Kernel generalized fuzzy c-means clustering with spatial information for image segmentation

The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a novel modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, it is found that GFCM is sensitive to noise in gray imag...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digital signal processing Ročník 23; číslo 1; s. 184 - 199
Hlavní autoři: Zhao, Feng, Jiao, Licheng, Liu, Hanqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2013
Témata:
ISSN:1051-2004, 1095-4333
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a novel modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, it is found that GFCM is sensitive to noise in gray images. In order to overcome GFCMʼs sensitivity to noise in the image, a kernel version of GFCM with spatial information is proposed. In this method, first a term about the spatial constraints derived from the image is introduced into the objective function of GFCM, and then the kernel induced distance is adopted to substitute the Euclidean distance in the new objective function. Experimental results show that the proposed method behaves well in segmentation performance and convergence speed for gray images corrupted by noise.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2012.09.016