Mining numerical association rules via multi-objective genetic algorithms
Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging point in the process of association rule discovery. Most of popular methods for association rule mining cannot be applied to the numerical data...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 233; S. 15 - 24 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.06.2013
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging point in the process of association rule discovery. Most of popular methods for association rule mining cannot be applied to the numerical data without data discretization. There have been efforts to resolve the problem of dealing with numeric data. These approaches suffer from problems which are discussed in this paper. This work proposes a multi-objective genetic algorithm approach for mining association rules for numerical data. Several measures are defined in order to determine more efficient rules. Three measures, confidence, interestingness, and comprehensibility have been used as different objectives for our multi objective optimization which is amplified with genetic algorithms approach. Finally, the best rules are obtained through Pareto optimality. This method is based on the notion of rough patterns that use rough values defined with upper and lower intervals to represent a range or set of values. Mutation and crossover operators give a powerful exploration ability to the method and allow it to find out the best intervals of existing numerical values. The experimental results show that the generated rules by this method are more appropriate – based on several different characteristics – than the similar approaches’ results, and our method outperforms these methods. |
|---|---|
| AbstractList | Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging point in the process of association rule discovery. Most of popular methods for association rule mining cannot be applied to the numerical data without data discretization. There have been efforts to resolve the problem of dealing with numeric data. These approaches suffer from problems which are discussed in this paper. This work proposes a multi-objective genetic algorithm approach for mining association rules for numerical data. Several measures are defined in order to determine more efficient rules. Three measures, confidence, interestingness, and comprehensibility have been used as different objectives for our multi objective optimization which is amplified with genetic algorithms approach. Finally, the best rules are obtained through Pareto optimality. This method is based on the notion of rough patterns that use rough values defined with upper and lower intervals to represent a range or set of values. Mutation and crossover operators give a powerful exploration ability to the method and allow it to find out the best intervals of existing numerical values. The experimental results show that the generated rules by this method are more appropriate – based on several different characteristics – than the similar approaches’ results, and our method outperforms these methods. |
| Author | Nasiri, M. Minaei-Bidgoli, B. Barmaki, R. |
| Author_xml | – sequence: 1 givenname: B. surname: Minaei-Bidgoli fullname: Minaei-Bidgoli, B. email: b_minaei@iust.ac.ir – sequence: 2 givenname: R. surname: Barmaki fullname: Barmaki, R. email: barmaki@comp.iust.ac.ir – sequence: 3 givenname: M. surname: Nasiri fullname: Nasiri, M. |
| BookMark | eNp9kL1OwzAUhS1UJNrCA7DlBRKu7cRJxIQqfioVscBsOc5NuVHqINutxNuTUiaGTmf6js75FmzmRoeM3XLIOHB112fkQiaAywx4BqK6YHNelSJVouYzNgcQkIIoiiu2CKEHgLxUas7Wr-TIbRO336Ena4bEhDBaMpFGl_j9gCE5kEl2-yFSOjY92kgHTLboMJJNzLAdPcXPXbhml50ZAt785ZJ9PD2-r17SzdvzevWwSa1UMqYWFRadtcZa21UNz2vsZGcKWzWNkLKs6q6uRFuWgoPhVV6rPJeKW2zbvMgB5ZLxU6_1YwgeO_3laWf8t-agjy50rycX-uhCA9eTi4kp_zGW4u_F6A0NZ8n7E4nTpQOh18ESumkO-UmFbkc6Q_8AZNF9Sw |
| CitedBy_id | crossref_primary_10_1007_s00500_019_04226_6 crossref_primary_10_3390_buildings12122111 crossref_primary_10_1007_s11831_024_10109_3 crossref_primary_10_3233_THC_171322 crossref_primary_10_1016_j_ins_2013_06_038 crossref_primary_10_1016_j_engappai_2018_09_009 crossref_primary_10_1007_s00521_022_07985_w crossref_primary_10_1007_s00500_023_09558_y crossref_primary_10_1002_widm_1307 crossref_primary_10_1007_s00521_017_3278_z crossref_primary_10_1007_s12293_016_0220_3 crossref_primary_10_1016_j_jcde_2017_03_001 crossref_primary_10_1016_j_asoc_2023_110233 crossref_primary_10_3390_en12010102 crossref_primary_10_1016_j_ins_2020_02_073 crossref_primary_10_3390_app14083460 crossref_primary_10_1016_j_eswa_2013_12_043 crossref_primary_10_1007_s10489_016_0806_y crossref_primary_10_1016_j_cie_2022_108022 crossref_primary_10_1016_j_cie_2019_01_040 crossref_primary_10_1109_TKDE_2020_3033519 crossref_primary_10_20965_jaciii_2022_p0671 crossref_primary_10_1109_TEVC_2017_2688863 crossref_primary_10_1016_j_ins_2015_03_015 crossref_primary_10_1109_MCI_2017_2708578 crossref_primary_10_3233_JIFS_16963 crossref_primary_10_1007_s12559_025_10486_2 crossref_primary_10_1016_j_procs_2022_09_336 crossref_primary_10_1016_j_knosys_2015_07_016 crossref_primary_10_1016_j_ins_2016_01_094 crossref_primary_10_1080_09544828_2018_1475629 crossref_primary_10_1016_j_ins_2014_04_055 crossref_primary_10_1016_j_ins_2015_10_001 crossref_primary_10_1007_s00500_021_06613_4 crossref_primary_10_3390_math13121957 crossref_primary_10_1016_j_asoc_2017_09_033 crossref_primary_10_1109_TBDATA_2020_2993446 crossref_primary_10_1016_j_ins_2013_12_031 crossref_primary_10_1007_s00500_020_05064_7 crossref_primary_10_1007_s10489_019_01464_x crossref_primary_10_1016_j_ins_2014_02_102 crossref_primary_10_1016_j_ins_2020_12_055 crossref_primary_10_1007_s10115_018_1206_x crossref_primary_10_1007_s00500_016_2266_z crossref_primary_10_3233_IDA_160069 crossref_primary_10_3390_math13132122 |
| Cites_doi | 10.1016/j.eswa.2010.06.060 10.1109/NAFIPS.2001.943736 10.1109/ICDE.1995.380413 10.1007/978-3-642-21222-2_33 10.1145/170036.170072 10.1007/3-540-47887-6_5 10.1016/j.chaos.2008.04.024 10.1023/A:1022812808206 10.1016/j.ins.2010.04.013 10.1109/TKDE.2002.1000342 10.1016/j.asoc.2007.05.003 10.1109/TFUZZ.2007.903327 10.1016/j.ins.2003.03.021 10.1007/s10115-007-0104-4 10.1016/j.ins.2010.07.020 10.1109/HICSS.2007.341 10.1109/GRC.2008.4664771 10.1016/j.ins.2010.09.027 10.4156/jcit.vol5.issue1.8 10.1016/j.eswa.2008.01.028 10.1016/j.fss.2004.09.014 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. |
| Copyright_xml | – notice: 2013 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2013.01.028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 24 |
| ExternalDocumentID | 10_1016_j_ins_2013_01_028 S0020025513001072 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD |
| ID | FETCH-LOGICAL-c363t-ce6e5fccacccf8b149ef3fa5c8bb233789f982d77210a1849644361cedd4540e3 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317546100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:59:36 EST 2025 Sat Nov 29 07:59:11 EST 2025 Fri Feb 23 02:23:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective genetic algorithms Comprehensibility Rough value Interestingness Numerical association rule Confidence |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-ce6e5fccacccf8b149ef3fa5c8bb233789f982d77210a1849644361cedd4540e3 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2013_01_028 crossref_citationtrail_10_1016_j_ins_2013_01_028 elsevier_sciencedirect_doi_10_1016_j_ins_2013_01_028 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-01 2013-6-00 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Nasiri, Taghavi, Minaee (b0140) 2010; 5 Chen, Tseng, Hong (b0050) 2008; 16 Liu, Hsu, Chen, Ma (b0115) 2000 Tseng, Kuo, Huang (b0160) 2010; 180 R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in: ACM SIGMOD Record, vol. 22, ACM, pp. 207–216. Ke, Cheng, Ng (b0095) 2008; 16 Li, Li (b0105) 2010; 180 M. Asadollahpoor-Chamazi, B. Minaei-Bidgoli, M. Nasiri, Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach, Soft Computing (2013) C. Chen, T. Hong, V. Tseng, L. Chen, A multi-objective genetic-fuzzy mining algorithm, in: IEEE International Conference on Granular Computing, 2008, GrC 2008, IEEE, pp. 115–120. Wakabi-Waiswa, Baryamureeba (b0165) 2008; 2 Mata, Alvarez, Riquelme (b0135) 2002 Lobo, Goldberg, Pelikan (b0120) 2000 A. Salleb-Aouissi, C. Vrain, C. Nortet, Quantminer: a genetic algorithm for mining quantitative association rules, in: Proceedings of the 2007 International Join Conference on Artificial Intelligence, pp. 1035–1040. Mansingh, Osei-Bryson, Reichgelt (b0130) 2011; 181 Alatas, Akin (b0025) 2008; 12 H. Guvenir, I. Uysal, Bilkent University Function Approximation Repository, 2000. Kumar (b0100) 2011 B. Chien, Z. Lin, T. Hong, An efficient clustering algorithm for mining fuzzy quantitative association rules, in: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, vol. 3, IEEE, pp. 1306–1311. Abraham, Jain (b0005) 2005 Freitas (b0065) 2003 Alatas, Akin, Karci (b0035) 2008; 8 Kaya, Alhajj (b0090) 2005; 152 Alatas, Akin (b0030) 2009; 41 Ghosh, Nath (b0075) 2004; 163 D. Olson, Y. Li, Mining fuzzy weighted association rules, in: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, IEEE, pp. 53–53. Cios, Pedrycz, Świniarski, Swiniarski (b0060) 1998 Yan, Zhang, Zhang (b0170) 2009; 36 Fukuda, Morimoto, Morishita, Tokuyama (b0070) 1996 Lin, Kedem (b0110) 2002 Alataş, Akin (b0020) 2006; 10 . R. Agrawal, R. Srikant, et al., Fast algorithms for mining association rules, in: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, Citeseer, pp. 487–499. Pachón, Mata, Domı´nguez, Maña (b0150) 2011; 6679 C. Lucas, Practical Multiobjective Optimisation, 2006. Aumann, Lindell (b0040) 2003; 20 Qodmanan, Nasiri, Minaei-Bidgoli (b0180) 2011; 38 M. Houtsma, A. Swami, Set-oriented mining for association rules in relational databases, International Conference on Data Engineering, 1995, pp. 25. Kumar (10.1016/j.ins.2013.01.028_b0100) 2011 Alatas (10.1016/j.ins.2013.01.028_b0035) 2008; 8 10.1016/j.ins.2013.01.028_b0015 Wakabi-Waiswa (10.1016/j.ins.2013.01.028_b0165) 2008; 2 10.1016/j.ins.2013.01.028_b0055 10.1016/j.ins.2013.01.028_b0155 10.1016/j.ins.2013.01.028_b0010 Kaya (10.1016/j.ins.2013.01.028_b0090) 2005; 152 Qodmanan (10.1016/j.ins.2013.01.028_b0180) 2011; 38 Mansingh (10.1016/j.ins.2013.01.028_b0130) 2011; 181 Li (10.1016/j.ins.2013.01.028_b0105) 2010; 180 Tseng (10.1016/j.ins.2013.01.028_b0160) 2010; 180 Ke (10.1016/j.ins.2013.01.028_b0095) 2008; 16 Alatas (10.1016/j.ins.2013.01.028_b0025) 2008; 12 Pachón (10.1016/j.ins.2013.01.028_b0150) 2011; 6679 Chen (10.1016/j.ins.2013.01.028_b0050) 2008; 16 Aumann (10.1016/j.ins.2013.01.028_b0040) 2003; 20 Lin (10.1016/j.ins.2013.01.028_b0110) 2002 Freitas (10.1016/j.ins.2013.01.028_b0065) 2003 Fukuda (10.1016/j.ins.2013.01.028_b0070) 1996 10.1016/j.ins.2013.01.028_b0085 Liu (10.1016/j.ins.2013.01.028_b0115) 2000 10.1016/j.ins.2013.01.028_b0080 Abraham (10.1016/j.ins.2013.01.028_b0005) 2005 Alatas (10.1016/j.ins.2013.01.028_b0030) 2009; 41 10.1016/j.ins.2013.01.028_b0125 10.1016/j.ins.2013.01.028_b0145 10.1016/j.ins.2013.01.028_b0045 10.1016/j.ins.2013.01.028_b0185 Ghosh (10.1016/j.ins.2013.01.028_b0075) 2004; 163 Lobo (10.1016/j.ins.2013.01.028_b0120) 2000 Cios (10.1016/j.ins.2013.01.028_b0060) 1998 Mata (10.1016/j.ins.2013.01.028_b0135) 2002 Nasiri (10.1016/j.ins.2013.01.028_b0140) 2010; 5 Yan (10.1016/j.ins.2013.01.028_b0170) 2009; 36 Alataş (10.1016/j.ins.2013.01.028_b0020) 2006; 10 |
| References_xml | – year: 1998 ident: b0060 article-title: Data Mining Methods for Knowledge Discovery – reference: R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in: ACM SIGMOD Record, vol. 22, ACM, pp. 207–216. – volume: 10 start-page: 230 year: 2006 end-page: 237 ident: b0020 article-title: An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Computing-A Fusion of Foundations publication-title: Methodologies and Applications – start-page: 1 year: 2005 end-page: 6 ident: b0005 article-title: Evolutionary multiobjective optimization publication-title: Evolutionary Multiobjective Optimization – volume: 41 start-page: 939 year: 2009 end-page: 950 ident: b0030 article-title: Chaotically encoded particle swarm optimization algorithm and its applications publication-title: Chaos, Solitons & Fractals – reference: A. Salleb-Aouissi, C. Vrain, C. Nortet, Quantminer: a genetic algorithm for mining quantitative association rules, in: Proceedings of the 2007 International Join Conference on Artificial Intelligence, pp. 1035–1040. – reference: B. Chien, Z. Lin, T. Hong, An efficient clustering algorithm for mining fuzzy quantitative association rules, in: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, vol. 3, IEEE, pp. 1306–1311. – volume: 180 start-page: 2960 year: 2010 end-page: 2978 ident: b0105 article-title: Novel alarm correlation analysis system based on association rules mining in telecommunication networks publication-title: Information Sciences – reference: R. Agrawal, R. Srikant, et al., Fast algorithms for mining association rules, in: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, Citeseer, pp. 487–499. – volume: 12 start-page: 1205 year: 2008 end-page: 1218 ident: b0025 article-title: Rough particle swarm optimization and its applications in data mining, Soft Computing-A Fusion of Foundations publication-title: Methodologies and Applications – reference: C. Chen, T. Hong, V. Tseng, L. Chen, A multi-objective genetic-fuzzy mining algorithm, in: IEEE International Conference on Granular Computing, 2008, GrC 2008, IEEE, pp. 115–120. – reference: M. Houtsma, A. Swami, Set-oriented mining for association rules in relational databases, International Conference on Data Engineering, 1995, pp. 25. – volume: 6679 start-page: 271 year: 2011 end-page: 278 ident: b0150 article-title: Multi-objective evolutionary approach for subgroup discovery publication-title: Hybrid Artificial Intelligent Systems – volume: 180 start-page: 4263 year: 2010 end-page: 4289 ident: b0160 article-title: Toward boosting distributed association rule mining by data de-clustering publication-title: Information Sciences – reference: M. Asadollahpoor-Chamazi, B. Minaei-Bidgoli, M. Nasiri, Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach, Soft Computing (2013), – year: 2003 ident: b0065 article-title: A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery – volume: 163 start-page: 123 year: 2004 end-page: 133 ident: b0075 article-title: Multi-objective rule mining using genetic algorithms publication-title: Information Sciences – volume: 36 start-page: 3066 year: 2009 end-page: 3076 ident: b0170 article-title: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support publication-title: Expert Systems with Applications – reference: D. Olson, Y. Li, Mining fuzzy weighted association rules, in: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, IEEE, pp. 53–53. – volume: 2 start-page: 1139 year: 2008 end-page: 1818 ident: b0165 article-title: Extraction of interesting association rules using genetic algorithms publication-title: International Journal of Computing and ICT Research – volume: 181 start-page: 419 year: 2011 end-page: 434 ident: b0130 article-title: Using ontologies to facilitate post-processing of association rules by domain experts publication-title: Information Sciences – start-page: 40 year: 2002 end-page: 51 ident: b0135 article-title: Discovering numeric association rules via evolutionary algorithm publication-title: Advances in Knowledge Discovery and Data Mining – volume: 8 start-page: 646 year: 2008 end-page: 656 ident: b0035 article-title: Modenar: multi-objective differential evolution algorithm for mining numeric association rules publication-title: Applied Soft Computing – start-page: 553 year: 2002 end-page: 566 ident: b0110 article-title: Pincer-search: an efficient algorithm for discovering the maximum frequent set publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 604 year: 2011 end-page: 613 ident: b0100 article-title: A genetic algorithm with entropy based probabilistic initialization and memory for automated rule mining publication-title: Advances in Computer Science and Information Technology – volume: 16 start-page: 249 year: 2008 end-page: 262 ident: b0050 article-title: Cluster-based evaluation in fuzzy-genetic data mining publication-title: IEEE Transactions on Fuzzy Systems – reference: C. Lucas, Practical Multiobjective Optimisation, 2006. < – volume: 5 start-page: 60 year: 2010 end-page: 68 ident: b0140 article-title: Multi-objective rule mining using simulated annealing algorithm publication-title: Journal of Convergence Information Technology – reference: >. – start-page: 151 year: 2000 end-page: 158 ident: b0120 article-title: Time complexity of genetic algorithms on exponentially scaled problems publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – volume: 16 start-page: 213 year: 2008 end-page: 244 ident: b0095 article-title: An information-theoretic approach to quantitative association rule mining publication-title: Knowledge and Information Systems – reference: H. Guvenir, I. Uysal, Bilkent University Function Approximation Repository, 2000. < – start-page: 182 year: 1996 end-page: 191 ident: b0070 article-title: Mining optimized association rules for numeric attributes publication-title: Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of database systems, PODS ’96 – reference: . – start-page: 47 year: 2000 end-page: 55 ident: b0115 article-title: Analyzing the subjective interestingness of association rules publication-title: IEEE Intelligent Systems – volume: 20 start-page: 255 year: 2003 end-page: 283 ident: b0040 article-title: A statistical theory for quantitative association rules publication-title: Journal of Intelligent Information Systems – volume: 38 start-page: 288 year: 2011 end-page: 298 ident: b0180 article-title: Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence publication-title: Expert Systems with applications – volume: 152 start-page: 587 year: 2005 end-page: 601 ident: b0090 article-title: Genetic algorithm based framework for mining fuzzy association rules publication-title: Fuzzy Sets and Systems – start-page: 151 year: 2000 ident: 10.1016/j.ins.2013.01.028_b0120 article-title: Time complexity of genetic algorithms on exponentially scaled problems – volume: 38 start-page: 288 issue: 1 year: 2011 ident: 10.1016/j.ins.2013.01.028_b0180 article-title: Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence publication-title: Expert Systems with applications doi: 10.1016/j.eswa.2010.06.060 – ident: 10.1016/j.ins.2013.01.028_b0125 – ident: 10.1016/j.ins.2013.01.028_b0055 doi: 10.1109/NAFIPS.2001.943736 – ident: 10.1016/j.ins.2013.01.028_b0155 – ident: 10.1016/j.ins.2013.01.028_b0085 doi: 10.1109/ICDE.1995.380413 – volume: 6679 start-page: 271 year: 2011 ident: 10.1016/j.ins.2013.01.028_b0150 article-title: Multi-objective evolutionary approach for subgroup discovery publication-title: Hybrid Artificial Intelligent Systems doi: 10.1007/978-3-642-21222-2_33 – ident: 10.1016/j.ins.2013.01.028_b0010 doi: 10.1145/170036.170072 – start-page: 604 year: 2011 ident: 10.1016/j.ins.2013.01.028_b0100 article-title: A genetic algorithm with entropy based probabilistic initialization and memory for automated rule mining publication-title: Advances in Computer Science and Information Technology – start-page: 40 year: 2002 ident: 10.1016/j.ins.2013.01.028_b0135 article-title: Discovering numeric association rules via evolutionary algorithm publication-title: Advances in Knowledge Discovery and Data Mining doi: 10.1007/3-540-47887-6_5 – volume: 41 start-page: 939 year: 2009 ident: 10.1016/j.ins.2013.01.028_b0030 article-title: Chaotically encoded particle swarm optimization algorithm and its applications publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2008.04.024 – volume: 10 start-page: 230 year: 2006 ident: 10.1016/j.ins.2013.01.028_b0020 article-title: An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Computing-A Fusion of Foundations publication-title: Methodologies and Applications – volume: 20 start-page: 255 year: 2003 ident: 10.1016/j.ins.2013.01.028_b0040 article-title: A statistical theory for quantitative association rules publication-title: Journal of Intelligent Information Systems doi: 10.1023/A:1022812808206 – ident: 10.1016/j.ins.2013.01.028_b0080 – start-page: 1 year: 2005 ident: 10.1016/j.ins.2013.01.028_b0005 article-title: Evolutionary multiobjective optimization – volume: 180 start-page: 2960 year: 2010 ident: 10.1016/j.ins.2013.01.028_b0105 article-title: Novel alarm correlation analysis system based on association rules mining in telecommunication networks publication-title: Information Sciences doi: 10.1016/j.ins.2010.04.013 – start-page: 553 year: 2002 ident: 10.1016/j.ins.2013.01.028_b0110 article-title: Pincer-search: an efficient algorithm for discovering the maximum frequent set publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2002.1000342 – volume: 12 start-page: 1205 year: 2008 ident: 10.1016/j.ins.2013.01.028_b0025 article-title: Rough particle swarm optimization and its applications in data mining, Soft Computing-A Fusion of Foundations publication-title: Methodologies and Applications – volume: 8 start-page: 646 year: 2008 ident: 10.1016/j.ins.2013.01.028_b0035 article-title: Modenar: multi-objective differential evolution algorithm for mining numeric association rules publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.05.003 – volume: 16 start-page: 249 year: 2008 ident: 10.1016/j.ins.2013.01.028_b0050 article-title: Cluster-based evaluation in fuzzy-genetic data mining publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2007.903327 – start-page: 182 year: 1996 ident: 10.1016/j.ins.2013.01.028_b0070 article-title: Mining optimized association rules for numeric attributes – year: 2003 ident: 10.1016/j.ins.2013.01.028_b0065 – volume: 163 start-page: 123 year: 2004 ident: 10.1016/j.ins.2013.01.028_b0075 article-title: Multi-objective rule mining using genetic algorithms publication-title: Information Sciences doi: 10.1016/j.ins.2003.03.021 – ident: 10.1016/j.ins.2013.01.028_b0015 – volume: 16 start-page: 213 year: 2008 ident: 10.1016/j.ins.2013.01.028_b0095 article-title: An information-theoretic approach to quantitative association rule mining publication-title: Knowledge and Information Systems doi: 10.1007/s10115-007-0104-4 – ident: 10.1016/j.ins.2013.01.028_b0185 – year: 1998 ident: 10.1016/j.ins.2013.01.028_b0060 – volume: 180 start-page: 4263 year: 2010 ident: 10.1016/j.ins.2013.01.028_b0160 article-title: Toward boosting distributed association rule mining by data de-clustering publication-title: Information Sciences doi: 10.1016/j.ins.2010.07.020 – start-page: 47 year: 2000 ident: 10.1016/j.ins.2013.01.028_b0115 article-title: Analyzing the subjective interestingness of association rules publication-title: IEEE Intelligent Systems – ident: 10.1016/j.ins.2013.01.028_b0145 doi: 10.1109/HICSS.2007.341 – ident: 10.1016/j.ins.2013.01.028_b0045 doi: 10.1109/GRC.2008.4664771 – volume: 181 start-page: 419 year: 2011 ident: 10.1016/j.ins.2013.01.028_b0130 article-title: Using ontologies to facilitate post-processing of association rules by domain experts publication-title: Information Sciences doi: 10.1016/j.ins.2010.09.027 – volume: 5 start-page: 60 year: 2010 ident: 10.1016/j.ins.2013.01.028_b0140 article-title: Multi-objective rule mining using simulated annealing algorithm publication-title: Journal of Convergence Information Technology doi: 10.4156/jcit.vol5.issue1.8 – volume: 36 start-page: 3066 year: 2009 ident: 10.1016/j.ins.2013.01.028_b0170 article-title: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.01.028 – volume: 152 start-page: 587 year: 2005 ident: 10.1016/j.ins.2013.01.028_b0090 article-title: Genetic algorithm based framework for mining fuzzy association rules publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2004.09.014 – volume: 2 start-page: 1139 year: 2008 ident: 10.1016/j.ins.2013.01.028_b0165 article-title: Extraction of interesting association rules using genetic algorithms publication-title: International Journal of Computing and ICT Research |
| SSID | ssj0004766 |
| Score | 2.3632128 |
| Snippet | Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Comprehensibility Confidence Interestingness Multi-objective genetic algorithms Numerical association rule Rough value |
| Title | Mining numerical association rules via multi-objective genetic algorithms |
| URI | https://dx.doi.org/10.1016/j.ins.2013.01.028 |
| Volume | 233 |
| WOSCitedRecordID | wos000317546100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLambQ_wgGADMWDID4iHRZ6SuK3txw0NsYlVCA3Ut8hxjkeqKp16mfbzOY6dy8ZFMGkvUeXWTeTvy7nY50LIO0AlUCQuqJ2nwAZQaKZEbJm1qtC5Siyvi-l8_yzGYzmZqC8hfn5ZtxMQVSVvbtTVg0KNYwi2S539D7jbP8UB_Iyg4xVhx-s_AX9et3yIqrU_i5lFukMgWqxnsIyuS-0jCdk8n3qJ51opQ128dXY5X5SrH6GK-bSJdG-zHKOgNFtjHG-ooWTHZXE598nWx4fdBinO8p2xv7aDY70sfYL7-WF_16HuANHfdWjTYW5FazrbkzknxSsXL1GlSNko9S25GpGbct4Tmsmwp359RvUvgt3vMUzRG3E11hPua63KTou1sYXu-Ln2lNxBHTq3qJ-3UjFUKAS3jk5PJmdd2qzwR9nNUzeH3nX4350b_d5s6ZkiF0_Jk-BD0COP_TOyAdUOedyrLLlD9kM-Cn1Pe9DRIMl3yalnCW1ZQnssoTVLKLKE3mEJDSyhHUuek28fTy4-fGKhqwYzfMRXzMAIhhZfXGOMlTl6yGC51UMj8xxxEVJZJdMCva4k1uj_K7SY-SgxUBSuWiPwF2SzmlfwklArY6EgL_JE64EYSG3zGEwKhtsUv4j3SNwsWmZCyXnX-WSWNbGF0wzXOXPrnMVJhuu8Rw7aKVe-3srffjxokMgC970hmCFt_jzt1f2mvSaPujfhDdlcLdawT7bN9apcLt4Gcv0EtPiQjQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+numerical+association+rules+via+multi-objective+genetic+algorithms&rft.jtitle=Information+sciences&rft.au=Minaei-Bidgoli%2C+B.&rft.au=Barmaki%2C+R.&rft.au=Nasiri%2C+M.&rft.date=2013-06-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=233&rft.spage=15&rft.epage=24&rft_id=info:doi/10.1016%2Fj.ins.2013.01.028&rft.externalDocID=S0020025513001072 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |