Linear Model and Gradient Feature Elimination Algorithm Based on Seasonal Decomposition for Time Series Forecasting

In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-make...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 13; číslo 5; s. 883
Hlavní autori: Cheng, Sheng-Tzong, Lyu, Ya-Jin, Lin, Yi-Hong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2025
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-makers’ trust. This study proposes a linear time series model architecture based on seasonal decomposition. The model effectively captures trends and seasonality using an additive decomposition, chosen based on initial data visualization, indicating stable seasonal variations. An augmented feature generator is introduced to enhance predictive performance by generating features such as differences, rolling statistics, and moving averages. Furthermore, we propose a gradient-based feature importance method to improve interpretability and implement a gradient feature elimination algorithm to reduce noise and enhance model accuracy. The approach is validated on multiple datasets, including order demand, energy load, and solar radiation, demonstrating its applicability to diverse time series forecasting tasks.
AbstractList In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-makers’ trust. This study proposes a linear time series model architecture based on seasonal decomposition. The model effectively captures trends and seasonality using an additive decomposition, chosen based on initial data visualization, indicating stable seasonal variations. An augmented feature generator is introduced to enhance predictive performance by generating features such as differences, rolling statistics, and moving averages. Furthermore, we propose a gradient-based feature importance method to improve interpretability and implement a gradient feature elimination algorithm to reduce noise and enhance model accuracy. The approach is validated on multiple datasets, including order demand, energy load, and solar radiation, demonstrating its applicability to diverse time series forecasting tasks.
Audience Academic
Author Cheng, Sheng-Tzong
Lin, Yi-Hong
Lyu, Ya-Jin
Author_xml – sequence: 1
  givenname: Sheng-Tzong
  orcidid: 0000-0003-3651-5260
  surname: Cheng
  fullname: Cheng, Sheng-Tzong
– sequence: 2
  givenname: Ya-Jin
  orcidid: 0009-0002-6404-8962
  surname: Lyu
  fullname: Lyu, Ya-Jin
– sequence: 3
  givenname: Yi-Hong
  surname: Lin
  fullname: Lin, Yi-Hong
BookMark eNpNUU1vGyEQXVWp1DTNrT8Aqdc65WN3gaObxmkkRzk0PaNZGBysXXABH_LvS-KqChx4evPmaYb3sTuLKWLXfWb0SghNvy1Qn5igA1VKvOvOOedyJVvh7A3-0F2WsqftaCZUr8-7sg0RIZP75HAmEB25zeACxko2CPWYkdzMYQkRakiRrOddyqE-LeQ7FHSkUb8QSoowkx9o03JIJbwqfcrkMSzY6jlgIZuU0UKpIe4-de89zAUv_70X3e_NzeP1z9X24fbuer1dWTGKunJq4lwB6tGOrrdU8UGPHhVoNomeIueorEIvudODdIMGi3SQfd979BNScdHdnXxdgr055LBAfjYJgnklUt4ZyDXYGQ0AQzGhnICOvRjZ5DTDnnE2CtaAbV5fTl6HnP4csVSzT8fc1i5GMDmK9ptyaKqrk2oHzTREn2oG267DJdiWlw-NXyvBBaVSvoz49dRgcyolo_8_JqPmJVbzNlbxFwqIl0I
Cites_doi 10.1198/jasa.2011.tm09771
10.1609/aaai.v32i1.11491
10.1145/3447548.3467166
10.3115/v1/D14-1179
10.1023/A:1012487302797
10.1155/2016/9717582
10.1609/aaai.v35i12.17325
10.1162/neco.1997.9.8.1735
10.1016/j.dib.2020.105340
10.1016/j.egypro.2011.03.231
10.1016/j.asoc.2018.01.017
10.1145/2939672.2939778
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math13050883
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_aa1e3be7ba064361bd91e41216311e4c
A832300770
10_3390_math13050883
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-d8b228ae96c6d4c082596fe8a91b340e22e8c8ef72d957d59ace057444fefbe03
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442507000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:51:59 EDT 2025
Fri Jul 25 11:49:26 EDT 2025
Tue Nov 04 18:14:56 EST 2025
Sat Nov 29 07:14:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d8b228ae96c6d4c082596fe8a91b340e22e8c8ef72d957d59ace057444fefbe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-6404-8962
0000-0003-3651-5260
OpenAccessLink https://doaj.org/article/aa1e3be7ba064361bd91e41216311e4c
PQID 3176338475
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_aa1e3be7ba064361bd91e41216311e4c
proquest_journals_3176338475
gale_infotracacademiconefile_A832300770
crossref_primary_10_3390_math13050883
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_18) 2018; 65
ref_14
Hong (ref_17) 2011; 5
ref_12
ref_1
Benvenuto (ref_9) 2020; 29
ref_3
ref_19
Vaswani (ref_4) 2017; 30
Guyon (ref_8) 2002; 46
Hochreiter (ref_2) 1997; 9
Jiao (ref_10) 2016; 2016
ref_16
ref_15
Lundberg (ref_5) 2017; 30
ref_7
Hyndman (ref_11) 2011; 106
Wu (ref_13) 2021; 34
ref_6
References_xml – volume: 34
  start-page: 22419
  year: 2021
  ident: ref_13
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 389
  year: 2017
  ident: ref_5
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 106
  start-page: 1513
  year: 2011
  ident: ref_11
  article-title: Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.tm09771
– ident: ref_19
  doi: 10.1609/aaai.v32i1.11491
– ident: ref_7
  doi: 10.1145/3447548.3467166
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_4
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_16
– ident: ref_15
– ident: ref_3
  doi: 10.3115/v1/D14-1179
– volume: 46
  start-page: 389
  year: 2002
  ident: ref_8
  article-title: Gene Selection for Cancer Classification using Support Vector Machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: ref_14
– volume: 2016
  start-page: 9717582
  year: 2016
  ident: ref_10
  article-title: Three revised Kalman filtering models for short-term rail transit passenger flow prediction
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2016/9717582
– ident: ref_1
– ident: ref_12
  doi: 10.1609/aaai.v35i12.17325
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_2
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 29
  start-page: 105340
  year: 2020
  ident: ref_9
  article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105340
– volume: 5
  start-page: 1333
  year: 2011
  ident: ref_17
  article-title: Decomposition and Forecast for Financial Time Series with High-frequency Based on Empirical Mode Decomposition
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.03.231
– volume: 65
  start-page: 478
  year: 2018
  ident: ref_18
  article-title: A novel decomposition-ensemble model for forecasting short-term load-time series with multiple seasonal patterns
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.017
– ident: ref_6
  doi: 10.1145/2939672.2939778
SSID ssj0000913849
Score 2.284469
Snippet In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 883
SubjectTerms Accuracy
Algorithms
Datasets
Decomposition
feature importance
feature selection
Forecasting
Industry 4.0
Neural networks
Noise control
Scientific visualization
Seasonal variations
Solar radiation
Time series
time series decomposition
time series forecasting
Trends
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKy4EeKJ_qloJ8AHGKmsSOE5_QtrRwgAqpIPVm-WPcVlp22yTt7--M17vAAS7cIieSLb3xzBtn_Iaxt77qYsBctggu1IXU0hXa1lAo5MZOQWwbm5D-0p6edufn-ls-cBtyWeXKJyZHHRaezsgPMM4pTKdk23y4vimoaxT9Xc0tNB6wLVJJqFLp3tn6jIU0Lzupl_XuArP7A2SBl-i1iZWIPyJREuz_m1tOseZk539X-YQ9ziyTT5dm8ZRtwPwZ2_66lmgdnrMBs1C0ck7N0GbczgP_1Kfyr5ETLbztgR_PUssvgo5PZxc4z3j5kx9i3Asch87AJh7PPwIVpufqL44smNPFEk4HbzBwav7p7UDl1S_Yj5Pj70efi9yBofBCibEInavrzoJWXgXpKZ3UKkJndeWELKGuofMdIloH3bSh0dYDEkApZYTooBQv2eZ8MYddxptYRhGhdaq1MrTKNVCSmJxrSx11FSfs3QoNc70U2jCYoBBq5nfUJuyQoFp_Q_LYaWDRX5i824y1FQiHk1liXKpyQVcg0USUqPDBT9h7AtrQJh57622-i4BLJTksM0U_J0jpqJyw_RXQJu_uwfxCee_fr1-xRzX1C041a_tsc-xv4TV76O_Gq6F_k4z1Hm_09U4
  priority: 102
  providerName: ProQuest
Title Linear Model and Gradient Feature Elimination Algorithm Based on Seasonal Decomposition for Time Series Forecasting
URI https://www.proquest.com/docview/3176338475
https://doaj.org/article/aa1e3be7ba064361bd91e41216311e4c
Volume 13
WOSCitedRecordID wos001442507000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQywEOiE-xtF35AOIUNYkdOz7utltA0NWKglROkT_GtNKyrZKUI7-dGSetlgPiwsWKnBysGXvmTfT8hrHXvqhjwFo2Cy6UmTTSZcaWkCnExk5B1JVNnv6kl8v6_Nystlp9ESdskAceDHdobQHCgXaWkqcqXDAFyKJEHFHgg6fom2uzVUylGGwKUUszMN0F1vWHiP8uMF4THhF_5KAk1f-3gJyyzMlj9miEh3w2LOsJuwebp-zh6Z22aveMdVg-4vbk1MVsze0m8Hdt4m31nPDcTQt8sU69usjmfLb-ftVe9hc_-BwTVuA4dQY2AXB-DMQoH2lbHOErpxshnP6YQcepa6e3HfGin7OvJ4svR--zsXVC5oUSfRZqV5a1BaO8CtJTHWhUhNqawgmZQ1lC7Wt0RRlMpUNlrAdEblLKCNFBLl6wnc3VBl4yXsU8iogOUNrKoJWrICcVOKdzE00RJ-zNrTGb60Eho8HKgozebBt9wuZk6btvSNc6TaC3m9Hbzb-8PWFvyU8Nnb6-td6OlwhwqaRj1cwwQAmSKMonbP_Wlc14LLsGwZLCmlzq6tX_WM0ee1BSO-BESdtnO317Awfsvv_ZX3btlO3OF8vV52namTh-1NmUqKVnNP5a4PvVh9PVt98k8O1L
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQQIOfKMuFPCBilPUxHbi-IDQlra02u0KiSL1FvwxaZG2uyVJQfwpfiMz3uwCB7j1wC1yosSOX2beOON5jL30WVkHjGWT4IJIlFEuMVZAUiA3dgXUOrdxpsd6MilPTsz7NfZjuReG0iqXNjEa6jD3tEa-jX6uwHBK6fzNxZeEVKPo7-pSQmMBixF8_4YhW_v6cBfnd0uI_b3jtwdJryqQeFnILgmlE6K0YApfBOUpRDJFDaU1mZMqBSGg9CX2UgST65Ab6wFJjVKqhtpBKvG-19h1JUtN39VIJ6s1HaqxWSqzyK-X0qTbyDrP0EsQC5J_eL4oEPA3NxB92_7d_-2t3GN3ehbNhwvY32drMHvAbh-tStC2D1mLUTZ2jJPY25TbWeDvmpje1nGivZcN8L1plDQjaPLh9BTH1Z2d8x3064Fj0wewMU7hu0CJ9312G0eWz2njDKeFRWg5iZt621L6-CP28UpG_Zitz-Yz2GA8r9Na1qBdoa0KunA5pFQsz-nU1CarB2xrOfvVxaKQSIUBGKGk-h0lA7ZD0FhdQ-W_Y8O8Oa16a1JZm4F0-DBLjLLIXDAZqEwguc7wwA_YKwJWRUaqa6y3_V4L7CqV-6qGaMclVXJKB2xzCayqt15t9QtVT_59-gW7eXB8NK7Gh5PRU3ZLkDZyzM_bZOtdcwnP2A3_tfvcNs_jh8LZp6vG4E9sWFMp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCE48EYECuyBipMVe71-7AGhlDQQtY0iAVI5bfcx2yKFpNguiL_Gr2PGcQIc4NYDN2tt2bvezzPfrGfnY-y5S8rgMZaNvPUikkraSBkBUY7c2OYQisy0M31YTKfl8bGabbEf670wlFa5tomtofZLR2vkA_RzOYZTssgGoUuLmI3Gr86_RKQgRX9a13IaK4gcwPdvGL7VLycjnOtdIcb771-_jTqFgciledpEvrRClAZU7nIvHYVLKg9QGpXYVMYgBJSuxB4Lr7LCZ8o4QIIjpQwQLMQp3vcK20ZKLkWPbc8mR7OPmxUeqrhZSrXKtk9TFQ-Qg56hzyBOlP7hB1u5gL85hdbTjW_9z-_oNrvZ8Ws-XH0Qd9gWLO6yG0eb4rT1PVZj_I0d4yQDN-dm4fmbqk18azgR4osK-P68FTsj0PLh_BTH1Zx95nvo8T3Hpndg2giGj4BS8ru8N478n9OWGk5LjlBzkj11pqbE8vvsw6WM-gHrLZYLeMh4FuKQBihsXhjpi9xmEFMZPVvEKqgk9NnuGgn6fFViRGNoRojRvyOmz_YIJptrqDB427CsTnVnZ7QxCaQWH2aIa-aJ9SoBmQik3QkeuD57QSDTZL6ayjjT7cLArlIhMD1EC59Sjae4z3bWINOdXav1L4Q9-vfpZ-waQk8fTqYHj9l1QaLJbeLeDus11QU8YVfd1-ZTXT3tvhrOTi4bhD8Bzhtdqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Model+and+Gradient+Feature+Elimination+Algorithm+Based+on+Seasonal+Decomposition+for+Time+Series+Forecasting&rft.jtitle=Mathematics+%28Basel%29&rft.au=Sheng-Tzong+Cheng&rft.au=Ya-Jin+Lyu&rft.au=Yi-Hong+Lin&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=5&rft.spage=883&rft_id=info:doi/10.3390%2Fmath13050883&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aa1e3be7ba064361bd91e41216311e4c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon