. In Lugmayr, A., Risse, T., Stockleben, B., Kaario, J., Pogorelc, B., & Serral Asensio, E. (Eds.). – volume: 40 start-page: 377 year: 2013 end-page: 384 ident: b0265 article-title: Improving prediction of exchange rates using differential EMD publication-title: Expert Systems with Applications – volume: 18 start-page: 131 year: 2011 end-page: 135 ident: b0305 article-title: Efficient text classification method based on improved term reduction and term weighting publication-title: The Journal of China Universities of Posts and Telecommunications – volume: 40 start-page: 4871 year: 2013 end-page: 4886 ident: b0320 article-title: Comparison of text feature selection policies and using an adaptive framework publication-title: Expert Systems with Applications – volume: 38 start-page: 3765 year: 2011 end-page: 3776 ident: b0115 article-title: Dynamic ridge polynomial neural network: Forecasting the univariate non-stationary and stationary trading signals publication-title: Expert Systems with Applications – volume: Vol. 4105 start-page: 635 year: 2006 end-page: 642 ident: b0130 article-title: On feature extraction for spam e-mail detection publication-title: Multimedia content representation, classification and security – volume: 63 start-page: 1437 year: 2008 end-page: 1467 ident: b0330 article-title: More than words: Quantifying language to measure firms’ fundamentals publication-title: The Journal of Finance – volume: 389 start-page: 1215 year: 2010 end-page: 1222 ident: b0170 article-title: Uncertainty about fundamentals and herding behavior in the FOREX market publication-title: Physica A: Statistical Mechanics and its Applications – volume: 40 start-page: 6311 year: 2013 end-page: 6320 ident: b0220 article-title: Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals publication-title: Expert Systems with Applications – reference: Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998). Daily stock market forecast from textual web data. In – volume: 2 start-page: 1 year: 2010 end-page: 8 ident: b0035 article-title: Twitter mood predicts the stock market publication-title: Journal of Computational Science – volume: 39 start-page: 765 year: 2012 end-page: 772 ident: b0200 article-title: Text categorization algorithms using semantic approaches, corpus-based thesaurus and WordNet publication-title: Expert Systems with Applications – volume: Vol. 88 start-page: 81 year: 2013 end-page: 105 ident: b0110 article-title: Intraday foreign exchange rate forecasting using sparse grids publication-title: Sparse grids and applications – volume: 55 start-page: 307 year: 2003 end-page: 319 ident: b0185 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing – volume: 41 start-page: 7653 year: 2014 end-page: 7670 ident: b0175 article-title: Text mining for market prediction: A systematic review publication-title: Expert Systems with Applications – volume: 40 start-page: 6266 year: 2013 end-page: 6282 ident: b0120 article-title: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network publication-title: Expert Systems with Applications – reference: Mittermayer, M. A. (2004). Forecasting intraday stock price trends with text mining techniques. In – start-page: 113 year: 2013 end-page: 120 ident: b0240 article-title: Polarity analysis of micro reviews in foursquare publication-title: Proceedings of the 19th Brazilian symposium on multimedia and the web – volume: 16 start-page: 637 year: 2013 end-page: 645 ident: b0060 article-title: High-frequency trading publication-title: Journal of Financial Markets – volume: 44 start-page: 91 year: 2011 end-page: 94 ident: b0030 article-title: Twitter mood as a stock market predictor publication-title: Computer – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0070 article-title: Support-vector networks publication-title: Machine Learning – volume: 38 start-page: 15565 year: 2011 end-page: 15572 ident: b0215 article-title: Financial news semantic search engine publication-title: Expert Systems with Applications – reference: (pp. 205–211). – reference: . – volume: 37 start-page: 8590 year: 2010 end-page: 8598 ident: b0140 article-title: Chaos-based support vector regressions for exchange rate forecasting publication-title: Expert Systems with Applications – volume: 88 start-page: 26 year: 2008 end-page: 50 ident: b0090 article-title: How is macro news transmitted to exchange rates? publication-title: Journal of Financial Economics – reference: (Vol. 1, pp. 423–426). – volume: 25 start-page: 356 year: 2013 end-page: 371 ident: b0365 article-title: Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets publication-title: International Review of Economics & Finance – volume: 38 start-page: 3765 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0115 article-title: Dynamic ridge polynomial neural network: Forecasting the univariate non-stationary and stationary trading signals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.09.037 – volume: 25 start-page: 356 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0365 article-title: Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets publication-title: International Review of Economics & Finance doi: 10.1016/j.iref.2012.07.016 – ident: 10.1016/j.eswa.2014.08.004_b0310 doi: 10.1109/MCDM.2007.369438 – volume: 37 start-page: 8590 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0140 article-title: Chaos-based support vector regressions for exchange rate forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.06.001 – start-page: 113 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0240 article-title: Polarity analysis of micro reviews in foursquare – volume: Vol. 2336 start-page: 481 year: 2002 ident: 10.1016/j.eswa.2014.08.004_b0105 – volume: Vol. 5549 start-page: 39 year: 2009 ident: 10.1016/j.eswa.2014.08.004_b0040 article-title: Financial forecasting using character N-gram analysis and readability scores of annual reports – volume: 41 start-page: 7653 year: 2014 ident: 10.1016/j.eswa.2014.08.004_b0175 article-title: Text mining for market prediction: A systematic review publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.06.009 – volume: 38 start-page: 10264 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0315 article-title: Adapting centroid classifier for document categorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.114 – volume: 65 start-page: 1427 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0260 article-title: Is the NN classifier in high dimensions affected by the curse of dimensionality? publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2012.09.011 – start-page: 1087 year: 2007 ident: 10.1016/j.eswa.2014.08.004_b0370 article-title: Combining news and technical indicators in daily stock price trends prediction – year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0015 article-title: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining – volume: 24 start-page: 131 year: 2002 ident: 10.1016/j.eswa.2014.08.004_b0255 article-title: Currency exchange rate forecasting from news headlines publication-title: Australian Computer Science Communications – volume: 18 start-page: 131 issue: Suppl. 1 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0305 article-title: Efficient text classification method based on improved term reduction and term weighting publication-title: The Journal of China Universities of Posts and Telecommunications doi: 10.1016/S1005-8885(10)60196-3 – ident: 10.1016/j.eswa.2014.08.004_b0085 – volume: 27 start-page: 1 year: 2009 ident: 10.1016/j.eswa.2014.08.004_b0285 article-title: Textual analysis of stock market prediction using breaking financial news: The AZF in text system publication-title: ACM Transactions on Information Systems doi: 10.1145/1462198.1462204 – volume: 5 start-page: 8322 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0180 article-title: A novel FOREX prediction methodology based on fundamental data publication-title: African Journal of Business Management – volume: 38 start-page: 12708 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0210 article-title: A semantic term weighting scheme for text categorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.04.058 – ident: 10.1016/j.eswa.2014.08.004_b0235 doi: 10.1109/HICSS.2004.1265201 – start-page: 23 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0345 article-title: An experiment in integrating sentiment features for tech stock prediction in twitter – ident: 10.1016/j.eswa.2014.08.004_b0270 doi: 10.1109/CIFER.2003.1196287 – volume: 38 start-page: 475 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0020 article-title: An adaptive ordered fuzzy time series with application to FOREX publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.06.087 – volume: 50 start-page: 104 year: 2014 ident: 10.1016/j.eswa.2014.08.004_b0335 article-title: The impact of preprocessing on text classification publication-title: Information Processing & Management doi: 10.1016/j.ipm.2013.08.006 – volume: 73 start-page: 341 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0025 article-title: Parallel rare term vector replacement: Fast and effective dimensionality reduction for text publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2012.08.008 – volume: 39 start-page: 10674 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0250 article-title: Predicting published news effect in the Brazilian stock market publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.162 – volume: 88 start-page: 26 year: 2008 ident: 10.1016/j.eswa.2014.08.004_b0090 article-title: How is macro news transmitted to exchange rates? publication-title: Journal of Financial Economics doi: 10.1016/j.jfineco.2007.06.001 – volume: 44 start-page: 91 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0030 article-title: Twitter mood as a stock market predictor publication-title: Computer doi: 10.1109/MC.2011.323 – volume: 37 start-page: 6138 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0095 article-title: Design and implementation of fuzzy expert system for Tehran stock exchange portfolio recommendation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.02.114 – volume: 225 start-page: 528 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0300 article-title: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.10.020 – volume: 2 start-page: 1 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0035 article-title: Twitter mood predicts the stock market publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2010.12.007 – volume: 40 start-page: 42 year: 2014 ident: 10.1016/j.eswa.2014.08.004_b0050 article-title: Currency jumps, cojumps and the role of macro news publication-title: Journal of International Money and Finance doi: 10.1016/j.jimonfin.2013.08.018 – volume: 55 start-page: 307 year: 2003 ident: 10.1016/j.eswa.2014.08.004_b0185 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00372-2 – volume: 76 start-page: 271 year: 2005 ident: 10.1016/j.eswa.2014.08.004_b0065 article-title: Evidence on the speed of convergence to market efficiency publication-title: Journal of Financial Economics doi: 10.1016/j.jfineco.2004.06.004 – volume: 40 start-page: 6311 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0220 article-title: Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.037 – ident: 10.1016/j.eswa.2014.08.004_b0205 – volume: 40 start-page: 4871 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0320 article-title: Comparison of text feature selection policies and using an adaptive framework publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.02.019 – volume: 40 start-page: 6266 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0120 article-title: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.057 – year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0360 article-title: The impact of social and conventional media on firm equity value: A sentiment analysis approach publication-title: Decision Support Systems doi: 10.1016/j.dss.2012.12.028 – volume: Vol. 4105 start-page: 635 year: 2006 ident: 10.1016/j.eswa.2014.08.004_b0130 article-title: On feature extraction for spam e-mail detection – start-page: 1470 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0165 article-title: Forex-foreteller: Currency trend modeling using news articles – ident: 10.1016/j.eswa.2014.08.004_b0275 doi: 10.1109/CIDM.2007.368947 – volume: 48 start-page: 283 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0100 article-title: A Bayesian feature selection paradigm for text classification publication-title: Information Processing & Management doi: 10.1016/j.ipm.2011.08.002 – volume: 51 start-page: 35 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0150 article-title: Twitter user profiling based on text and community mining for market analysis publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.06.020 – ident: 10.1016/j.eswa.2014.08.004_b0355 doi: 10.1109/ICSMC.1998.725072 – volume: 38 start-page: 39 year: 1995 ident: 10.1016/j.eswa.2014.08.004_b0230 article-title: WordNet: A lexical database for English publication-title: Communications of the ACM doi: 10.1145/219717.219748 – volume: Vol. 7814 start-page: 267 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0155 article-title: Using WordNet hypernyms and dependency features for phrasal-level event recognition and type classification – volume: 29 start-page: 309 year: 2001 ident: 10.1016/j.eswa.2014.08.004_b0325 article-title: Application of support vector machines in financial time series forecasting publication-title: Omega doi: 10.1016/S0305-0483(01)00026-3 – volume: 37 start-page: 6409 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0145 article-title: Realization of a news dissemination agent based on weighted association rules and text mining techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.02.078 – volume: 39 start-page: 1503 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0160 article-title: An improved K-nearest-neighbor algorithm for text categorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.040 – year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0375 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.eswa.2014.08.004_b0070 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 28 start-page: 15 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0045 article-title: New avenues in opinion mining and sentiment analysis publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2013.30 – volume: 40 start-page: 6351 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0080 article-title: Emotion detection in suicide notes publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.050 – volume: Vol. 88 start-page: 81 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0110 article-title: Intraday foreign exchange rate forecasting using sparse grids – volume: 48 start-page: 1049 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0195 article-title: The information content of forward-looking statements in corporate filings—a Naïve Bayesian machine learning approach publication-title: Journal of Accounting Research doi: 10.1111/j.1475-679X.2010.00382.x – volume: 63 start-page: 1437 year: 2008 ident: 10.1016/j.eswa.2014.08.004_b0330 article-title: More than words: Quantifying language to measure firms’ fundamentals publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.2008.01362.x – volume: 50 start-page: 680 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0125 article-title: An intraday market risk management approach based on textual analysis publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.08.019 – volume: 40 start-page: 4241 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0245 article-title: More than words: Social networks’ text mining for consumer brand sentiments publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.01.019 – volume: 36 start-page: 6843 year: 2009 ident: 10.1016/j.eswa.2014.08.004_b0005 article-title: Text feature selection using ant colony optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.08.022 – volume: 389 start-page: 1215 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0170 article-title: Uncertainty about fundamentals and herding behavior in the FOREX market publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2009.11.012 – volume: 38 start-page: 15565 year: 2011 ident: 10.1016/j.eswa.2014.08.004_b0215 article-title: Financial news semantic search engine publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.003 – ident: 10.1016/j.eswa.2014.08.004_b0225 doi: 10.1109/WIIAT.2008.309 – volume: 53 start-page: 1375 year: 2007 ident: 10.1016/j.eswa.2014.08.004_b0075 article-title: Yahoo! for Amazon: Sentiment extraction from small talk on the web publication-title: Management Science doi: 10.1287/mnsc.1070.0704 – volume: 36 start-page: 12001 year: 2009 ident: 10.1016/j.eswa.2014.08.004_b0010 article-title: Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.03.057 – volume: 392 start-page: 1631 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0280 article-title: How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2012.11.038 – volume: 53 start-page: 458 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0290 article-title: Evaluating sentiment in financial news articles publication-title: Decision Support Systems doi: 10.1016/j.dss.2012.03.001 – volume: 39 start-page: 8865 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0295 article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and psi sigma neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.022 – volume: 16 start-page: 637 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0060 article-title: High-frequency trading publication-title: Journal of Financial Markets doi: 10.1016/j.finmar.2013.06.004 – volume: 40 start-page: 377 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0265 article-title: Improving prediction of exchange rates using differential EMD publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.07.048 – start-page: 1259 year: 2004 ident: 10.1016/j.eswa.2014.08.004_b0350 article-title: Is all that talk just noise ? The information content of internet stock message boards publication-title: Journal of Finance – volume: 39 start-page: 765 year: 2012 ident: 10.1016/j.eswa.2014.08.004_b0200 article-title: Text categorization algorithms using semantic approaches, corpus-based thesaurus and WordNet publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.070 – volume: 40 start-page: 4065 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0190 article-title: Ontology-based sentiment analysis of twitter posts publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.01.001 – volume: 37 start-page: 6602 year: 2010 ident: 10.1016/j.eswa.2014.08.004_b0340 article-title: Enhancing stockmarket trading performance with ANNs publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.02.124 – volume: 55 start-page: 685 year: 2013 ident: 10.1016/j.eswa.2014.08.004_b0135 article-title: Automated news reading: Stock price prediction based on financial news using context-capturing features publication-title: Decision Support Systems doi: 10.1016/j.dss.2013.02.006 – volume: 36 start-page: 5432 year: 2009 ident: 10.1016/j.eswa.2014.08.004_b0055 article-title: Feature selection for text classification with Naïve Bayes publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.054 |
| SSID | ssj0017007 |
| Score | 2.5682294 |
| Snippet | •FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction... In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 306 |
| SubjectTerms | Algorithms Applied sciences Artificial intelligence Breaking Computer science; control theory; systems Decision theory. Utility theory Exact sciences and technology Exchange Expert systems FOREX prediction Information systems. Data bases Market prediction Market sentiment analysis Markets Memory organisation. Data processing Multilayers News mining News semantic analysis Operational research and scientific management Operational research. Management science Portfolio theory Semantics Software Speech and sound recognition and synthesis. Linguistics Texts |
| Title | Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment |
| URI | https://dx.doi.org/10.1016/j.eswa.2014.08.004 https://www.proquest.com/docview/1651398287 |
| Volume | 42 |
| WOSCitedRecordID | wos000344034300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQckxBtRHtUicbOMYnvjBzerhKQtJChKReBi2d5dSJQ4UZKW3vl7_ChmvA-SRhQ4cEmildeO9H2enZ2d-YaQl37ZlCKMW24g8ZiRJbkbF0y63A8Fj4TwWrxG-l3U68WjUfKh0fhhamEuplFVxZeXyeK_Qg1jADaWzv4D3PamMAC_AXT4BNjh8--AB3PrzOq-D3WWBlgxFywuR3-yFl9wYOPXHjmzut4ZRQL4uDQpHqlTV-S60xxccbCHM8xvn2OUnyuZWSedfpkvx-uvM53dLmaAjZF6xkqmsc2lmdg0P7Fca81oU023cW5uOTd4n_ac02765qTddXop2PnBsH8GX_aKDtia_uf-oHOsotlCl2Zh6AHmfMLQ28fUnn4dddunYJ5hsNfpb2fw60CHKvJUcTftJGwFLyOXeaq_j7HjzN_hqzLKQTPcWN8DVbO9s3SoKMbklVh9Qz0qj9XSrqo38rZO95X102Y1-nHMAobSs_t-BBu1PbKfHrdHJ_ZUK2qq8n3z73URl8o3vPrc3zlKtxb5Cl5fqfqu7LgQtV80vEtu6w0NTRUR75GGqO6TO3pzQ_XSsYIh0z_EjD0g35GqVFGVziXdpioFqtKaqlRRlf6i6mua0g2iUktUaolKLVEpMo5aolIgKrVEfUjO3raHR11XNwVxyyAM1i4vvbCATXApcsnBe-bSl3nix7KVhIUQkZ-HQhQYFRFhwgPJSinyKCmCQMYJ94vgEdmr5pV4TKhfMs6KJmoQRiwsWBFIHoMrJ_PCS8BiHRDPIJCVWjEfG7dMM5MaOckQtQxRy7CbaxPmOHbOQunFXHt1ywCbaY9XebIZsPLaeYdbLLCPMhQ8IC8MLTJYL_AQMK_E_HyVeWELNn3Y5uLJn27ylNzE91AFHJ-RvfXyXDwnN8qL9Xi1PNTk_gnKP-Sm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+mining+of+news-headlines+for+FOREX+market+prediction%3A+A+Multi-layer+Dimension+Reduction+Algorithm+with+semantics+and+sentiment&rft.jtitle=Expert+systems+with+applications&rft.au=ARMAN+KHADJEH+NASSIRTOUSSI&rft.au=AGHABOZORGI%2C+Saeed&rft.au=TEH+YING+WAH&rft.au=CHEK+LING+NGO%2C+David&rft.date=2015&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=42&rft.issue=1&rft.spage=306&rft.epage=324&rft_id=info:doi/10.1016%2Fj.eswa.2014.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=28843403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |