Maximum likelihood estimation for discrete latent variable models via evolutionary algorithms

We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics and computing Ročník 34; číslo 2
Hlavní autori: Brusa, Luca, Pennoni, Fulvia, Bartolucci, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2024
Springer Nature B.V
Predmet:
ISSN:0960-3174, 1573-1375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter space, reducing the chance to be trapped into one of the multiple local maxima of the log-likelihood function. Their performance is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate and compare the algorithms.
AbstractList We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter space, reducing the chance to be trapped into one of the multiple local maxima of the log-likelihood function. Their performance is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate and compare the algorithms.
ArticleNumber 62
Author Bartolucci, Francesco
Pennoni, Fulvia
Brusa, Luca
Author_xml – sequence: 1
  givenname: Luca
  surname: Brusa
  fullname: Brusa, Luca
  email: luca.brusa@unimib.it
  organization: Department of Statistics and Quantitative Methods, University of Milano-Bicocca
– sequence: 2
  givenname: Fulvia
  surname: Pennoni
  fullname: Pennoni, Fulvia
  organization: Department of Statistics and Quantitative Methods, University of Milano-Bicocca
– sequence: 3
  givenname: Francesco
  surname: Bartolucci
  fullname: Bartolucci, Francesco
  organization: Department of Economics, University of Perugia
BookMark eNp9kEtLAzEQgINUsK3-AU8Bz6uZpLvZPUrxBRUvepSQzWbb1OymJmmx_960KwgePA3DzDePb4JGves1QpdAroEQfhMAKKUZoSwDwvIyy0_QGHKeUsbzERqTqiAZAz47Q5MQ1oQAFGw2Ru_P8st02w5b86GtWTnXYB2i6WQ0rset87gxQXkdNbYy6j7infRG1lbjzjXaBrwzEuuds9sDIf0eS7t03sRVF87RaStt0Bc_cYre7u9e54_Z4uXhaX67yBQrWMyavNWMgVKS1oQwzmRZKkUkA9pwxikpijrVa1JXdUvorCkptG1FZ6Usa1UCm6KrYe7Gu89tul-s3db3aaWgFTAAzqsiddGhS3kXgtet2Pj0qN8LIOKgUQwaRdIojhpFnqDyD6RMPMqJXhr7P8oGNKQ9_VL736v-ob4BHhaKPw
CitedBy_id crossref_primary_10_3390_sym16081060
crossref_primary_10_1016_j_jmva_2025_105423
crossref_primary_10_14246_irspsd_13_3_56
crossref_primary_10_1007_s11634_025_00634_9
Cites_doi 10.1016/j.patrec.2013.02.008
10.1093/oso/9780195099713.001.0001
10.1109/TIT.1967.1054010
10.1007/s11222-007-9046-7
10.1086/jar.33.4.3629752
10.1016/0378-8733(83)90021-7
10.1007/BF03372103
10.1080/10705510701575602
10.1198/016214501753208735
10.1109/TSMCC.2008.2007252
10.1007/s003579900004
10.1111/j.2517-6161.1964.tb00553.x
10.1109/34.865189
10.1093/biomet/61.2.215
10.1214/aoms/1177729694
10.1007/978-3-662-04131-4
10.1007/s11749-014-0381-7
10.1023/A:1007665907178
10.1214/aos/1176344136
10.1214/aoms/1177697196
10.1007/s00180-022-01276-7
10.1111/j.1467-985X.2006.00440.x
10.1111/j.2517-6161.1977.tb01600.x
10.1002/0471721182
10.1201/b20790
10.1007/s00357-020-09371-4
10.1080/01621459.1991.10475008
10.1109/TPAMI.2005.162
10.18637/jss.v081.i04
10.18637/jss.v053.i04
10.1111/insr.12436
10.1111/ecno.12193
10.1109/ICEC.1996.542329
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11222-023-10358-5
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_023_10358_5
GrantInformation_xml – fundername: Università degli Studi di Milano - Bicocca
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-d5fe331cca2b00373a88cc0a312d7372066b331b0b9bf024d821ff9248a8bc813
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001139168100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Sun Nov 09 07:46:47 EST 2025
Sat Nov 29 03:32:45 EST 2025
Tue Nov 18 22:25:36 EST 2025
Fri Feb 21 02:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Maximum-likelihood estimation
Expectation–maximization algorithm
Variational expectation–maximization algorithm
Local maxima
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d5fe331cca2b00373a88cc0a312d7372066b331b0b9bf024d821ff9248a8bc813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11222-023-10358-5
PQID 2913117796
PQPubID 2043829
ParticipantIDs proquest_journals_2913117796
crossref_primary_10_1007_s11222_023_10358_5
crossref_citationtrail_10_1007_s11222_023_10358_5
springer_journals_10_1007_s11222_023_10358_5
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jordan, Ghahramani, Jaakkola, Saul (CR25) 1999; 37
Lanza, Collins, Lemmon, Schafer (CR28) 2007; 14
Viterbi (CR44) 1967; 13
CR19
Csardi, Nepusz (CR16) 2006; 1695
Holland, Laskey, Leinhardt (CR22) 1983; 5
CR39
CR38
CR37
Daudin, Picard, Robin (CR17) 2008; 18
CR36
CR33
Snijders, Nowicki (CR42) 1997; 14
CR32
CR31
CR30
Michalewicz, Fogel (CR34) 2000
Deb (CR18) 2001
Lazarsfeld, Henry (CR29) 1968
Biernacki, Celeux, Govaert (CR12) 2000; 22
Bartolucci, Farcomeni, Pennoni (CR6) 2013
Berchtold (CR11) 2004; 19
Bartolucci, Pandolfi, Pennoni (CR8) 2022; 6
Bäck (CR3) 1996
Baum, Petrie, Soules, Weiss (CR10) 1970; 41
CR4
CR5
Bartolucci, Pennoni, Francis (CR9) 2007; 170
CR26
CR47
CR24
Kullback, Leibler (CR27) 1951; 22
Zachary (CR46) 1977; 33
Nowicki, Snijders (CR35) 2001; 96
CR43
CR20
Hruschka, Campello, Freitas, Ponce, de Carvalho (CR23) 2009; 39
Schwarz (CR41) 1978; 6
CR40
Box, Cox (CR13) 1964; 26
Welch (CR45) 2003; 53
Ashlock (CR2) 2004
Collins, Lanza (CR15) 2010
Goodman (CR21) 1974; 61
Andrews, McNicholas (CR1) 2013; 34
Bartolucci, Farcomeni, Pennoni (CR7) 2014; 23
Brusa, Bartolucci, Pennoni (CR14) 2023; 38
10358_CR40
10358_CR43
10358_CR20
MI Jordan (10358_CR25) 1999; 37
F Bartolucci (10358_CR7) 2014; 23
10358_CR26
10358_CR47
10358_CR24
F Bartolucci (10358_CR9) 2007; 170
LA Goodman (10358_CR21) 1974; 61
S Kullback (10358_CR27) 1951; 22
Z Michalewicz (10358_CR34) 2000
T Bäck (10358_CR3) 1996
A Berchtold (10358_CR11) 2004; 19
PW Holland (10358_CR22) 1983; 5
LM Collins (10358_CR15) 2010
K Deb (10358_CR18) 2001
LR Welch (10358_CR45) 2003; 53
K Nowicki (10358_CR35) 2001; 96
ER Hruschka (10358_CR23) 2009; 39
10358_CR4
L Brusa (10358_CR14) 2023; 38
GEP Box (10358_CR13) 1964; 26
JJ Daudin (10358_CR17) 2008; 18
PF Lazarsfeld (10358_CR29) 1968
10358_CR5
F Bartolucci (10358_CR6) 2013
JL Andrews (10358_CR1) 2013; 34
10358_CR33
10358_CR32
C Biernacki (10358_CR12) 2000; 22
10358_CR31
G Schwarz (10358_CR41) 1978; 6
10358_CR30
10358_CR37
10358_CR36
ST Lanza (10358_CR28) 2007; 14
D Ashlock (10358_CR2) 2004
10358_CR19
10358_CR39
10358_CR38
WW Zachary (10358_CR46) 1977; 33
F Bartolucci (10358_CR8) 2022; 6
TAB Snijders (10358_CR42) 1997; 14
LE Baum (10358_CR10) 1970; 41
G Csardi (10358_CR16) 2006; 1695
AJ Viterbi (10358_CR44) 1967; 13
References_xml – volume: 34
  start-page: 987
  year: 2013
  end-page: 992
  ident: CR1
  article-title: Using evolutionary algorithms for model-based clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.02.008
– year: 1996
  ident: CR3
  publication-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
  doi: 10.1093/oso/9780195099713.001.0001
– volume: 13
  start-page: 260
  year: 1967
  end-page: 269
  ident: CR44
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1054010
– ident: CR43
– year: 2004
  ident: CR2
  publication-title: Evolutionary Computation for Modeling and Optimization
– volume: 18
  start-page: 173
  year: 2008
  end-page: 183
  ident: CR17
  article-title: A mixture model for random graphs
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9046-7
– ident: CR47
– volume: 33
  start-page: 452
  year: 1977
  end-page: 473
  ident: CR46
  article-title: An information flow model for conflict and fission in small groups
  publication-title: J. Anthropol. Res.
  doi: 10.1086/jar.33.4.3629752
– ident: CR4
– ident: CR39
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  ident: CR22
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90021-7
– ident: CR37
– ident: CR30
– volume: 19
  start-page: 385
  year: 2004
  end-page: 406
  ident: CR11
  article-title: Optimization of mixture models: comparison of different strategies
  publication-title: Comput. Stat.
  doi: 10.1007/BF03372103
– volume: 14
  start-page: 671
  year: 2007
  end-page: 694
  ident: CR28
  article-title: Proc lca: a sas procedure for latent class analysis
  publication-title: Struct. Equ. Model.
  doi: 10.1080/10705510701575602
– ident: CR33
– year: 2001
  ident: CR18
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 96
  start-page: 1077
  year: 2001
  end-page: 1087
  ident: CR35
  article-title: Estimation and prediction for stochastic blockstructures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753208735
– volume: 6
  start-page: 1
  year: 2022
  end-page: 31
  ident: CR8
  article-title: Discrete latent variable models
  publication-title: Annu. Rev. Stat. Appl.
– volume: 39
  start-page: 133
  year: 2009
  end-page: 155
  ident: CR23
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCC.2008.2007252
– ident: CR40
– volume: 14
  start-page: 75
  year: 1997
  end-page: 100
  ident: CR42
  article-title: Estimation and prediction for stochastic blockmodels for graphs with latent block structure
  publication-title: J. Classif.
  doi: 10.1007/s003579900004
– year: 2013
  ident: CR6
  publication-title: Latent Markov Models for Longitudinal Data
– ident: CR19
– volume: 26
  start-page: 211
  year: 1964
  end-page: 243
  ident: CR13
  article-title: An analysis of transformations
  publication-title: J. R. Stat. Soc. Series. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– ident: CR38
– volume: 22
  start-page: 719
  year: 2000
  end-page: 725
  ident: CR12
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.865189
– volume: 61
  start-page: 215
  year: 1974
  end-page: 231
  ident: CR21
  article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models
  publication-title: Biometrika
  doi: 10.1093/biomet/61.2.215
– ident: CR31
– volume: 1695
  start-page: 1
  year: 2006
  end-page: 9
  ident: CR16
  article-title: The igraph software package for complex network research
  publication-title: InterJournal Complex Syst.
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: CR27
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– ident: CR32
– year: 2000
  ident: CR34
  publication-title: How to Solve It: Modern Heuristics
  doi: 10.1007/978-3-662-04131-4
– ident: CR36
– ident: CR5
– year: 2010
  ident: CR15
  publication-title: Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences
– volume: 23
  start-page: 433
  year: 2014
  end-page: 65
  ident: CR7
  article-title: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates
  publication-title: TEST
  doi: 10.1007/s11749-014-0381-7
– volume: 37
  start-page: 183
  year: 1999
  end-page: 233
  ident: CR25
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: CR41
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– year: 1968
  ident: CR29
  publication-title: Latent Structure Analysis
– volume: 41
  start-page: 164
  year: 1970
  end-page: 171
  ident: CR10
  article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697196
– volume: 38
  start-page: 1391
  year: 2023
  end-page: 1424
  ident: CR14
  article-title: Tempered expectation-maximization algorithm for the estimation of discrete latent variable models
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-022-01276-7
– ident: CR26
– volume: 170
  start-page: 114
  year: 2007
  end-page: 132
  ident: CR9
  article-title: A latent Markov model for detecting patterns of criminal activity
  publication-title: J. R. Stat. Soc. Ser. A Stat. Soc.
  doi: 10.1111/j.1467-985X.2006.00440.x
– ident: CR24
– ident: CR20
– volume: 53
  start-page: 9
  year: 2003
  end-page: 13
  ident: CR45
  article-title: Hidden Markov models and the Baum–Welch algorithm
  publication-title: IEEE Inform. Theory Soc. Newsl.
– volume: 26
  start-page: 211
  year: 1964
  ident: 10358_CR13
  publication-title: J. R. Stat. Soc. Series. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– volume-title: Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences
  year: 2010
  ident: 10358_CR15
– volume-title: How to Solve It: Modern Heuristics
  year: 2000
  ident: 10358_CR34
  doi: 10.1007/978-3-662-04131-4
– volume: 13
  start-page: 260
  year: 1967
  ident: 10358_CR44
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1054010
– ident: 10358_CR19
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10358_CR32
  doi: 10.1002/0471721182
– ident: 10358_CR47
  doi: 10.1201/b20790
– ident: 10358_CR33
  doi: 10.1007/s00357-020-09371-4
– volume: 22
  start-page: 79
  year: 1951
  ident: 10358_CR27
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– ident: 10358_CR30
  doi: 10.1080/01621459.1991.10475008
– ident: 10358_CR36
– volume: 14
  start-page: 75
  year: 1997
  ident: 10358_CR42
  publication-title: J. Classif.
  doi: 10.1007/s003579900004
– volume: 96
  start-page: 1077
  year: 2001
  ident: 10358_CR35
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753208735
– ident: 10358_CR38
  doi: 10.1109/TPAMI.2005.162
– volume: 1695
  start-page: 1
  year: 2006
  ident: 10358_CR16
  publication-title: InterJournal Complex Syst.
– volume: 19
  start-page: 385
  year: 2004
  ident: 10358_CR11
  publication-title: Comput. Stat.
  doi: 10.1007/BF03372103
– volume: 22
  start-page: 719
  year: 2000
  ident: 10358_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.865189
– volume: 33
  start-page: 452
  year: 1977
  ident: 10358_CR46
  publication-title: J. Anthropol. Res.
  doi: 10.1086/jar.33.4.3629752
– volume: 5
  start-page: 109
  year: 1983
  ident: 10358_CR22
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90021-7
– volume: 14
  start-page: 671
  year: 2007
  ident: 10358_CR28
  publication-title: Struct. Equ. Model.
  doi: 10.1080/10705510701575602
– volume: 18
  start-page: 173
  year: 2008
  ident: 10358_CR17
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9046-7
– ident: 10358_CR5
  doi: 10.18637/jss.v081.i04
– volume: 38
  start-page: 1391
  year: 2023
  ident: 10358_CR14
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-022-01276-7
– ident: 10358_CR40
  doi: 10.18637/jss.v053.i04
– volume: 53
  start-page: 9
  year: 2003
  ident: 10358_CR45
  publication-title: IEEE Inform. Theory Soc. Newsl.
– ident: 10358_CR24
– volume: 37
  start-page: 183
  year: 1999
  ident: 10358_CR25
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 41
  start-page: 164
  year: 1970
  ident: 10358_CR10
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697196
– ident: 10358_CR26
– ident: 10358_CR43
– ident: 10358_CR31
  doi: 10.1111/insr.12436
– volume: 23
  start-page: 433
  year: 2014
  ident: 10358_CR7
  publication-title: TEST
  doi: 10.1007/s11749-014-0381-7
– ident: 10358_CR20
– volume-title: Latent Markov Models for Longitudinal Data
  year: 2013
  ident: 10358_CR6
– volume-title: Latent Structure Analysis
  year: 1968
  ident: 10358_CR29
– volume-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
  year: 1996
  ident: 10358_CR3
  doi: 10.1093/oso/9780195099713.001.0001
– volume: 6
  start-page: 1
  year: 2022
  ident: 10358_CR8
  publication-title: Annu. Rev. Stat. Appl.
– volume-title: Multi-Objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: 10358_CR18
– volume: 61
  start-page: 215
  year: 1974
  ident: 10358_CR21
  publication-title: Biometrika
  doi: 10.1093/biomet/61.2.215
– ident: 10358_CR37
  doi: 10.1111/ecno.12193
– ident: 10358_CR39
– volume: 34
  start-page: 987
  year: 2013
  ident: 10358_CR1
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.02.008
– volume-title: Evolutionary Computation for Modeling and Optimization
  year: 2004
  ident: 10358_CR2
– volume: 170
  start-page: 114
  year: 2007
  ident: 10358_CR9
  publication-title: J. R. Stat. Soc. Ser. A Stat. Soc.
  doi: 10.1111/j.1467-985X.2006.00440.x
– volume: 39
  start-page: 133
  year: 2009
  ident: 10358_CR23
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCC.2008.2007252
– ident: 10358_CR4
  doi: 10.1109/ICEC.1996.542329
– volume: 6
  start-page: 461
  year: 1978
  ident: 10358_CR41
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
SSID ssj0011634
Score 2.4182067
Snippet We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Computer Science
Evolutionary algorithms
Mathematical models
Maxima
Maximum likelihood estimation
Monte Carlo simulation
Original Paper
Parameter estimation
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title Maximum likelihood estimation for discrete latent variable models via evolutionary algorithms
URI https://link.springer.com/article/10.1007/s11222-023-10358-5
https://www.proquest.com/docview/2913117796
Volume 34
WOSCitedRecordID wos001139168100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcBgHBgPEYKAcuEGl9Z0eEWLisgnx0i6oStIUKroOtV0F_x6nj00gQIJrm0SVHdufm_gzwAljlqdz19JkgOamuhxpTP2Js6UVCoTQUvCgbDbhjsd0MvGu66KwrLnt3hxJlp56WeymYyzTMMag6zBtqtmrsIbhjipzvLl9WJwdIMIoSaMQm6OHca26VOb7NT6HoyXG_HIsWkabYed_37kFmzW6JOfVdtiGFZl0odN0biC1IXdhY7Rga8260FaIsyJs3oHHEXuLpvMpiaMXGUeK9ZgoJo6qxJEgxiWqkjdFsE1iBKpJTgrMt1UFFinb6mSkiBiRRb2nWfpOWPw0S6P8eZrtwv3w8u7iSqt7MGjCdMxcC-xQmqaOejaUA3BNRqkQA2bqRlB2uHEcju_5gHs8xHgfUEMPQ0zqKKNcUN3cg1YyS-Q-EMytcCRm45y56DlwXoi5TWA4hoFPqOiB3qjCFzVBueqTEftLamUlWh9F65ei9e0enC7mvFb0HL-O7jca9mtTzXzDU4xDrus5PThrNLp8_fNqB38bfghtAwVU3frpQytP5_II1kWBCk6Pyy38AdSU6bo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CtaD1apYrboHbxpo3pujiKViW0Sr9CJhs9loMG0laYP-e2fzaFFU0Gv2wTKzO_NNducbgBPGDEf1bEMRPh43WeVIYfJPnCmMgCOEFtzzs2ITdr9Ph0PnpkgKS8rX7uWVZGapF8luKvoyBX0Mmg7dpIq5DCsGeiz5kO_27mF-d4AIIyONQmyOFsY2ilSZ7-f47I4WGPPLtWjmbdq1_61zEzYKdEnO8-2wBUtiXIdaWbmBFAe5Duu9OVtrUoeqRJw5YfM2PPbYWziajUgUvogolKzHRDJx5CmOBDEukZm8MYJtEiFQHU9JivG2zMAiWVmdhKQhIyIt9jSL3wmLniZxOH0eJTtw374cXHSUogaDwnVLnyq-GQhdV1HPmjQAts4o5bzFdFXzswo3luVhu9fyHC9Af-9TTQ0CDOooox6nqr4LlfFkLPaAYGyFPTEa95iNlgPHBRjb-JqlafiF8gaopSpcXhCUyzoZkbugVpaidVG0biZa12zA6XzMa07P8WvvZqlhtziqias5knHIth2rAWelRhfNP8-2_7fux7DWGfS6bveqf30AVQ2Flb8AakJlGs_EIazyFJUdH2Xb-QPROOye
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSD1apYrboHbxravDdHUYuiLQUf9CJhs9loMH2QpkX_vbN5tCoqiNfsg2Vmd-ab7M43AEeMGY7q2YYifDxussqRwuSfOFMYAUcILbjnp8Um7E6H9npO90MWf_ravbiSzHIaJEvTIGmM_KAxT3xT0a8p6G_QjOgmVcxFWDJk0SAZr98-zO4REG2kBFKI09Ha2EaeNvP9HJ9d0xxvfrkiTT1Pq_L_Na_DWo46yWm2TTZgQQyqUCkqOpD8gFdhtT1jcR1XoSyRaEbkvAmPbfYa9id9EoUvIgolGzKRDB1Z6iNB7Etkhm-MIJxETK6LTDEOl5lZJC23MybTkBExzfc6i98Ii56GcZg898dbcN-6uDu7VPLaDArXLT1RfDMQuq6i_jVpGGydUcp5k-mq5qeVbyzLw3av6TlegDjAp5oaBBjsUUY9TlV9G0qD4UDsAMGYC3tilO4xGy0Kjgsw5vE1S9PwC-U1UAu1uDwnLpf1MyJ3TrksReuiaN1UtK5Zg-PZmFFG2_Fr73qhbTc_wmNXcyQTkW07Vg1OCu3Om3-ebfdv3Q9hpXvecm-uOtd7UNZQVtnDoDqUkngi9mGZT1HX8UG6s98Borj1gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+discrete+latent+variable+models+via+evolutionary+algorithms&rft.jtitle=Statistics+and+computing&rft.au=Brusa%2C+Luca&rft.au=Pennoni%2C+Fulvia&rft.au=Bartolucci%2C+Francesco&rft.date=2024-04-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1007%2Fs11222-023-10358-5&rft.externalDocID=10_1007_s11222_023_10358_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon