Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment

•FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction accuracy.•Feature-weighting based on the sum of pos and neg sentiment scores is effective.•Feature-reduction based on maximum optimization for prediction-tar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 42; číslo 1; s. 306 - 324
Hlavní autoři: Khadjeh Nassirtoussi, Arman, Aghabozorgi, Saeed, Ying Wah, Teh, Ngo, David Chek Ling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.01.2015
Elsevier
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction accuracy.•Feature-weighting based on the sum of pos and neg sentiment scores is effective.•Feature-reduction based on maximum optimization for prediction-target is crucial. In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold: First, although market-prediction through text-mining is shown to be a promising area of work in the literature, the text-mining approaches utilized in it at this stage are not much beyond basic ones as it is still an emerging field. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. This research assumes that addressing these aspects of text-mining have an impact on the quality of the achieved results. The proposed system proves this assumption to be right. The second part of the motivation is to research a specific market, namely, the foreign exchange market, which seems not to have been researched in the previous works based on predictive text-mining. Therefore, results of this work also successfully demonstrate a predictive relationship between this specific market-type and the textual data of news. Besides the above two main components of the motivation, there are other specific aspects that make the setup of the proposed system and the conducted experiment unique, for example, the use of news article-headlines only and not news article-bodies, which enables usage of short pieces of text rather than long ones; or the use of general financial breaking news without any further filtration. In order to accomplish the above, this work produces a multi-layer algorithm that tackles each of the mentioned aspects of the text-mining problem at a designated layer. The first layer is termed the Semantic Abstraction Layer and addresses the problem of co-reference in text mining that is contributing to sparsity. Co-reference occurs when two or more words in a text corpus refer to the same concept. This work produces a custom approach by the name of Heuristic-Hypernyms Feature-Selection which creates a way to recognize words with the same parent-word to be regarded as one entity. As a result, prediction accuracy increases significantly at this layer which is attributed to appropriate noise-reduction from the feature-space. The second layer is termed Sentiment Integration Layer, which integrates sentiment analysis capability into the algorithm by proposing a sentiment weight by the name of SumScore that reflects investors’ sentiment. Additionally, this layer reduces the dimensions by eliminating those that are of zero value in terms of sentiment and thereby improves prediction accuracy. The third layer encompasses a dynamic model creation algorithm, termed Synchronous Targeted Feature Reduction (STFR). It is suitable for the challenge at hand whereby the mining of a stream of text is concerned. It updates the models with the most recent information available and, more importantly, it ensures that the dimensions are reduced to the absolute minimum. The algorithm and each of its layers are extensively evaluated using real market data and news content across multiple years and have proven to be solid and superior to any other comparable solution. The proposed techniques implemented in the system, result in significantly high directional-accuracies of up to 83.33%. On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments.
AbstractList In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments.
•FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction accuracy.•Feature-weighting based on the sum of pos and neg sentiment scores is effective.•Feature-reduction based on maximum optimization for prediction-target is crucial. In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold: First, although market-prediction through text-mining is shown to be a promising area of work in the literature, the text-mining approaches utilized in it at this stage are not much beyond basic ones as it is still an emerging field. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. This research assumes that addressing these aspects of text-mining have an impact on the quality of the achieved results. The proposed system proves this assumption to be right. The second part of the motivation is to research a specific market, namely, the foreign exchange market, which seems not to have been researched in the previous works based on predictive text-mining. Therefore, results of this work also successfully demonstrate a predictive relationship between this specific market-type and the textual data of news. Besides the above two main components of the motivation, there are other specific aspects that make the setup of the proposed system and the conducted experiment unique, for example, the use of news article-headlines only and not news article-bodies, which enables usage of short pieces of text rather than long ones; or the use of general financial breaking news without any further filtration. In order to accomplish the above, this work produces a multi-layer algorithm that tackles each of the mentioned aspects of the text-mining problem at a designated layer. The first layer is termed the Semantic Abstraction Layer and addresses the problem of co-reference in text mining that is contributing to sparsity. Co-reference occurs when two or more words in a text corpus refer to the same concept. This work produces a custom approach by the name of Heuristic-Hypernyms Feature-Selection which creates a way to recognize words with the same parent-word to be regarded as one entity. As a result, prediction accuracy increases significantly at this layer which is attributed to appropriate noise-reduction from the feature-space. The second layer is termed Sentiment Integration Layer, which integrates sentiment analysis capability into the algorithm by proposing a sentiment weight by the name of SumScore that reflects investors’ sentiment. Additionally, this layer reduces the dimensions by eliminating those that are of zero value in terms of sentiment and thereby improves prediction accuracy. The third layer encompasses a dynamic model creation algorithm, termed Synchronous Targeted Feature Reduction (STFR). It is suitable for the challenge at hand whereby the mining of a stream of text is concerned. It updates the models with the most recent information available and, more importantly, it ensures that the dimensions are reduced to the absolute minimum. The algorithm and each of its layers are extensively evaluated using real market data and news content across multiple years and have proven to be solid and superior to any other comparable solution. The proposed techniques implemented in the system, result in significantly high directional-accuracies of up to 83.33%. On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments.
Author Khadjeh Nassirtoussi, Arman
Aghabozorgi, Saeed
Ying Wah, Teh
Ngo, David Chek Ling
Author_xml – sequence: 1
  givenname: Arman
  surname: Khadjeh Nassirtoussi
  fullname: Khadjeh Nassirtoussi, Arman
  email: armankhnt@gmail.com
  organization: Department of Information Science, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Saeed
  surname: Aghabozorgi
  fullname: Aghabozorgi, Saeed
  organization: Department of Information Science, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Teh
  surname: Ying Wah
  fullname: Ying Wah, Teh
  organization: Department of Information Science, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 4
  givenname: David Chek Ling
  surname: Ngo
  fullname: Ngo, David Chek Ling
  organization: Research & Higher Degrees, Sunway University, No. 5, Jalan University, Bandar Sunway, 46150 Petaling Jaya, Selangor DE, Malaysia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28843403$$DView record in Pascal Francis
BookMark eNp9kU9vFCEYh4mpidvVL-CJi4mXGWFgBzBeNv2jJjVNmpp4Iwy8tKwzzAqsa89-cVm38eChF17I-zwcfr9TdBLnCAi9pqSlhPbvNi3kvWk7QnlLZEsIf4YWVArW9EKxE7QgaiUaTgV_gU5z3hBCBSFigX7fwq-CpxBDvMOzxxH2ubkH48YQIWM_J3x5fXPxDU8mfYeCtwlcsCXM8T1e4y-7sYRmNA-Q8HmYIOa6wDfgdn8RvB7v5hTK_YT39cQZJhNLsBmb6Oqr3qtTXqLn3owZXj3OJfp6eXF79qm5uv74-Wx91VjWs9I4S_tBCW7BeLeS3PnOG9VJv1L9ACA60wMMnHQEeuWY59aDEWpgzEvluoEt0dvjv9s0_9hBLnoK2cI4mgjzLmvaryhTsquxLdGbR9Rka0afTLQh620KNYcH3UnJGSesct2Rs2nOOYH_h1CiD83ojT40ow_NaCJ1baZK8j_JhmIOgZVkwvi0-uGoQs3pZ4Cksw0QbS0lgS3azeEp_Q-9KK67
CitedBy_id crossref_primary_10_1016_j_knosys_2016_10_003
crossref_primary_10_1016_j_eswa_2015_02_007
crossref_primary_10_1016_j_knosys_2023_111347
crossref_primary_10_24891_udzypb
crossref_primary_10_1007_s10844_020_00630_9
crossref_primary_10_1109_JIOT_2021_3085714
crossref_primary_10_1016_j_eswa_2016_02_006
crossref_primary_10_3233_WEB_170349
crossref_primary_10_1016_j_eswa_2020_114053
crossref_primary_10_1177_0047287518772361
crossref_primary_10_1007_s00146_016_0672_5
crossref_primary_10_1016_j_eneco_2021_105140
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1007_s11192_020_03807_9
crossref_primary_10_1145_3649451
crossref_primary_10_1016_j_ijforecast_2018_07_006
crossref_primary_10_3233_JIFS_211295
crossref_primary_10_3390_systems10060243
crossref_primary_10_1109_TCSS_2023_3323885
crossref_primary_10_1016_j_measurement_2020_108468
crossref_primary_10_1007_s12559_023_10129_4
crossref_primary_10_1016_j_techfore_2018_06_009
crossref_primary_10_3390_asi4010009
crossref_primary_10_1007_s13042_018_0805_x
crossref_primary_10_1016_j_eswa_2018_10_002
crossref_primary_10_1007_s11276_018_01909_0
crossref_primary_10_1016_j_inffus_2024_102755
crossref_primary_10_1111_acfi_12373
crossref_primary_10_1007_s10844_018_0504_9
crossref_primary_10_1016_j_eswa_2020_113704
crossref_primary_10_1016_j_knosys_2021_107389
crossref_primary_10_1007_s42521_020_00018_y
crossref_primary_10_1007_s13278_025_01463_6
crossref_primary_10_1016_j_eswa_2015_06_006
crossref_primary_10_3390_a13080186
crossref_primary_10_1007_s11356_023_25197_0
crossref_primary_10_1016_j_neucom_2016_10_103
crossref_primary_10_1007_s11227_017_2046_2
crossref_primary_10_1186_s40854_020_00205_1
crossref_primary_10_1186_s40854_022_00423_9
crossref_primary_10_1155_2019_9202457
crossref_primary_10_1016_j_procs_2019_09_157
crossref_primary_10_7717_peerj_cs_490
crossref_primary_10_1016_j_neucom_2021_09_072
crossref_primary_10_1177_0020720919894192
crossref_primary_10_1007_s11042_022_12181_y
crossref_primary_10_1109_JIOT_2021_3100742
crossref_primary_10_1109_TKDE_2017_2763144
crossref_primary_10_1016_j_elerap_2020_101002
crossref_primary_10_1016_j_eswa_2023_119509
crossref_primary_10_1016_j_inffus_2023_101988
crossref_primary_10_1145_3588685
crossref_primary_10_3389_frai_2023_1225213
crossref_primary_10_1016_j_eswa_2023_122994
crossref_primary_10_1016_j_ijpe_2017_06_006
crossref_primary_10_1016_j_eswa_2017_05_002
crossref_primary_10_1109_ACCESS_2018_2886367
crossref_primary_10_3233_JIFS_219303
crossref_primary_10_1111_exsy_12641
crossref_primary_10_3390_math12101572
crossref_primary_10_1016_j_websem_2022_100722
crossref_primary_10_2478_sbe_2024_0049
crossref_primary_10_1007_s10660_017_9257_8
crossref_primary_10_1016_j_knosys_2017_03_019
crossref_primary_10_1016_j_iref_2024_103508
crossref_primary_10_1186_s40854_023_00567_2
crossref_primary_10_1007_s43621_025_01258_x
crossref_primary_10_1016_j_neucom_2017_02_097
crossref_primary_10_1016_j_eswa_2025_127864
crossref_primary_10_1016_j_iswa_2025_200518
crossref_primary_10_1016_j_najef_2020_101181
crossref_primary_10_1109_ACCESS_2024_3441029
crossref_primary_10_1016_j_simpat_2018_04_008
crossref_primary_10_1186_s13173_017_0058_7
crossref_primary_10_1016_j_neucom_2020_07_108
crossref_primary_10_3390_info13100466
crossref_primary_10_1016_j_eswa_2025_128271
crossref_primary_10_1108_EL_08_2017_0182
crossref_primary_10_3390_electronics10212717
crossref_primary_10_1057_s41599_025_04850_8
crossref_primary_10_1108_IMDS_06_2017_0287
crossref_primary_10_1016_j_eswa_2020_113988
crossref_primary_10_1007_s12652_018_0862_8
crossref_primary_10_1007_s40745_020_00272_2
crossref_primary_10_1177_0165551518761013
crossref_primary_10_1016_j_eswa_2020_113463
crossref_primary_10_1016_j_physa_2020_125728
crossref_primary_10_1016_j_ejor_2019_02_045
crossref_primary_10_2139_ssrn_5380505
crossref_primary_10_1080_00036846_2022_2061904
crossref_primary_10_1016_j_econmod_2023_106397
crossref_primary_10_1007_s11042_018_6388_4
crossref_primary_10_1007_s13748_018_0162_8
crossref_primary_10_1080_00036846_2022_2133897
crossref_primary_10_61882_jsdp_22_2_109
crossref_primary_10_1109_ACCESS_2025_3568300
crossref_primary_10_1016_j_asoc_2022_109673
crossref_primary_10_4018_IJSKD_2019040103
crossref_primary_10_1016_j_eswa_2018_06_016
crossref_primary_10_1108_K_11_2016_0307
crossref_primary_10_1016_j_knosys_2022_108742
crossref_primary_10_1111_acfi_12466
crossref_primary_10_1016_j_intfin_2024_102004
crossref_primary_10_1016_j_compbiomed_2021_104920
crossref_primary_10_1109_ACCESS_2024_3370444
crossref_primary_10_1002_jtr_2419
crossref_primary_10_1016_j_knosys_2016_03_005
crossref_primary_10_1186_s40854_021_00269_7
crossref_primary_10_1007_s10115_017_1052_2
crossref_primary_10_1007_s11704_019_9094_0
crossref_primary_10_1109_ACCESS_2020_2973735
crossref_primary_10_1007_s10462_020_09884_9
crossref_primary_10_1080_15548627_2021_1995151
crossref_primary_10_1109_TEM_2019_2949124
crossref_primary_10_3233_IDA_163316
crossref_primary_10_1080_03081079_2024_2409748
Cites_doi 10.1016/j.eswa.2010.09.037
10.1016/j.iref.2012.07.016
10.1109/MCDM.2007.369438
10.1016/j.eswa.2010.06.001
10.1016/j.eswa.2014.06.009
10.1016/j.eswa.2011.02.114
10.1016/j.camwa.2012.09.011
10.1016/S1005-8885(10)60196-3
10.1145/1462198.1462204
10.1016/j.eswa.2011.04.058
10.1109/HICSS.2004.1265201
10.1109/CIFER.2003.1196287
10.1016/j.eswa.2010.06.087
10.1016/j.ipm.2013.08.006
10.1016/j.jpdc.2012.08.008
10.1016/j.eswa.2012.02.162
10.1016/j.jfineco.2007.06.001
10.1109/MC.2011.323
10.1016/j.eswa.2010.02.114
10.1016/j.ejor.2012.10.020
10.1016/j.jocs.2010.12.007
10.1016/j.jimonfin.2013.08.018
10.1016/S0925-2312(03)00372-2
10.1016/j.jfineco.2004.06.004
10.1016/j.eswa.2013.05.037
10.1016/j.eswa.2013.02.019
10.1016/j.eswa.2013.05.057
10.1016/j.dss.2012.12.028
10.1109/CIDM.2007.368947
10.1016/j.ipm.2011.08.002
10.1016/j.knosys.2013.06.020
10.1109/ICSMC.1998.725072
10.1145/219717.219748
10.1016/S0305-0483(01)00026-3
10.1016/j.eswa.2010.02.078
10.1016/j.eswa.2011.08.040
10.1007/BF00994018
10.1109/MIS.2013.30
10.1016/j.eswa.2013.05.050
10.1111/j.1475-679X.2010.00382.x
10.1111/j.1540-6261.2008.01362.x
10.1016/j.dss.2010.08.019
10.1016/j.eswa.2013.01.019
10.1016/j.eswa.2008.08.022
10.1016/j.physa.2009.11.012
10.1016/j.eswa.2011.06.003
10.1109/WIIAT.2008.309
10.1287/mnsc.1070.0704
10.1016/j.eswa.2009.03.057
10.1016/j.physa.2012.11.038
10.1016/j.dss.2012.03.001
10.1016/j.eswa.2012.02.022
10.1016/j.finmar.2013.06.004
10.1016/j.eswa.2012.07.048
10.1016/j.eswa.2011.07.070
10.1016/j.eswa.2013.01.001
10.1016/j.eswa.2010.02.124
10.1016/j.dss.2013.02.006
10.1016/j.eswa.2008.06.054
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.08.004
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 324
ExternalDocumentID 28843403
10_1016_j_eswa_2014_08_004
S0957417414004801
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-dc16b974ceafd584df2fa928f596bee72a6eeb4020e69d3f4cfea79b33f89d2b3
ISICitedReferencesCount 170
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344034300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Sep 27 23:35:59 EDT 2025
Wed Apr 02 07:26:57 EDT 2025
Sat Nov 29 04:44:40 EST 2025
Tue Nov 18 20:42:36 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Market prediction
FOREX prediction
News mining
Market sentiment analysis
News semantic analysis
Noise reduction
Layer model
Data mining
Modeling
Relevance
Motivation
Semantics
News
Sparse matrix
Selection criterion
Dynamic model
Exchange rate
Textual data
Data analysis
Dimensionality
Integration
Filtration
Knowledge representation
Financial market
Text
Market survey
Abstraction
Noise control
Data reduction
Social decision
Dimension reduction
Monetary market
Heuristic method
Foreign currency
Prediction market
Algorithm analysis
Press
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-dc16b974ceafd584df2fa928f596bee72a6eeb4020e69d3f4cfea79b33f89d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651398287
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1651398287
pascalfrancis_primary_28843403
crossref_primary_10_1016_j_eswa_2014_08_004
crossref_citationtrail_10_1016_j_eswa_2014_08_004
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_08_004
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jin, Self, Saraf, Butler, Wang, Ramakrishnan (b0165) 2013
Peramunetilleke, Wong (b0255) 2002; 24
Bahrepour, Akbarzadeh, Yaghoobi, Naghibi (b0020) 2011; 38
Khadjeh Nassirtoussi, Aghabozorgi, Ying Wah, Ngo (b0175) 2014; 41
(pp. 395–402).
Das, Chen (b0075) 2007; 53
Lupiani-Ruiz, García-Manotas, Valencia-García, García-Sánchez, Castellanos-Nieves, Fernández-Breis (b0215) 2011; 38
Taşcı, Güngör (b0320) 2013; 40
Evans, Lyons (b0090) 2008; 88
Cortes, Vapnik (b0070) 1995; 20
Moraes, Vasconcelos, Prado, Almeida, Gonçalves (b0240) 2013
Shi, He, Liu, Zhang, Song (b0305) 2011; 18
Soni, A., van Eck, N. J., & Kaymak, U. (2007). Prediction of stock price movements based on concept map information. In
Vu, Chang, Ha, Collier (b0345) 2012
Khadjeh Nassirtoussi, Ying Wah, Ngo Chek Ling (b0180) 2011; 5
Mabu, Hirasawa, Obayashi, Kuremoto (b0220) 2013; 40
Groth, Muntermann (b0125) 2011; 50
Mittermayer, M. A. (2004). Forecasting intraday stock price trends with text mining techniques. In
Reboredo, Rivera-Castro, Miranda, García-Rubio (b0280) 2013; 392
Zhai, Hsu, Halgamuge (b0370) 2007
Chatrath, Miao, Ramchander, Villupuram (b0050) 2014; 40
Li (b0195) 2010; 48
Pestov (b0260) 2013; 65
Mahajan, A., Dey, L., & Haque, S. M. (2008). Mining financial news for major events and their impacts on the market. In
Cambria, Schuller, Yunqing, Havasi (b0045) 2013; 28
Mostafa (b0245) 2013; 40
Sermpinis, Laws, Karathanasopoulos, Dunis (b0295) 2012; 39
Butler, Kešelj (b0040) 2009; Vol. 5549
Chordia, Roll, Subrahmanyam (b0065) 2005; 76
Ikeda, Hattori, Ono, Asoh, Higashino (b0150) 2013; 51
.
Feng, Guo, Jing, Hao (b0100) 2012; 48
Huang, Liao, Yang, Chang, Luo (b0145) 2010; 37
(pp. 205–211).
Chordia, Goyal, Lehmann, Saar (b0060) 2013; 16
Li, Yang, Park (b0200) 2012; 39
Premanode, Toumazou (b0265) 2013; 40
Lugmayr, A., & Gossen, G. (2012). Evaluation of methods and techniques for language based sentiment analysis for DAX 30 stock exchange – a first concept of a “LUGO” sentiment indicator. In Lugmayr, A., Risse, T., Stockleben, B., Kaario, J., Pogorelc, B., & Serral Asensio, E. (Eds.).
Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998). Daily stock market forecast from textual web data. In
Hagenau, Liebmann, Neumann (b0135) 2013; 55
(p. 10).
Rachlin, G., Last, M., Alberg, D., & Kandel, A. (2007). ADMIRAL: A data mining based financial trading system. In
Vanstone, Finnie (b0340) 2010; 37
(pp. 417–422).
(Vol. 1, pp. 423–426).
Garcke, Gerstner, Griebel (b0110) 2013; Vol. 88
Miller (b0230) 1995; 38
Ghiassi, Skinner, Zimbra (b0120) 2013; 40
Schumaker, Chen (b0285) 2009; 27
Jeong, Myaeng (b0155) 2013; Vol. 7814
Jiang, Pang, Wu, Kuang (b0160) 2012; 39
Schumaker, Zhang, Huang, Chen (b0290) 2012; 53
Kim (b0185) 2003; 55
Aghdam, Ghasem-Aghaee, Basiri (b0005) 2009; 36
Sermpinis, Theofilatos, Karathanasopoulos, Georgopoulos, Dunis (b0300) 2013; 225
Fasanghari, Montazer (b0095) 2010; 37
Yu, Nartea, Gan, Yao (b0365) 2013; 25
Yu, Duan, Cao (b0360) 2013
Tan, Wang, Wu (b0315) 2011; 38
Desmet, Hoste (b0080) 2013; 40
Kaltwasser (b0170) 2010; 389
Nizer, Nievola (b0250) 2012; 39
Berka, Vajteršic (b0025) 2013; 73
Zhang (b0375) 2011
Pui Cheong Fung, G., Xu Yu, J., & Wai, L. (2003). Stock prediction: Integrating text mining approach using real-time news. In
Tay, Cao (b0325) 2001; 29
(Vols. 3 and 2723, pp. 2720–2725).
Anastasakis, Mort (b0010) 2009; 36
Kontopoulos, Berberidis, Dergiades, Bassiliades (b0190) 2013; 40
Huang, Chuang, Wu, Lai (b0140) 2010; 37
Fung, Yu, Lam (b0105) 2002; Vol. 2336
Uysal, Gunal (b0335) 2014; 50
Werner, Myrray (b0350) 2004
Luo, Chen, Xiong (b0210) 2011; 38
(pp. 720–725).
Esuli, A., & Sebastiani, F. (2006). SENTIWORDNET: A publicly available lexical resource for opinion mining. In
Baccianella, Sebastiani (b0015) 2010
Günal, Ergin, Gülmezoğlu, Gerek (b0130) 2006; Vol. 4105
Tetlock, Saar-Tsechansky, Macskassy (b0330) 2008; 63
Bollen, Huina (b0030) 2011; 44
Ghazali, Hussain, Liatsis (b0115) 2011; 38
Chen, Huang, Tian, Qu (b0055) 2009; 36
Bollen, Huina, Zeng (b0035) 2010; 2
Li (10.1016/j.eswa.2014.08.004_b0195) 2010; 48
Vu (10.1016/j.eswa.2014.08.004_b0345) 2012
Baccianella (10.1016/j.eswa.2014.08.004_b0015) 2010
Nizer (10.1016/j.eswa.2014.08.004_b0250) 2012; 39
Groth (10.1016/j.eswa.2014.08.004_b0125) 2011; 50
Anastasakis (10.1016/j.eswa.2014.08.004_b0010) 2009; 36
Khadjeh Nassirtoussi (10.1016/j.eswa.2014.08.004_b0175) 2014; 41
Peramunetilleke (10.1016/j.eswa.2014.08.004_b0255) 2002; 24
Taşcı (10.1016/j.eswa.2014.08.004_b0320) 2013; 40
Feng (10.1016/j.eswa.2014.08.004_b0100) 2012; 48
Reboredo (10.1016/j.eswa.2014.08.004_b0280) 2013; 392
Aghdam (10.1016/j.eswa.2014.08.004_b0005) 2009; 36
Bahrepour (10.1016/j.eswa.2014.08.004_b0020) 2011; 38
Cambria (10.1016/j.eswa.2014.08.004_b0045) 2013; 28
10.1016/j.eswa.2014.08.004_b0270
Werner (10.1016/j.eswa.2014.08.004_b0350) 2004
Chordia (10.1016/j.eswa.2014.08.004_b0065) 2005; 76
Desmet (10.1016/j.eswa.2014.08.004_b0080) 2013; 40
Jin (10.1016/j.eswa.2014.08.004_b0165) 2013
Kim (10.1016/j.eswa.2014.08.004_b0185) 2003; 55
Chatrath (10.1016/j.eswa.2014.08.004_b0050) 2014; 40
10.1016/j.eswa.2014.08.004_b0235
10.1016/j.eswa.2014.08.004_b0310
Vanstone (10.1016/j.eswa.2014.08.004_b0340) 2010; 37
Yu (10.1016/j.eswa.2014.08.004_b0360) 2013
10.1016/j.eswa.2014.08.004_b0355
10.1016/j.eswa.2014.08.004_b0275
Schumaker (10.1016/j.eswa.2014.08.004_b0285) 2009; 27
Ikeda (10.1016/j.eswa.2014.08.004_b0150) 2013; 51
Berka (10.1016/j.eswa.2014.08.004_b0025) 2013; 73
Zhai (10.1016/j.eswa.2014.08.004_b0370) 2007
Butler (10.1016/j.eswa.2014.08.004_b0040) 2009; Vol. 5549
Moraes (10.1016/j.eswa.2014.08.004_b0240) 2013
Sermpinis (10.1016/j.eswa.2014.08.004_b0295) 2012; 39
Pestov (10.1016/j.eswa.2014.08.004_b0260) 2013; 65
Luo (10.1016/j.eswa.2014.08.004_b0210) 2011; 38
Huang (10.1016/j.eswa.2014.08.004_b0145) 2010; 37
Tetlock (10.1016/j.eswa.2014.08.004_b0330) 2008; 63
Ghiassi (10.1016/j.eswa.2014.08.004_b0120) 2013; 40
10.1016/j.eswa.2014.08.004_b0225
Lupiani-Ruiz (10.1016/j.eswa.2014.08.004_b0215) 2011; 38
Li (10.1016/j.eswa.2014.08.004_b0200) 2012; 39
Miller (10.1016/j.eswa.2014.08.004_b0230) 1995; 38
Tan (10.1016/j.eswa.2014.08.004_b0315) 2011; 38
Premanode (10.1016/j.eswa.2014.08.004_b0265) 2013; 40
Uysal (10.1016/j.eswa.2014.08.004_b0335) 2014; 50
Garcke (10.1016/j.eswa.2014.08.004_b0110) 2013; Vol. 88
Shi (10.1016/j.eswa.2014.08.004_b0305) 2011; 18
Evans (10.1016/j.eswa.2014.08.004_b0090) 2008; 88
Hagenau (10.1016/j.eswa.2014.08.004_b0135) 2013; 55
Sermpinis (10.1016/j.eswa.2014.08.004_b0300) 2013; 225
Kontopoulos (10.1016/j.eswa.2014.08.004_b0190) 2013; 40
Ghazali (10.1016/j.eswa.2014.08.004_b0115) 2011; 38
Mostafa (10.1016/j.eswa.2014.08.004_b0245) 2013; 40
Bollen (10.1016/j.eswa.2014.08.004_b0030) 2011; 44
Zhang (10.1016/j.eswa.2014.08.004_b0375) 2011
Chen (10.1016/j.eswa.2014.08.004_b0055) 2009; 36
Cortes (10.1016/j.eswa.2014.08.004_b0070) 1995; 20
Mabu (10.1016/j.eswa.2014.08.004_b0220) 2013; 40
Jiang (10.1016/j.eswa.2014.08.004_b0160) 2012; 39
Chordia (10.1016/j.eswa.2014.08.004_b0060) 2013; 16
Kaltwasser (10.1016/j.eswa.2014.08.004_b0170) 2010; 389
Khadjeh Nassirtoussi (10.1016/j.eswa.2014.08.004_b0180) 2011; 5
Jeong (10.1016/j.eswa.2014.08.004_b0155) 2013; Vol. 7814
Schumaker (10.1016/j.eswa.2014.08.004_b0290) 2012; 53
Yu (10.1016/j.eswa.2014.08.004_b0365) 2013; 25
10.1016/j.eswa.2014.08.004_b0085
Das (10.1016/j.eswa.2014.08.004_b0075) 2007; 53
Günal (10.1016/j.eswa.2014.08.004_b0130) 2006; Vol. 4105
Bollen (10.1016/j.eswa.2014.08.004_b0035) 2010; 2
Huang (10.1016/j.eswa.2014.08.004_b0140) 2010; 37
10.1016/j.eswa.2014.08.004_b0205
Fasanghari (10.1016/j.eswa.2014.08.004_b0095) 2010; 37
Fung (10.1016/j.eswa.2014.08.004_b0105) 2002; Vol. 2336
Tay (10.1016/j.eswa.2014.08.004_b0325) 2001; 29
References_xml – volume: 76
  start-page: 271
  year: 2005
  end-page: 292
  ident: b0065
  article-title: Evidence on the speed of convergence to market efficiency
  publication-title: Journal of Financial Economics
– volume: 48
  start-page: 283
  year: 2012
  end-page: 302
  ident: b0100
  article-title: A Bayesian feature selection paradigm for text classification
  publication-title: Information Processing & Management
– reference: (pp. 720–725).
– reference: (pp. 395–402).
– start-page: 1087
  year: 2007
  end-page: 1096
  ident: b0370
  article-title: Combining news and technical indicators in daily stock price trends prediction
  publication-title: Proceedings of the fourth international symposium on neural networks: advances in neural networks, Part III
– volume: 40
  start-page: 42
  year: 2014
  end-page: 62
  ident: b0050
  article-title: Currency jumps, cojumps and the role of macro news
  publication-title: Journal of International Money and Finance
– volume: 48
  start-page: 1049
  year: 2010
  end-page: 1102
  ident: b0195
  article-title: The information content of forward-looking statements in corporate filings—a Naïve Bayesian machine learning approach
  publication-title: Journal of Accounting Research
– start-page: 23
  year: 2012
  end-page: 38
  ident: b0345
  article-title: An experiment in integrating sentiment features for tech stock prediction in twitter
  publication-title: Proceedings of the workshop on information extraction and entity analytics on social media data
– volume: 73
  start-page: 341
  year: 2013
  end-page: 351
  ident: b0025
  article-title: Parallel rare term vector replacement: Fast and effective dimensionality reduction for text
  publication-title: Journal of Parallel and Distributed Computing
– reference: (Vols. 3 and 2723, pp. 2720–2725).
– volume: 51
  start-page: 35
  year: 2013
  end-page: 47
  ident: b0150
  article-title: Twitter user profiling based on text and community mining for market analysis
  publication-title: Knowledge-Based Systems
– reference: (p. 10).
– volume: 53
  start-page: 1375
  year: 2007
  end-page: 1388
  ident: b0075
  article-title: Yahoo! for Amazon: Sentiment extraction from small talk on the web
  publication-title: Management Science
– reference: Pui Cheong Fung, G., Xu Yu, J., & Wai, L. (2003). Stock prediction: Integrating text mining approach using real-time news. In
– volume: 38
  start-page: 39
  year: 1995
  end-page: 41
  ident: b0230
  article-title: WordNet: A lexical database for English
  publication-title: Communications of the ACM
– volume: 27
  start-page: 1
  year: 2009
  end-page: 19
  ident: b0285
  article-title: Textual analysis of stock market prediction using breaking financial news: The AZF in text system
  publication-title: ACM Transactions on Information Systems
– volume: 40
  start-page: 4241
  year: 2013
  end-page: 4251
  ident: b0245
  article-title: More than words: Social networks’ text mining for consumer brand sentiments
  publication-title: Expert Systems with Applications
– start-page: 1470
  year: 2013
  end-page: 1473
  ident: b0165
  article-title: Forex-foreteller: Currency trend modeling using news articles
  publication-title: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 53
  start-page: 458
  year: 2012
  end-page: 464
  ident: b0290
  article-title: Evaluating sentiment in financial news articles
  publication-title: Decision Support Systems
– reference: Soni, A., van Eck, N. J., & Kaymak, U. (2007). Prediction of stock price movements based on concept map information. In
– volume: 38
  start-page: 10264
  year: 2011
  end-page: 10273
  ident: b0315
  article-title: Adapting centroid classifier for document categorization
  publication-title: Expert Systems with Applications
– volume: Vol. 2336
  start-page: 481
  year: 2002
  end-page: 493
  ident: b0105
  article-title: News sensitive stock trend prediction
  publication-title: Advances in knowledge discovery and data mining
– volume: 50
  start-page: 680
  year: 2011
  end-page: 691
  ident: b0125
  article-title: An intraday market risk management approach based on textual analysis
  publication-title: Decision Support Systems
– reference: Mahajan, A., Dey, L., & Haque, S. M. (2008). Mining financial news for major events and their impacts on the market. In
– volume: 37
  start-page: 6138
  year: 2010
  end-page: 6147
  ident: b0095
  article-title: Design and implementation of fuzzy expert system for Tehran stock exchange portfolio recommendation
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 12001
  year: 2009
  end-page: 12011
  ident: b0010
  article-title: Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 475
  year: 2011
  end-page: 485
  ident: b0020
  article-title: An adaptive ordered fuzzy time series with application to FOREX
  publication-title: Expert Systems with Applications
– year: 2013
  ident: b0360
  article-title: The impact of social and conventional media on firm equity value: A sentiment analysis approach
  publication-title: Decision Support Systems
– volume: 36
  start-page: 6843
  year: 2009
  end-page: 6853
  ident: b0005
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 4065
  year: 2013
  end-page: 4074
  ident: b0190
  article-title: Ontology-based sentiment analysis of twitter posts
  publication-title: Expert Systems with Applications
– start-page: 1259
  year: 2004
  end-page: 1294
  ident: b0350
  article-title: Is all that talk just noise ? The information content of internet stock message boards
  publication-title: Journal of Finance
– volume: 55
  start-page: 685
  year: 2013
  end-page: 697
  ident: b0135
  article-title: Automated news reading: Stock price prediction based on financial news using context-capturing features
  publication-title: Decision Support Systems
– volume: 65
  start-page: 1427
  year: 2013
  end-page: 1437
  ident: b0260
  article-title: Is the NN classifier in high dimensions affected by the curse of dimensionality?
  publication-title: Computers & Mathematics with Applications
– volume: 225
  start-page: 528
  year: 2013
  end-page: 540
  ident: b0300
  article-title: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization
  publication-title: European Journal of Operational Research
– volume: 36
  start-page: 5432
  year: 2009
  end-page: 5435
  ident: b0055
  article-title: Feature selection for text classification with Naïve Bayes
  publication-title: Expert Systems with Applications
– volume: Vol. 5549
  start-page: 39
  year: 2009
  end-page: 51
  ident: b0040
  article-title: Financial forecasting using character N-gram analysis and readability scores of annual reports
  publication-title: Advances in artificial intelligence
– volume: 392
  start-page: 1631
  year: 2013
  end-page: 1637
  ident: b0280
  article-title: How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 39
  start-page: 8865
  year: 2012
  end-page: 8877
  ident: b0295
  article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and psi sigma neural networks
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 6602
  year: 2010
  end-page: 6610
  ident: b0340
  article-title: Enhancing stockmarket trading performance with ANNs
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 8322
  year: 2011
  end-page: 8330
  ident: b0180
  article-title: A novel FOREX prediction methodology based on fundamental data
  publication-title: African Journal of Business Management
– reference: Rachlin, G., Last, M., Alberg, D., & Kandel, A. (2007). ADMIRAL: A data mining based financial trading system. In
– year: 2010
  ident: b0015
  article-title: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
  publication-title: Proceedings of the seventh conference on international language resources and evaluation LREC’10
– volume: 39
  start-page: 1503
  year: 2012
  end-page: 1509
  ident: b0160
  article-title: An improved K-nearest-neighbor algorithm for text categorization
  publication-title: Expert Systems with Applications
– reference: Esuli, A., & Sebastiani, F. (2006). SENTIWORDNET: A publicly available lexical resource for opinion mining. In
– reference: (pp. 417–422).
– volume: 37
  start-page: 6409
  year: 2010
  end-page: 6413
  ident: b0145
  article-title: Realization of a news dissemination agent based on weighted association rules and text mining techniques
  publication-title: Expert Systems with Applications
– volume: 50
  start-page: 104
  year: 2014
  end-page: 112
  ident: b0335
  article-title: The impact of preprocessing on text classification
  publication-title: Information Processing & Management
– year: 2011
  ident: b0375
  article-title: News based forecasting and modeling
– volume: 38
  start-page: 12708
  year: 2011
  end-page: 12716
  ident: b0210
  article-title: A semantic term weighting scheme for text categorization
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 131
  year: 2002
  end-page: 139
  ident: b0255
  article-title: Currency exchange rate forecasting from news headlines
  publication-title: Australian Computer Science Communications
– volume: 40
  start-page: 6351
  year: 2013
  end-page: 6358
  ident: b0080
  article-title: Emotion detection in suicide notes
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 309
  year: 2001
  end-page: 317
  ident: b0325
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: Omega
– volume: 28
  start-page: 15
  year: 2013
  end-page: 21
  ident: b0045
  article-title: New avenues in opinion mining and sentiment analysis
  publication-title: IEEE Intelligent Systems
– volume: Vol. 7814
  start-page: 267
  year: 2013
  end-page: 278
  ident: b0155
  article-title: Using WordNet hypernyms and dependency features for phrasal-level event recognition and type classification
  publication-title: Advances in information retrieval
– volume: 39
  start-page: 10674
  year: 2012
  end-page: 10680
  ident: b0250
  article-title: Predicting published news effect in the Brazilian stock market
  publication-title: Expert Systems with Applications
– reference: Lugmayr, A., & Gossen, G. (2012). Evaluation of methods and techniques for language based sentiment analysis for DAX 30 stock exchange – a first concept of a “LUGO” sentiment indicator. In Lugmayr, A., Risse, T., Stockleben, B., Kaario, J., Pogorelc, B., & Serral Asensio, E. (Eds.).
– volume: 40
  start-page: 377
  year: 2013
  end-page: 384
  ident: b0265
  article-title: Improving prediction of exchange rates using differential EMD
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 131
  year: 2011
  end-page: 135
  ident: b0305
  article-title: Efficient text classification method based on improved term reduction and term weighting
  publication-title: The Journal of China Universities of Posts and Telecommunications
– volume: 40
  start-page: 4871
  year: 2013
  end-page: 4886
  ident: b0320
  article-title: Comparison of text feature selection policies and using an adaptive framework
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 3765
  year: 2011
  end-page: 3776
  ident: b0115
  article-title: Dynamic ridge polynomial neural network: Forecasting the univariate non-stationary and stationary trading signals
  publication-title: Expert Systems with Applications
– volume: Vol. 4105
  start-page: 635
  year: 2006
  end-page: 642
  ident: b0130
  article-title: On feature extraction for spam e-mail detection
  publication-title: Multimedia content representation, classification and security
– volume: 63
  start-page: 1437
  year: 2008
  end-page: 1467
  ident: b0330
  article-title: More than words: Quantifying language to measure firms’ fundamentals
  publication-title: The Journal of Finance
– volume: 389
  start-page: 1215
  year: 2010
  end-page: 1222
  ident: b0170
  article-title: Uncertainty about fundamentals and herding behavior in the FOREX market
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 40
  start-page: 6311
  year: 2013
  end-page: 6320
  ident: b0220
  article-title: Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals
  publication-title: Expert Systems with Applications
– reference: Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998). Daily stock market forecast from textual web data. In
– volume: 2
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0035
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computational Science
– volume: 39
  start-page: 765
  year: 2012
  end-page: 772
  ident: b0200
  article-title: Text categorization algorithms using semantic approaches, corpus-based thesaurus and WordNet
  publication-title: Expert Systems with Applications
– volume: Vol. 88
  start-page: 81
  year: 2013
  end-page: 105
  ident: b0110
  article-title: Intraday foreign exchange rate forecasting using sparse grids
  publication-title: Sparse grids and applications
– volume: 55
  start-page: 307
  year: 2003
  end-page: 319
  ident: b0185
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
– volume: 41
  start-page: 7653
  year: 2014
  end-page: 7670
  ident: b0175
  article-title: Text mining for market prediction: A systematic review
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 6266
  year: 2013
  end-page: 6282
  ident: b0120
  article-title: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network
  publication-title: Expert Systems with Applications
– reference: Mittermayer, M. A. (2004). Forecasting intraday stock price trends with text mining techniques. In
– start-page: 113
  year: 2013
  end-page: 120
  ident: b0240
  article-title: Polarity analysis of micro reviews in foursquare
  publication-title: Proceedings of the 19th Brazilian symposium on multimedia and the web
– volume: 16
  start-page: 637
  year: 2013
  end-page: 645
  ident: b0060
  article-title: High-frequency trading
  publication-title: Journal of Financial Markets
– volume: 44
  start-page: 91
  year: 2011
  end-page: 94
  ident: b0030
  article-title: Twitter mood as a stock market predictor
  publication-title: Computer
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0070
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 38
  start-page: 15565
  year: 2011
  end-page: 15572
  ident: b0215
  article-title: Financial news semantic search engine
  publication-title: Expert Systems with Applications
– reference: (pp. 205–211).
– reference: .
– volume: 37
  start-page: 8590
  year: 2010
  end-page: 8598
  ident: b0140
  article-title: Chaos-based support vector regressions for exchange rate forecasting
  publication-title: Expert Systems with Applications
– volume: 88
  start-page: 26
  year: 2008
  end-page: 50
  ident: b0090
  article-title: How is macro news transmitted to exchange rates?
  publication-title: Journal of Financial Economics
– reference: (Vol. 1, pp. 423–426).
– volume: 25
  start-page: 356
  year: 2013
  end-page: 371
  ident: b0365
  article-title: Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets
  publication-title: International Review of Economics & Finance
– volume: 38
  start-page: 3765
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0115
  article-title: Dynamic ridge polynomial neural network: Forecasting the univariate non-stationary and stationary trading signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.037
– volume: 25
  start-page: 356
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0365
  article-title: Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets
  publication-title: International Review of Economics & Finance
  doi: 10.1016/j.iref.2012.07.016
– ident: 10.1016/j.eswa.2014.08.004_b0310
  doi: 10.1109/MCDM.2007.369438
– volume: 37
  start-page: 8590
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0140
  article-title: Chaos-based support vector regressions for exchange rate forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.001
– start-page: 113
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0240
  article-title: Polarity analysis of micro reviews in foursquare
– volume: Vol. 2336
  start-page: 481
  year: 2002
  ident: 10.1016/j.eswa.2014.08.004_b0105
– volume: Vol. 5549
  start-page: 39
  year: 2009
  ident: 10.1016/j.eswa.2014.08.004_b0040
  article-title: Financial forecasting using character N-gram analysis and readability scores of annual reports
– volume: 41
  start-page: 7653
  year: 2014
  ident: 10.1016/j.eswa.2014.08.004_b0175
  article-title: Text mining for market prediction: A systematic review
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.06.009
– volume: 38
  start-page: 10264
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0315
  article-title: Adapting centroid classifier for document categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.114
– volume: 65
  start-page: 1427
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0260
  article-title: Is the NN classifier in high dimensions affected by the curse of dimensionality?
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2012.09.011
– start-page: 1087
  year: 2007
  ident: 10.1016/j.eswa.2014.08.004_b0370
  article-title: Combining news and technical indicators in daily stock price trends prediction
– year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0015
  article-title: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
– volume: 24
  start-page: 131
  year: 2002
  ident: 10.1016/j.eswa.2014.08.004_b0255
  article-title: Currency exchange rate forecasting from news headlines
  publication-title: Australian Computer Science Communications
– volume: 18
  start-page: 131
  issue: Suppl. 1
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0305
  article-title: Efficient text classification method based on improved term reduction and term weighting
  publication-title: The Journal of China Universities of Posts and Telecommunications
  doi: 10.1016/S1005-8885(10)60196-3
– ident: 10.1016/j.eswa.2014.08.004_b0085
– volume: 27
  start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.08.004_b0285
  article-title: Textual analysis of stock market prediction using breaking financial news: The AZF in text system
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/1462198.1462204
– volume: 5
  start-page: 8322
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0180
  article-title: A novel FOREX prediction methodology based on fundamental data
  publication-title: African Journal of Business Management
– volume: 38
  start-page: 12708
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0210
  article-title: A semantic term weighting scheme for text categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.04.058
– ident: 10.1016/j.eswa.2014.08.004_b0235
  doi: 10.1109/HICSS.2004.1265201
– start-page: 23
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0345
  article-title: An experiment in integrating sentiment features for tech stock prediction in twitter
– ident: 10.1016/j.eswa.2014.08.004_b0270
  doi: 10.1109/CIFER.2003.1196287
– volume: 38
  start-page: 475
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0020
  article-title: An adaptive ordered fuzzy time series with application to FOREX
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.087
– volume: 50
  start-page: 104
  year: 2014
  ident: 10.1016/j.eswa.2014.08.004_b0335
  article-title: The impact of preprocessing on text classification
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2013.08.006
– volume: 73
  start-page: 341
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0025
  article-title: Parallel rare term vector replacement: Fast and effective dimensionality reduction for text
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2012.08.008
– volume: 39
  start-page: 10674
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0250
  article-title: Predicting published news effect in the Brazilian stock market
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.162
– volume: 88
  start-page: 26
  year: 2008
  ident: 10.1016/j.eswa.2014.08.004_b0090
  article-title: How is macro news transmitted to exchange rates?
  publication-title: Journal of Financial Economics
  doi: 10.1016/j.jfineco.2007.06.001
– volume: 44
  start-page: 91
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0030
  article-title: Twitter mood as a stock market predictor
  publication-title: Computer
  doi: 10.1109/MC.2011.323
– volume: 37
  start-page: 6138
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0095
  article-title: Design and implementation of fuzzy expert system for Tehran stock exchange portfolio recommendation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.02.114
– volume: 225
  start-page: 528
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0300
  article-title: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.10.020
– volume: 2
  start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0035
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2010.12.007
– volume: 40
  start-page: 42
  year: 2014
  ident: 10.1016/j.eswa.2014.08.004_b0050
  article-title: Currency jumps, cojumps and the role of macro news
  publication-title: Journal of International Money and Finance
  doi: 10.1016/j.jimonfin.2013.08.018
– volume: 55
  start-page: 307
  year: 2003
  ident: 10.1016/j.eswa.2014.08.004_b0185
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00372-2
– volume: 76
  start-page: 271
  year: 2005
  ident: 10.1016/j.eswa.2014.08.004_b0065
  article-title: Evidence on the speed of convergence to market efficiency
  publication-title: Journal of Financial Economics
  doi: 10.1016/j.jfineco.2004.06.004
– volume: 40
  start-page: 6311
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0220
  article-title: Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.037
– ident: 10.1016/j.eswa.2014.08.004_b0205
– volume: 40
  start-page: 4871
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0320
  article-title: Comparison of text feature selection policies and using an adaptive framework
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.02.019
– volume: 40
  start-page: 6266
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0120
  article-title: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.057
– year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0360
  article-title: The impact of social and conventional media on firm equity value: A sentiment analysis approach
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2012.12.028
– volume: Vol. 4105
  start-page: 635
  year: 2006
  ident: 10.1016/j.eswa.2014.08.004_b0130
  article-title: On feature extraction for spam e-mail detection
– start-page: 1470
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0165
  article-title: Forex-foreteller: Currency trend modeling using news articles
– ident: 10.1016/j.eswa.2014.08.004_b0275
  doi: 10.1109/CIDM.2007.368947
– volume: 48
  start-page: 283
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0100
  article-title: A Bayesian feature selection paradigm for text classification
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2011.08.002
– volume: 51
  start-page: 35
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0150
  article-title: Twitter user profiling based on text and community mining for market analysis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.06.020
– ident: 10.1016/j.eswa.2014.08.004_b0355
  doi: 10.1109/ICSMC.1998.725072
– volume: 38
  start-page: 39
  year: 1995
  ident: 10.1016/j.eswa.2014.08.004_b0230
  article-title: WordNet: A lexical database for English
  publication-title: Communications of the ACM
  doi: 10.1145/219717.219748
– volume: Vol. 7814
  start-page: 267
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0155
  article-title: Using WordNet hypernyms and dependency features for phrasal-level event recognition and type classification
– volume: 29
  start-page: 309
  year: 2001
  ident: 10.1016/j.eswa.2014.08.004_b0325
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: Omega
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 37
  start-page: 6409
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0145
  article-title: Realization of a news dissemination agent based on weighted association rules and text mining techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.02.078
– volume: 39
  start-page: 1503
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0160
  article-title: An improved K-nearest-neighbor algorithm for text categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.040
– year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0375
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.eswa.2014.08.004_b0070
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 28
  start-page: 15
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0045
  article-title: New avenues in opinion mining and sentiment analysis
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2013.30
– volume: 40
  start-page: 6351
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0080
  article-title: Emotion detection in suicide notes
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.050
– volume: Vol. 88
  start-page: 81
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0110
  article-title: Intraday foreign exchange rate forecasting using sparse grids
– volume: 48
  start-page: 1049
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0195
  article-title: The information content of forward-looking statements in corporate filings—a Naïve Bayesian machine learning approach
  publication-title: Journal of Accounting Research
  doi: 10.1111/j.1475-679X.2010.00382.x
– volume: 63
  start-page: 1437
  year: 2008
  ident: 10.1016/j.eswa.2014.08.004_b0330
  article-title: More than words: Quantifying language to measure firms’ fundamentals
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2008.01362.x
– volume: 50
  start-page: 680
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0125
  article-title: An intraday market risk management approach based on textual analysis
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.08.019
– volume: 40
  start-page: 4241
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0245
  article-title: More than words: Social networks’ text mining for consumer brand sentiments
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.01.019
– volume: 36
  start-page: 6843
  year: 2009
  ident: 10.1016/j.eswa.2014.08.004_b0005
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.08.022
– volume: 389
  start-page: 1215
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0170
  article-title: Uncertainty about fundamentals and herding behavior in the FOREX market
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2009.11.012
– volume: 38
  start-page: 15565
  year: 2011
  ident: 10.1016/j.eswa.2014.08.004_b0215
  article-title: Financial news semantic search engine
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.003
– ident: 10.1016/j.eswa.2014.08.004_b0225
  doi: 10.1109/WIIAT.2008.309
– volume: 53
  start-page: 1375
  year: 2007
  ident: 10.1016/j.eswa.2014.08.004_b0075
  article-title: Yahoo! for Amazon: Sentiment extraction from small talk on the web
  publication-title: Management Science
  doi: 10.1287/mnsc.1070.0704
– volume: 36
  start-page: 12001
  year: 2009
  ident: 10.1016/j.eswa.2014.08.004_b0010
  article-title: Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.03.057
– volume: 392
  start-page: 1631
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0280
  article-title: How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2012.11.038
– volume: 53
  start-page: 458
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0290
  article-title: Evaluating sentiment in financial news articles
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2012.03.001
– volume: 39
  start-page: 8865
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0295
  article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and psi sigma neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.022
– volume: 16
  start-page: 637
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0060
  article-title: High-frequency trading
  publication-title: Journal of Financial Markets
  doi: 10.1016/j.finmar.2013.06.004
– volume: 40
  start-page: 377
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0265
  article-title: Improving prediction of exchange rates using differential EMD
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.07.048
– start-page: 1259
  year: 2004
  ident: 10.1016/j.eswa.2014.08.004_b0350
  article-title: Is all that talk just noise ? The information content of internet stock message boards
  publication-title: Journal of Finance
– volume: 39
  start-page: 765
  year: 2012
  ident: 10.1016/j.eswa.2014.08.004_b0200
  article-title: Text categorization algorithms using semantic approaches, corpus-based thesaurus and WordNet
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.070
– volume: 40
  start-page: 4065
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0190
  article-title: Ontology-based sentiment analysis of twitter posts
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.01.001
– volume: 37
  start-page: 6602
  year: 2010
  ident: 10.1016/j.eswa.2014.08.004_b0340
  article-title: Enhancing stockmarket trading performance with ANNs
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.02.124
– volume: 55
  start-page: 685
  year: 2013
  ident: 10.1016/j.eswa.2014.08.004_b0135
  article-title: Automated news reading: Stock price prediction based on financial news using context-capturing features
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2013.02.006
– volume: 36
  start-page: 5432
  year: 2009
  ident: 10.1016/j.eswa.2014.08.004_b0055
  article-title: Feature selection for text classification with Naïve Bayes
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.054
SSID ssj0017007
Score 2.5682294
Snippet •FOREX prediction through text mining of news is viable and effective.•Feature-selection by abstraction of word-hypernyms increases prediction...
In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Breaking
Computer science; control theory; systems
Decision theory. Utility theory
Exact sciences and technology
Exchange
Expert systems
FOREX prediction
Information systems. Data bases
Market prediction
Market sentiment analysis
Markets
Memory organisation. Data processing
Multilayers
News mining
News semantic analysis
Operational research and scientific management
Operational research. Management science
Portfolio theory
Semantics
Software
Speech and sound recognition and synthesis. Linguistics
Texts
Title Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment
URI https://dx.doi.org/10.1016/j.eswa.2014.08.004
https://www.proquest.com/docview/1651398287
Volume 42
WOSCitedRecordID wos000344034300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQckxBtRHtUicbOMYnvjBzerhKQtJChKReBi2d5dSJQ4UZKW3vl7_ChmvA-SRhQ4cEmildeO9H2enZ2d-YaQl37ZlCKMW24g8ZiRJbkbF0y63A8Fj4TwWrxG-l3U68WjUfKh0fhhamEuplFVxZeXyeK_Qg1jADaWzv4D3PamMAC_AXT4BNjh8--AB3PrzOq-D3WWBlgxFywuR3-yFl9wYOPXHjmzut4ZRQL4uDQpHqlTV-S60xxccbCHM8xvn2OUnyuZWSedfpkvx-uvM53dLmaAjZF6xkqmsc2lmdg0P7Fca81oU023cW5uOTd4n_ac02765qTddXop2PnBsH8GX_aKDtia_uf-oHOsotlCl2Zh6AHmfMLQ28fUnn4dddunYJ5hsNfpb2fw60CHKvJUcTftJGwFLyOXeaq_j7HjzN_hqzLKQTPcWN8DVbO9s3SoKMbklVh9Qz0qj9XSrqo38rZO95X102Y1-nHMAobSs_t-BBu1PbKfHrdHJ_ZUK2qq8n3z73URl8o3vPrc3zlKtxb5Cl5fqfqu7LgQtV80vEtu6w0NTRUR75GGqO6TO3pzQ_XSsYIh0z_EjD0g35GqVFGVziXdpioFqtKaqlRRlf6i6mua0g2iUktUaolKLVEpMo5aolIgKrVEfUjO3raHR11XNwVxyyAM1i4vvbCATXApcsnBe-bSl3nix7KVhIUQkZ-HQhQYFRFhwgPJSinyKCmCQMYJ94vgEdmr5pV4TKhfMs6KJmoQRiwsWBFIHoMrJ_PCS8BiHRDPIJCVWjEfG7dMM5MaOckQtQxRy7CbaxPmOHbOQunFXHt1ywCbaY9XebIZsPLaeYdbLLCPMhQ8IC8MLTJYL_AQMK_E_HyVeWELNn3Y5uLJn27ylNzE91AFHJ-RvfXyXDwnN8qL9Xi1PNTk_gnKP-Sm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+mining+of+news-headlines+for+FOREX+market+prediction%3A+A+Multi-layer+Dimension+Reduction+Algorithm+with+semantics+and+sentiment&rft.jtitle=Expert+systems+with+applications&rft.au=ARMAN+KHADJEH+NASSIRTOUSSI&rft.au=AGHABOZORGI%2C+Saeed&rft.au=TEH+YING+WAH&rft.au=CHEK+LING+NGO%2C+David&rft.date=2015&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=42&rft.issue=1&rft.spage=306&rft.epage=324&rft_id=info:doi/10.1016%2Fj.eswa.2014.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=28843403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon