Transposed Poisson Structures on Generalized Witt Algebras and Block Lie Algebras

We describe transposed Poisson structures on generalized Witt algebras W ( A , V , ⟨ · , · ⟩ ) and Block Lie algebras L ( A ,  g ,  f ) over a field F of characteristic zero, where ⟨ · , · ⟩ and f are non-degenerate. More specifically, if dim ( V ) > 1 , then all the transposed Poisson algebra st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 78; číslo 5; s. 186
Hlavní autoři: Kaygorodov, Ivan, Khrypchenko, Mykola
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2023
Springer Nature B.V
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We describe transposed Poisson structures on generalized Witt algebras W ( A , V , ⟨ · , · ⟩ ) and Block Lie algebras L ( A ,  g ,  f ) over a field F of characteristic zero, where ⟨ · , · ⟩ and f are non-degenerate. More specifically, if dim ( V ) > 1 , then all the transposed Poisson algebra structures on W ( A , V , ⟨ · , · ⟩ ) are trivial; and if dim ( V ) = 1 , then such structures are, up to isomorphism, mutations of the group algebra structure on FA . The transposed Poisson algebra structures on L ( A ,  g ,  f ) are in a one-to-one correspondence with commutative and associative multiplications defined on a complement of the square of L ( A ,  g ,  f ) with values in the center of L ( A ,  g ,  f ). In particular, all of them are usual Poisson structures on L ( A ,  g ,  f ). This generalizes earlier results about transposed Poisson structures on Block Lie algebras B ( q ) .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01962-y