Maximum likelihood estimation for discrete latent variable models via evolutionary algorithms
We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic...
Uložené v:
| Vydané v: | Statistics and computing Ročník 34; číslo 2 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter space, reducing the chance to be trapped into one of the multiple local maxima of the log-likelihood function. Their performance is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate and compare the algorithms. |
|---|---|
| AbstractList | We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter space, reducing the chance to be trapped into one of the multiple local maxima of the log-likelihood function. Their performance is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate and compare the algorithms. |
| ArticleNumber | 62 |
| Author | Bartolucci, Francesco Pennoni, Fulvia Brusa, Luca |
| Author_xml | – sequence: 1 givenname: Luca surname: Brusa fullname: Brusa, Luca email: luca.brusa@unimib.it organization: Department of Statistics and Quantitative Methods, University of Milano-Bicocca – sequence: 2 givenname: Fulvia surname: Pennoni fullname: Pennoni, Fulvia organization: Department of Statistics and Quantitative Methods, University of Milano-Bicocca – sequence: 3 givenname: Francesco surname: Bartolucci fullname: Bartolucci, Francesco organization: Department of Economics, University of Perugia |
| BookMark | eNp9kEtLAzEQgINUsK3-AU8Bz6uZpLvZPUrxBRUvepSQzWbb1OymJmmx_960KwgePA3DzDePb4JGves1QpdAroEQfhMAKKUZoSwDwvIyy0_QGHKeUsbzERqTqiAZAz47Q5MQ1oQAFGw2Ru_P8st02w5b86GtWTnXYB2i6WQ0rset87gxQXkdNbYy6j7infRG1lbjzjXaBrwzEuuds9sDIf0eS7t03sRVF87RaStt0Bc_cYre7u9e54_Z4uXhaX67yBQrWMyavNWMgVKS1oQwzmRZKkUkA9pwxikpijrVa1JXdUvorCkptG1FZ6Usa1UCm6KrYe7Gu89tul-s3db3aaWgFTAAzqsiddGhS3kXgtet2Pj0qN8LIOKgUQwaRdIojhpFnqDyD6RMPMqJXhr7P8oGNKQ9_VL736v-ob4BHhaKPw |
| CitedBy_id | crossref_primary_10_3390_sym16081060 crossref_primary_10_1016_j_jmva_2025_105423 crossref_primary_10_14246_irspsd_13_3_56 crossref_primary_10_1007_s11634_025_00634_9 |
| Cites_doi | 10.1016/j.patrec.2013.02.008 10.1093/oso/9780195099713.001.0001 10.1109/TIT.1967.1054010 10.1007/s11222-007-9046-7 10.1086/jar.33.4.3629752 10.1016/0378-8733(83)90021-7 10.1007/BF03372103 10.1080/10705510701575602 10.1198/016214501753208735 10.1109/TSMCC.2008.2007252 10.1007/s003579900004 10.1111/j.2517-6161.1964.tb00553.x 10.1109/34.865189 10.1093/biomet/61.2.215 10.1214/aoms/1177729694 10.1007/978-3-662-04131-4 10.1007/s11749-014-0381-7 10.1023/A:1007665907178 10.1214/aos/1176344136 10.1214/aoms/1177697196 10.1007/s00180-022-01276-7 10.1111/j.1467-985X.2006.00440.x 10.1111/j.2517-6161.1977.tb01600.x 10.1002/0471721182 10.1201/b20790 10.1007/s00357-020-09371-4 10.1080/01621459.1991.10475008 10.1109/TPAMI.2005.162 10.18637/jss.v081.i04 10.18637/jss.v053.i04 10.1111/insr.12436 10.1111/ecno.12193 10.1109/ICEC.1996.542329 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s11222-023-10358-5 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| ExternalDocumentID | 10_1007_s11222_023_10358_5 |
| GrantInformation_xml | – fundername: Università degli Studi di Milano - Bicocca |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c363t-d5fe331cca2b00373a88cc0a312d7372066b331b0b9bf024d821ff9248a8bc813 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001139168100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Sun Nov 09 07:46:47 EST 2025 Sat Nov 29 03:32:45 EST 2025 Tue Nov 18 22:25:36 EST 2025 Fri Feb 21 02:38:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Maximum-likelihood estimation Expectation–maximization algorithm Variational expectation–maximization algorithm Local maxima |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-d5fe331cca2b00373a88cc0a312d7372066b331b0b9bf024d821ff9248a8bc813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11222-023-10358-5 |
| PQID | 2913117796 |
| PQPubID | 2043829 |
| ParticipantIDs | proquest_journals_2913117796 crossref_primary_10_1007_s11222_023_10358_5 crossref_citationtrail_10_1007_s11222_023_10358_5 springer_journals_10_1007_s11222_023_10358_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Jordan, Ghahramani, Jaakkola, Saul (CR25) 1999; 37 Lanza, Collins, Lemmon, Schafer (CR28) 2007; 14 Viterbi (CR44) 1967; 13 CR19 Csardi, Nepusz (CR16) 2006; 1695 Holland, Laskey, Leinhardt (CR22) 1983; 5 CR39 CR38 CR37 Daudin, Picard, Robin (CR17) 2008; 18 CR36 CR33 Snijders, Nowicki (CR42) 1997; 14 CR32 CR31 CR30 Michalewicz, Fogel (CR34) 2000 Deb (CR18) 2001 Lazarsfeld, Henry (CR29) 1968 Biernacki, Celeux, Govaert (CR12) 2000; 22 Bartolucci, Farcomeni, Pennoni (CR6) 2013 Berchtold (CR11) 2004; 19 Bartolucci, Pandolfi, Pennoni (CR8) 2022; 6 Bäck (CR3) 1996 Baum, Petrie, Soules, Weiss (CR10) 1970; 41 CR4 CR5 Bartolucci, Pennoni, Francis (CR9) 2007; 170 CR26 CR47 CR24 Kullback, Leibler (CR27) 1951; 22 Zachary (CR46) 1977; 33 Nowicki, Snijders (CR35) 2001; 96 CR43 CR20 Hruschka, Campello, Freitas, Ponce, de Carvalho (CR23) 2009; 39 Schwarz (CR41) 1978; 6 CR40 Box, Cox (CR13) 1964; 26 Welch (CR45) 2003; 53 Ashlock (CR2) 2004 Collins, Lanza (CR15) 2010 Goodman (CR21) 1974; 61 Andrews, McNicholas (CR1) 2013; 34 Bartolucci, Farcomeni, Pennoni (CR7) 2014; 23 Brusa, Bartolucci, Pennoni (CR14) 2023; 38 10358_CR40 10358_CR43 10358_CR20 MI Jordan (10358_CR25) 1999; 37 F Bartolucci (10358_CR7) 2014; 23 10358_CR26 10358_CR47 10358_CR24 F Bartolucci (10358_CR9) 2007; 170 LA Goodman (10358_CR21) 1974; 61 S Kullback (10358_CR27) 1951; 22 Z Michalewicz (10358_CR34) 2000 T Bäck (10358_CR3) 1996 A Berchtold (10358_CR11) 2004; 19 PW Holland (10358_CR22) 1983; 5 LM Collins (10358_CR15) 2010 K Deb (10358_CR18) 2001 LR Welch (10358_CR45) 2003; 53 K Nowicki (10358_CR35) 2001; 96 ER Hruschka (10358_CR23) 2009; 39 10358_CR4 L Brusa (10358_CR14) 2023; 38 GEP Box (10358_CR13) 1964; 26 JJ Daudin (10358_CR17) 2008; 18 PF Lazarsfeld (10358_CR29) 1968 10358_CR5 F Bartolucci (10358_CR6) 2013 JL Andrews (10358_CR1) 2013; 34 10358_CR33 10358_CR32 C Biernacki (10358_CR12) 2000; 22 10358_CR31 G Schwarz (10358_CR41) 1978; 6 10358_CR30 10358_CR37 10358_CR36 ST Lanza (10358_CR28) 2007; 14 D Ashlock (10358_CR2) 2004 10358_CR19 10358_CR39 10358_CR38 WW Zachary (10358_CR46) 1977; 33 F Bartolucci (10358_CR8) 2022; 6 TAB Snijders (10358_CR42) 1997; 14 LE Baum (10358_CR10) 1970; 41 G Csardi (10358_CR16) 2006; 1695 AJ Viterbi (10358_CR44) 1967; 13 |
| References_xml | – volume: 34 start-page: 987 year: 2013 end-page: 992 ident: CR1 article-title: Using evolutionary algorithms for model-based clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.02.008 – year: 1996 ident: CR3 publication-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms doi: 10.1093/oso/9780195099713.001.0001 – volume: 13 start-page: 260 year: 1967 end-page: 269 ident: CR44 article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1054010 – ident: CR43 – year: 2004 ident: CR2 publication-title: Evolutionary Computation for Modeling and Optimization – volume: 18 start-page: 173 year: 2008 end-page: 183 ident: CR17 article-title: A mixture model for random graphs publication-title: Stat. Comput. doi: 10.1007/s11222-007-9046-7 – ident: CR47 – volume: 33 start-page: 452 year: 1977 end-page: 473 ident: CR46 article-title: An information flow model for conflict and fission in small groups publication-title: J. Anthropol. Res. doi: 10.1086/jar.33.4.3629752 – ident: CR4 – ident: CR39 – volume: 5 start-page: 109 year: 1983 end-page: 137 ident: CR22 article-title: Stochastic blockmodels: first steps publication-title: Soc. Netw. doi: 10.1016/0378-8733(83)90021-7 – ident: CR37 – ident: CR30 – volume: 19 start-page: 385 year: 2004 end-page: 406 ident: CR11 article-title: Optimization of mixture models: comparison of different strategies publication-title: Comput. Stat. doi: 10.1007/BF03372103 – volume: 14 start-page: 671 year: 2007 end-page: 694 ident: CR28 article-title: Proc lca: a sas procedure for latent class analysis publication-title: Struct. Equ. Model. doi: 10.1080/10705510701575602 – ident: CR33 – year: 2001 ident: CR18 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – volume: 96 start-page: 1077 year: 2001 end-page: 1087 ident: CR35 article-title: Estimation and prediction for stochastic blockstructures publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753208735 – volume: 6 start-page: 1 year: 2022 end-page: 31 ident: CR8 article-title: Discrete latent variable models publication-title: Annu. Rev. Stat. Appl. – volume: 39 start-page: 133 year: 2009 end-page: 155 ident: CR23 article-title: A survey of evolutionary algorithms for clustering publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCC.2008.2007252 – ident: CR40 – volume: 14 start-page: 75 year: 1997 end-page: 100 ident: CR42 article-title: Estimation and prediction for stochastic blockmodels for graphs with latent block structure publication-title: J. Classif. doi: 10.1007/s003579900004 – year: 2013 ident: CR6 publication-title: Latent Markov Models for Longitudinal Data – ident: CR19 – volume: 26 start-page: 211 year: 1964 end-page: 243 ident: CR13 article-title: An analysis of transformations publication-title: J. R. Stat. Soc. Series. B Stat. Methodol. doi: 10.1111/j.2517-6161.1964.tb00553.x – ident: CR38 – volume: 22 start-page: 719 year: 2000 end-page: 725 ident: CR12 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.865189 – volume: 61 start-page: 215 year: 1974 end-page: 231 ident: CR21 article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models publication-title: Biometrika doi: 10.1093/biomet/61.2.215 – ident: CR31 – volume: 1695 start-page: 1 year: 2006 end-page: 9 ident: CR16 article-title: The igraph software package for complex network research publication-title: InterJournal Complex Syst. – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: CR27 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – ident: CR32 – year: 2000 ident: CR34 publication-title: How to Solve It: Modern Heuristics doi: 10.1007/978-3-662-04131-4 – ident: CR36 – ident: CR5 – year: 2010 ident: CR15 publication-title: Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences – volume: 23 start-page: 433 year: 2014 end-page: 65 ident: CR7 article-title: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates publication-title: TEST doi: 10.1007/s11749-014-0381-7 – volume: 37 start-page: 183 year: 1999 end-page: 233 ident: CR25 article-title: An introduction to variational methods for graphical models publication-title: Mach. Learn. doi: 10.1023/A:1007665907178 – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: CR41 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – year: 1968 ident: CR29 publication-title: Latent Structure Analysis – volume: 41 start-page: 164 year: 1970 end-page: 171 ident: CR10 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697196 – volume: 38 start-page: 1391 year: 2023 end-page: 1424 ident: CR14 article-title: Tempered expectation-maximization algorithm for the estimation of discrete latent variable models publication-title: Comput. Stat. doi: 10.1007/s00180-022-01276-7 – ident: CR26 – volume: 170 start-page: 114 year: 2007 end-page: 132 ident: CR9 article-title: A latent Markov model for detecting patterns of criminal activity publication-title: J. R. Stat. Soc. Ser. A Stat. Soc. doi: 10.1111/j.1467-985X.2006.00440.x – ident: CR24 – ident: CR20 – volume: 53 start-page: 9 year: 2003 end-page: 13 ident: CR45 article-title: Hidden Markov models and the Baum–Welch algorithm publication-title: IEEE Inform. Theory Soc. Newsl. – volume: 26 start-page: 211 year: 1964 ident: 10358_CR13 publication-title: J. R. Stat. Soc. Series. B Stat. Methodol. doi: 10.1111/j.2517-6161.1964.tb00553.x – volume-title: Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences year: 2010 ident: 10358_CR15 – volume-title: How to Solve It: Modern Heuristics year: 2000 ident: 10358_CR34 doi: 10.1007/978-3-662-04131-4 – volume: 13 start-page: 260 year: 1967 ident: 10358_CR44 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1054010 – ident: 10358_CR19 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 10358_CR32 doi: 10.1002/0471721182 – ident: 10358_CR47 doi: 10.1201/b20790 – ident: 10358_CR33 doi: 10.1007/s00357-020-09371-4 – volume: 22 start-page: 79 year: 1951 ident: 10358_CR27 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – ident: 10358_CR30 doi: 10.1080/01621459.1991.10475008 – ident: 10358_CR36 – volume: 14 start-page: 75 year: 1997 ident: 10358_CR42 publication-title: J. Classif. doi: 10.1007/s003579900004 – volume: 96 start-page: 1077 year: 2001 ident: 10358_CR35 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753208735 – ident: 10358_CR38 doi: 10.1109/TPAMI.2005.162 – volume: 1695 start-page: 1 year: 2006 ident: 10358_CR16 publication-title: InterJournal Complex Syst. – volume: 19 start-page: 385 year: 2004 ident: 10358_CR11 publication-title: Comput. Stat. doi: 10.1007/BF03372103 – volume: 22 start-page: 719 year: 2000 ident: 10358_CR12 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.865189 – volume: 33 start-page: 452 year: 1977 ident: 10358_CR46 publication-title: J. Anthropol. Res. doi: 10.1086/jar.33.4.3629752 – volume: 5 start-page: 109 year: 1983 ident: 10358_CR22 publication-title: Soc. Netw. doi: 10.1016/0378-8733(83)90021-7 – volume: 14 start-page: 671 year: 2007 ident: 10358_CR28 publication-title: Struct. Equ. Model. doi: 10.1080/10705510701575602 – volume: 18 start-page: 173 year: 2008 ident: 10358_CR17 publication-title: Stat. Comput. doi: 10.1007/s11222-007-9046-7 – ident: 10358_CR5 doi: 10.18637/jss.v081.i04 – volume: 38 start-page: 1391 year: 2023 ident: 10358_CR14 publication-title: Comput. Stat. doi: 10.1007/s00180-022-01276-7 – ident: 10358_CR40 doi: 10.18637/jss.v053.i04 – volume: 53 start-page: 9 year: 2003 ident: 10358_CR45 publication-title: IEEE Inform. Theory Soc. Newsl. – ident: 10358_CR24 – volume: 37 start-page: 183 year: 1999 ident: 10358_CR25 publication-title: Mach. Learn. doi: 10.1023/A:1007665907178 – volume: 41 start-page: 164 year: 1970 ident: 10358_CR10 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697196 – ident: 10358_CR26 – ident: 10358_CR43 – ident: 10358_CR31 doi: 10.1111/insr.12436 – volume: 23 start-page: 433 year: 2014 ident: 10358_CR7 publication-title: TEST doi: 10.1007/s11749-014-0381-7 – ident: 10358_CR20 – volume-title: Latent Markov Models for Longitudinal Data year: 2013 ident: 10358_CR6 – volume-title: Latent Structure Analysis year: 1968 ident: 10358_CR29 – volume-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms year: 1996 ident: 10358_CR3 doi: 10.1093/oso/9780195099713.001.0001 – volume: 6 start-page: 1 year: 2022 ident: 10358_CR8 publication-title: Annu. Rev. Stat. Appl. – volume-title: Multi-Objective Optimization Using Evolutionary Algorithms year: 2001 ident: 10358_CR18 – volume: 61 start-page: 215 year: 1974 ident: 10358_CR21 publication-title: Biometrika doi: 10.1093/biomet/61.2.215 – ident: 10358_CR37 doi: 10.1111/ecno.12193 – ident: 10358_CR39 – volume: 34 start-page: 987 year: 2013 ident: 10358_CR1 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.02.008 – volume-title: Evolutionary Computation for Modeling and Optimization year: 2004 ident: 10358_CR2 – volume: 170 start-page: 114 year: 2007 ident: 10358_CR9 publication-title: J. R. Stat. Soc. Ser. A Stat. Soc. doi: 10.1111/j.1467-985X.2006.00440.x – volume: 39 start-page: 133 year: 2009 ident: 10358_CR23 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCC.2008.2007252 – ident: 10358_CR4 doi: 10.1109/ICEC.1996.542329 – volume: 6 start-page: 461 year: 1978 ident: 10358_CR41 publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 |
| SSID | ssj0011634 |
| Score | 2.4182067 |
| Snippet | We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial Intelligence Computer Science Evolutionary algorithms Mathematical models Maxima Maximum likelihood estimation Monte Carlo simulation Original Paper Parameter estimation Probability and Statistics in Computer Science Statistical Theory and Methods Statistics and Computing/Statistics Programs |
| Title | Maximum likelihood estimation for discrete latent variable models via evolutionary algorithms |
| URI | https://link.springer.com/article/10.1007/s11222-023-10358-5 https://www.proquest.com/docview/2913117796 |
| Volume | 34 |
| WOSCitedRecordID | wos001139168100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcBgHBgPEYKAcuEGl9Z0eEWLisgnx0i6oStIUKroOtV0F_x6nj00gQIJrm0SVHdufm_gzwAljlqdz19JkgOamuhxpTP2Js6UVCoTQUvCgbDbhjsd0MvGu66KwrLnt3hxJlp56WeymYyzTMMag6zBtqtmrsIbhjipzvLl9WJwdIMIoSaMQm6OHca26VOb7NT6HoyXG_HIsWkabYed_37kFmzW6JOfVdtiGFZl0odN0biC1IXdhY7Rga8260FaIsyJs3oHHEXuLpvMpiaMXGUeK9ZgoJo6qxJEgxiWqkjdFsE1iBKpJTgrMt1UFFinb6mSkiBiRRb2nWfpOWPw0S6P8eZrtwv3w8u7iSqt7MGjCdMxcC-xQmqaOejaUA3BNRqkQA2bqRlB2uHEcju_5gHs8xHgfUEMPQ0zqKKNcUN3cg1YyS-Q-EMytcCRm45y56DlwXoi5TWA4hoFPqOiB3qjCFzVBueqTEftLamUlWh9F65ei9e0enC7mvFb0HL-O7jca9mtTzXzDU4xDrus5PThrNLp8_fNqB38bfghtAwVU3frpQytP5_II1kWBCk6Pyy38AdSU6bo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CtaD1apYrboHbxpo3pujiKViW0Sr9CJhs9loMG0laYP-e2fzaFFU0Gv2wTKzO_NNducbgBPGDEf1bEMRPh43WeVIYfJPnCmMgCOEFtzzs2ITdr9Ph0PnpkgKS8rX7uWVZGapF8luKvoyBX0Mmg7dpIq5DCsGeiz5kO_27mF-d4AIIyONQmyOFsY2ilSZ7-f47I4WGPPLtWjmbdq1_61zEzYKdEnO8-2wBUtiXIdaWbmBFAe5Duu9OVtrUoeqRJw5YfM2PPbYWziajUgUvogolKzHRDJx5CmOBDEukZm8MYJtEiFQHU9JivG2zMAiWVmdhKQhIyIt9jSL3wmLniZxOH0eJTtw374cXHSUogaDwnVLnyq-GQhdV1HPmjQAts4o5bzFdFXzswo3luVhu9fyHC9Af-9TTQ0CDOooox6nqr4LlfFkLPaAYGyFPTEa95iNlgPHBRjb-JqlafiF8gaopSpcXhCUyzoZkbugVpaidVG0biZa12zA6XzMa07P8WvvZqlhtziqias5knHIth2rAWelRhfNP8-2_7fux7DWGfS6bveqf30AVQ2Flb8AakJlGs_EIazyFJUdH2Xb-QPROOye |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSD1apYrboHbxravDdHUYuiLQUf9CJhs9loMH2QpkX_vbN5tCoqiNfsg2Vmd-ab7M43AEeMGY7q2YYifDxussqRwuSfOFMYAUcILbjnp8Um7E6H9npO90MWf_ravbiSzHIaJEvTIGmM_KAxT3xT0a8p6G_QjOgmVcxFWDJk0SAZr98-zO4REG2kBFKI09Ha2EaeNvP9HJ9d0xxvfrkiTT1Pq_L_Na_DWo46yWm2TTZgQQyqUCkqOpD8gFdhtT1jcR1XoSyRaEbkvAmPbfYa9id9EoUvIgolGzKRDB1Z6iNB7Etkhm-MIJxETK6LTDEOl5lZJC23MybTkBExzfc6i98Ii56GcZg898dbcN-6uDu7VPLaDArXLT1RfDMQuq6i_jVpGGydUcp5k-mq5qeVbyzLw3av6TlegDjAp5oaBBjsUUY9TlV9G0qD4UDsAMGYC3tilO4xGy0Kjgsw5vE1S9PwC-U1UAu1uDwnLpf1MyJ3TrksReuiaN1UtK5Zg-PZmFFG2_Fr73qhbTc_wmNXcyQTkW07Vg1OCu3Om3-ebfdv3Q9hpXvecm-uOtd7UNZQVtnDoDqUkngi9mGZT1HX8UG6s98Borj1gg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+discrete+latent+variable+models+via+evolutionary+algorithms&rft.jtitle=Statistics+and+computing&rft.au=Brusa%2C+Luca&rft.au=Pennoni%2C+Fulvia&rft.au=Bartolucci%2C+Francesco&rft.date=2024-04-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1007%2Fs11222-023-10358-5&rft.externalDocID=10_1007_s11222_023_10358_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |