Linear Model and Gradient Feature Elimination Algorithm Based on Seasonal Decomposition for Time Series Forecasting
In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-make...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 13; číslo 5; s. 883 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.03.2025
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-makers’ trust. This study proposes a linear time series model architecture based on seasonal decomposition. The model effectively captures trends and seasonality using an additive decomposition, chosen based on initial data visualization, indicating stable seasonal variations. An augmented feature generator is introduced to enhance predictive performance by generating features such as differences, rolling statistics, and moving averages. Furthermore, we propose a gradient-based feature importance method to improve interpretability and implement a gradient feature elimination algorithm to reduce noise and enhance model accuracy. The approach is validated on multiple datasets, including order demand, energy load, and solar radiation, demonstrating its applicability to diverse time series forecasting tasks. |
|---|---|
| AbstractList | In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-makers’ trust. This study proposes a linear time series model architecture based on seasonal decomposition. The model effectively captures trends and seasonality using an additive decomposition, chosen based on initial data visualization, indicating stable seasonal variations. An augmented feature generator is introduced to enhance predictive performance by generating features such as differences, rolling statistics, and moving averages. Furthermore, we propose a gradient-based feature importance method to improve interpretability and implement a gradient feature elimination algorithm to reduce noise and enhance model accuracy. The approach is validated on multiple datasets, including order demand, energy load, and solar radiation, demonstrating its applicability to diverse time series forecasting tasks. |
| Audience | Academic |
| Author | Cheng, Sheng-Tzong Lin, Yi-Hong Lyu, Ya-Jin |
| Author_xml | – sequence: 1 givenname: Sheng-Tzong orcidid: 0000-0003-3651-5260 surname: Cheng fullname: Cheng, Sheng-Tzong – sequence: 2 givenname: Ya-Jin orcidid: 0009-0002-6404-8962 surname: Lyu fullname: Lyu, Ya-Jin – sequence: 3 givenname: Yi-Hong surname: Lin fullname: Lin, Yi-Hong |
| BookMark | eNpNUU1vGyEQXVWp1DTNrT8Aqdc65WN3gaObxmkkRzk0PaNZGBysXXABH_LvS-KqChx4evPmaYb3sTuLKWLXfWb0SghNvy1Qn5igA1VKvOvOOedyJVvh7A3-0F2WsqftaCZUr8-7sg0RIZP75HAmEB25zeACxko2CPWYkdzMYQkRakiRrOddyqE-LeQ7FHSkUb8QSoowkx9o03JIJbwqfcrkMSzY6jlgIZuU0UKpIe4-de89zAUv_70X3e_NzeP1z9X24fbuer1dWTGKunJq4lwB6tGOrrdU8UGPHhVoNomeIueorEIvudODdIMGi3SQfd979BNScdHdnXxdgr055LBAfjYJgnklUt4ZyDXYGQ0AQzGhnICOvRjZ5DTDnnE2CtaAbV5fTl6HnP4csVSzT8fc1i5GMDmK9ptyaKqrk2oHzTREn2oG267DJdiWlw-NXyvBBaVSvoz49dRgcyolo_8_JqPmJVbzNlbxFwqIl0I |
| Cites_doi | 10.1198/jasa.2011.tm09771 10.1609/aaai.v32i1.11491 10.1145/3447548.3467166 10.3115/v1/D14-1179 10.1023/A:1012487302797 10.1155/2016/9717582 10.1609/aaai.v35i12.17325 10.1162/neco.1997.9.8.1735 10.1016/j.dib.2020.105340 10.1016/j.egypro.2011.03.231 10.1016/j.asoc.2018.01.017 10.1145/2939672.2939778 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math13050883 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_aa1e3be7ba064361bd91e41216311e4c A832300770 10_3390_math13050883 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c363t-d8b228ae96c6d4c082596fe8a91b340e22e8c8ef72d957d59ace057444fefbe03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442507000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:51:59 EDT 2025 Fri Jul 25 11:49:26 EDT 2025 Tue Nov 04 18:14:56 EST 2025 Sat Nov 29 07:14:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-d8b228ae96c6d4c082596fe8a91b340e22e8c8ef72d957d59ace057444fefbe03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-6404-8962 0000-0003-3651-5260 |
| OpenAccessLink | https://doaj.org/article/aa1e3be7ba064361bd91e41216311e4c |
| PQID | 3176338475 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aa1e3be7ba064361bd91e41216311e4c proquest_journals_3176338475 gale_infotracacademiconefile_A832300770 crossref_primary_10_3390_math13050883 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_18) 2018; 65 ref_14 Hong (ref_17) 2011; 5 ref_12 ref_1 Benvenuto (ref_9) 2020; 29 ref_3 ref_19 Vaswani (ref_4) 2017; 30 Guyon (ref_8) 2002; 46 Hochreiter (ref_2) 1997; 9 Jiao (ref_10) 2016; 2016 ref_16 ref_15 Lundberg (ref_5) 2017; 30 ref_7 Hyndman (ref_11) 2011; 106 Wu (ref_13) 2021; 34 ref_6 |
| References_xml | – volume: 34 start-page: 22419 year: 2021 ident: ref_13 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 389 year: 2017 ident: ref_5 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 106 start-page: 1513 year: 2011 ident: ref_11 article-title: Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.tm09771 – ident: ref_19 doi: 10.1609/aaai.v32i1.11491 – ident: ref_7 doi: 10.1145/3447548.3467166 – volume: 30 start-page: 1 year: 2017 ident: ref_4 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_16 – ident: ref_15 – ident: ref_3 doi: 10.3115/v1/D14-1179 – volume: 46 start-page: 389 year: 2002 ident: ref_8 article-title: Gene Selection for Cancer Classification using Support Vector Machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: ref_14 – volume: 2016 start-page: 9717582 year: 2016 ident: ref_10 article-title: Three revised Kalman filtering models for short-term rail transit passenger flow prediction publication-title: Math. Probl. Eng. doi: 10.1155/2016/9717582 – ident: ref_1 – ident: ref_12 doi: 10.1609/aaai.v35i12.17325 – volume: 9 start-page: 1735 year: 1997 ident: ref_2 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 29 start-page: 105340 year: 2020 ident: ref_9 article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset publication-title: Data Brief doi: 10.1016/j.dib.2020.105340 – volume: 5 start-page: 1333 year: 2011 ident: ref_17 article-title: Decomposition and Forecast for Financial Time Series with High-frequency Based on Empirical Mode Decomposition publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.03.231 – volume: 65 start-page: 478 year: 2018 ident: ref_18 article-title: A novel decomposition-ensemble model for forecasting short-term load-time series with multiple seasonal patterns publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.017 – ident: ref_6 doi: 10.1145/2939672.2939778 |
| SSID | ssj0000913849 |
| Score | 2.284469 |
| Snippet | In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy,... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 883 |
| SubjectTerms | Accuracy Algorithms Datasets Decomposition feature importance feature selection Forecasting Industry 4.0 Neural networks Noise control Scientific visualization Seasonal variations Solar radiation Time series time series decomposition time series forecasting Trends |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKy4EeKJ_qloJ8AHGKmsSOE5_QtrRwgAqpIPVm-WPcVlp22yTt7--M17vAAS7cIieSLb3xzBtn_Iaxt77qYsBctggu1IXU0hXa1lAo5MZOQWwbm5D-0p6edufn-ls-cBtyWeXKJyZHHRaezsgPMM4pTKdk23y4vimoaxT9Xc0tNB6wLVJJqFLp3tn6jIU0Lzupl_XuArP7A2SBl-i1iZWIPyJREuz_m1tOseZk539X-YQ9ziyTT5dm8ZRtwPwZ2_66lmgdnrMBs1C0ck7N0GbczgP_1Kfyr5ETLbztgR_PUssvgo5PZxc4z3j5kx9i3Asch87AJh7PPwIVpufqL44smNPFEk4HbzBwav7p7UDl1S_Yj5Pj70efi9yBofBCibEInavrzoJWXgXpKZ3UKkJndeWELKGuofMdIloH3bSh0dYDEkApZYTooBQv2eZ8MYddxptYRhGhdaq1MrTKNVCSmJxrSx11FSfs3QoNc70U2jCYoBBq5nfUJuyQoFp_Q_LYaWDRX5i824y1FQiHk1liXKpyQVcg0USUqPDBT9h7AtrQJh57622-i4BLJTksM0U_J0jpqJyw_RXQJu_uwfxCee_fr1-xRzX1C041a_tsc-xv4TV76O_Gq6F_k4z1Hm_09U4 priority: 102 providerName: ProQuest |
| Title | Linear Model and Gradient Feature Elimination Algorithm Based on Seasonal Decomposition for Time Series Forecasting |
| URI | https://www.proquest.com/docview/3176338475 https://doaj.org/article/aa1e3be7ba064361bd91e41216311e4c |
| Volume | 13 |
| WOSCitedRecordID | wos001442507000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQywEOiE-xtF35AOIUNYkdOz7utltA0NWKglROkT_GtNKyrZKUI7-dGSetlgPiwsWKnBysGXvmTfT8hrHXvqhjwFo2Cy6UmTTSZcaWkCnExk5B1JVNnv6kl8v6_Nystlp9ESdskAceDHdobQHCgXaWkqcqXDAFyKJEHFHgg6fom2uzVUylGGwKUUszMN0F1vWHiP8uMF4THhF_5KAk1f-3gJyyzMlj9miEh3w2LOsJuwebp-zh6Z22aveMdVg-4vbk1MVsze0m8Hdt4m31nPDcTQt8sU69usjmfLb-ftVe9hc_-BwTVuA4dQY2AXB-DMQoH2lbHOErpxshnP6YQcepa6e3HfGin7OvJ4svR--zsXVC5oUSfRZqV5a1BaO8CtJTHWhUhNqawgmZQ1lC7Wt0RRlMpUNlrAdEblLKCNFBLl6wnc3VBl4yXsU8iogOUNrKoJWrICcVOKdzE00RJ-zNrTGb60Eho8HKgozebBt9wuZk6btvSNc6TaC3m9Hbzb-8PWFvyU8Nnb6-td6OlwhwqaRj1cwwQAmSKMonbP_Wlc14LLsGwZLCmlzq6tX_WM0ee1BSO-BESdtnO317Awfsvv_ZX3btlO3OF8vV52namTh-1NmUqKVnNP5a4PvVh9PVt98k8O1L |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQQIOfKMuFPCBilPUxHbi-IDQlra02u0KiSL1FvwxaZG2uyVJQfwpfiMz3uwCB7j1wC1yosSOX2beOON5jL30WVkHjGWT4IJIlFEuMVZAUiA3dgXUOrdxpsd6MilPTsz7NfZjuReG0iqXNjEa6jD3tEa-jX6uwHBK6fzNxZeEVKPo7-pSQmMBixF8_4YhW_v6cBfnd0uI_b3jtwdJryqQeFnILgmlE6K0YApfBOUpRDJFDaU1mZMqBSGg9CX2UgST65Ab6wFJjVKqhtpBKvG-19h1JUtN39VIJ6s1HaqxWSqzyK-X0qTbyDrP0EsQC5J_eL4oEPA3NxB92_7d_-2t3GN3ehbNhwvY32drMHvAbh-tStC2D1mLUTZ2jJPY25TbWeDvmpje1nGivZcN8L1plDQjaPLh9BTH1Z2d8x3064Fj0wewMU7hu0CJ9312G0eWz2njDKeFRWg5iZt621L6-CP28UpG_Zitz-Yz2GA8r9Na1qBdoa0KunA5pFQsz-nU1CarB2xrOfvVxaKQSIUBGKGk-h0lA7ZD0FhdQ-W_Y8O8Oa16a1JZm4F0-DBLjLLIXDAZqEwguc7wwA_YKwJWRUaqa6y3_V4L7CqV-6qGaMclVXJKB2xzCayqt15t9QtVT_59-gW7eXB8NK7Gh5PRU3ZLkDZyzM_bZOtdcwnP2A3_tfvcNs_jh8LZp6vG4E9sWFMp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCE48EYECuyBipMVe71-7AGhlDQQtY0iAVI5bfcx2yKFpNguiL_Gr2PGcQIc4NYDN2tt2bvezzPfrGfnY-y5S8rgMZaNvPUikkraSBkBUY7c2OYQisy0M31YTKfl8bGabbEf670wlFa5tomtofZLR2vkA_RzOYZTssgGoUuLmI3Gr86_RKQgRX9a13IaK4gcwPdvGL7VLycjnOtdIcb771-_jTqFgciledpEvrRClAZU7nIvHYVLKg9QGpXYVMYgBJSuxB4Lr7LCZ8o4QIIjpQwQLMQp3vcK20ZKLkWPbc8mR7OPmxUeqrhZSrXKtk9TFQ-Qg56hzyBOlP7hB1u5gL85hdbTjW_9z-_oNrvZ8Ws-XH0Qd9gWLO6yG0eb4rT1PVZj_I0d4yQDN-dm4fmbqk18azgR4osK-P68FTsj0PLh_BTH1Zx95nvo8T3Hpndg2giGj4BS8ru8N478n9OWGk5LjlBzkj11pqbE8vvsw6WM-gHrLZYLeMh4FuKQBihsXhjpi9xmEFMZPVvEKqgk9NnuGgn6fFViRGNoRojRvyOmz_YIJptrqDB427CsTnVnZ7QxCaQWH2aIa-aJ9SoBmQik3QkeuD57QSDTZL6ayjjT7cLArlIhMD1EC59Sjae4z3bWINOdXav1L4Q9-vfpZ-waQk8fTqYHj9l1QaLJbeLeDus11QU8YVfd1-ZTXT3tvhrOTi4bhD8Bzhtdqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Model+and+Gradient+Feature+Elimination+Algorithm+Based+on+Seasonal+Decomposition+for+Time+Series+Forecasting&rft.jtitle=Mathematics+%28Basel%29&rft.au=Sheng-Tzong+Cheng&rft.au=Ya-Jin+Lyu&rft.au=Yi-Hong+Lin&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=5&rft.spage=883&rft_id=info:doi/10.3390%2Fmath13050883&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aa1e3be7ba064361bd91e41216311e4c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |