Mining numerical association rules via multi-objective genetic algorithms

Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging point in the process of association rule discovery. Most of popular methods for association rule mining cannot be applied to the numerical data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 233; S. 15 - 24
Hauptverfasser: Minaei-Bidgoli, B., Barmaki, R., Nasiri, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.06.2013
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging point in the process of association rule discovery. Most of popular methods for association rule mining cannot be applied to the numerical data without data discretization. There have been efforts to resolve the problem of dealing with numeric data. These approaches suffer from problems which are discussed in this paper. This work proposes a multi-objective genetic algorithm approach for mining association rules for numerical data. Several measures are defined in order to determine more efficient rules. Three measures, confidence, interestingness, and comprehensibility have been used as different objectives for our multi objective optimization which is amplified with genetic algorithms approach. Finally, the best rules are obtained through Pareto optimality. This method is based on the notion of rough patterns that use rough values defined with upper and lower intervals to represent a range or set of values. Mutation and crossover operators give a powerful exploration ability to the method and allow it to find out the best intervals of existing numerical values. The experimental results show that the generated rules by this method are more appropriate – based on several different characteristics – than the similar approaches’ results, and our method outperforms these methods.
AbstractList Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging point in the process of association rule discovery. Most of popular methods for association rule mining cannot be applied to the numerical data without data discretization. There have been efforts to resolve the problem of dealing with numeric data. These approaches suffer from problems which are discussed in this paper. This work proposes a multi-objective genetic algorithm approach for mining association rules for numerical data. Several measures are defined in order to determine more efficient rules. Three measures, confidence, interestingness, and comprehensibility have been used as different objectives for our multi objective optimization which is amplified with genetic algorithms approach. Finally, the best rules are obtained through Pareto optimality. This method is based on the notion of rough patterns that use rough values defined with upper and lower intervals to represent a range or set of values. Mutation and crossover operators give a powerful exploration ability to the method and allow it to find out the best intervals of existing numerical values. The experimental results show that the generated rules by this method are more appropriate – based on several different characteristics – than the similar approaches’ results, and our method outperforms these methods.
Author Nasiri, M.
Minaei-Bidgoli, B.
Barmaki, R.
Author_xml – sequence: 1
  givenname: B.
  surname: Minaei-Bidgoli
  fullname: Minaei-Bidgoli, B.
  email: b_minaei@iust.ac.ir
– sequence: 2
  givenname: R.
  surname: Barmaki
  fullname: Barmaki, R.
  email: barmaki@comp.iust.ac.ir
– sequence: 3
  givenname: M.
  surname: Nasiri
  fullname: Nasiri, M.
BookMark eNp9kL1OwzAUhS1UJNrCA7DlBRKu7cRJxIQqfioVscBsOc5NuVHqINutxNuTUiaGTmf6js75FmzmRoeM3XLIOHB112fkQiaAywx4BqK6YHNelSJVouYzNgcQkIIoiiu2CKEHgLxUas7Wr-TIbRO336Ena4bEhDBaMpFGl_j9gCE5kEl2-yFSOjY92kgHTLboMJJNzLAdPcXPXbhml50ZAt785ZJ9PD2-r17SzdvzevWwSa1UMqYWFRadtcZa21UNz2vsZGcKWzWNkLKs6q6uRFuWgoPhVV6rPJeKW2zbvMgB5ZLxU6_1YwgeO_3laWf8t-agjy50rycX-uhCA9eTi4kp_zGW4u_F6A0NZ8n7E4nTpQOh18ESumkO-UmFbkc6Q_8AZNF9Sw
CitedBy_id crossref_primary_10_1007_s00500_019_04226_6
crossref_primary_10_3390_buildings12122111
crossref_primary_10_1007_s11831_024_10109_3
crossref_primary_10_3233_THC_171322
crossref_primary_10_1016_j_ins_2013_06_038
crossref_primary_10_1016_j_engappai_2018_09_009
crossref_primary_10_1007_s00521_022_07985_w
crossref_primary_10_1007_s00500_023_09558_y
crossref_primary_10_1002_widm_1307
crossref_primary_10_1007_s00521_017_3278_z
crossref_primary_10_1007_s12293_016_0220_3
crossref_primary_10_1016_j_jcde_2017_03_001
crossref_primary_10_1016_j_asoc_2023_110233
crossref_primary_10_3390_en12010102
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_3390_app14083460
crossref_primary_10_1016_j_eswa_2013_12_043
crossref_primary_10_1007_s10489_016_0806_y
crossref_primary_10_1016_j_cie_2022_108022
crossref_primary_10_1016_j_cie_2019_01_040
crossref_primary_10_1109_TKDE_2020_3033519
crossref_primary_10_20965_jaciii_2022_p0671
crossref_primary_10_1109_TEVC_2017_2688863
crossref_primary_10_1016_j_ins_2015_03_015
crossref_primary_10_1109_MCI_2017_2708578
crossref_primary_10_3233_JIFS_16963
crossref_primary_10_1007_s12559_025_10486_2
crossref_primary_10_1016_j_procs_2022_09_336
crossref_primary_10_1016_j_knosys_2015_07_016
crossref_primary_10_1016_j_ins_2016_01_094
crossref_primary_10_1080_09544828_2018_1475629
crossref_primary_10_1016_j_ins_2014_04_055
crossref_primary_10_1016_j_ins_2015_10_001
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_3390_math13121957
crossref_primary_10_1016_j_asoc_2017_09_033
crossref_primary_10_1109_TBDATA_2020_2993446
crossref_primary_10_1016_j_ins_2013_12_031
crossref_primary_10_1007_s00500_020_05064_7
crossref_primary_10_1007_s10489_019_01464_x
crossref_primary_10_1016_j_ins_2014_02_102
crossref_primary_10_1016_j_ins_2020_12_055
crossref_primary_10_1007_s10115_018_1206_x
crossref_primary_10_1007_s00500_016_2266_z
crossref_primary_10_3233_IDA_160069
crossref_primary_10_3390_math13132122
Cites_doi 10.1016/j.eswa.2010.06.060
10.1109/NAFIPS.2001.943736
10.1109/ICDE.1995.380413
10.1007/978-3-642-21222-2_33
10.1145/170036.170072
10.1007/3-540-47887-6_5
10.1016/j.chaos.2008.04.024
10.1023/A:1022812808206
10.1016/j.ins.2010.04.013
10.1109/TKDE.2002.1000342
10.1016/j.asoc.2007.05.003
10.1109/TFUZZ.2007.903327
10.1016/j.ins.2003.03.021
10.1007/s10115-007-0104-4
10.1016/j.ins.2010.07.020
10.1109/HICSS.2007.341
10.1109/GRC.2008.4664771
10.1016/j.ins.2010.09.027
10.4156/jcit.vol5.issue1.8
10.1016/j.eswa.2008.01.028
10.1016/j.fss.2004.09.014
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2013.01.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 24
ExternalDocumentID 10_1016_j_ins_2013_01_028
S0020025513001072
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
ID FETCH-LOGICAL-c363t-ce6e5fccacccf8b149ef3fa5c8bb233789f982d77210a1849644361cedd4540e3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317546100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:59:36 EST 2025
Sat Nov 29 07:59:11 EST 2025
Fri Feb 23 02:23:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective genetic algorithms
Comprehensibility
Rough value
Interestingness
Numerical association rule
Confidence
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-ce6e5fccacccf8b149ef3fa5c8bb233789f982d77210a1849644361cedd4540e3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_ins_2013_01_028
crossref_citationtrail_10_1016_j_ins_2013_01_028
elsevier_sciencedirect_doi_10_1016_j_ins_2013_01_028
PublicationCentury 2000
PublicationDate 2013-06-01
2013-6-00
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Nasiri, Taghavi, Minaee (b0140) 2010; 5
Chen, Tseng, Hong (b0050) 2008; 16
Liu, Hsu, Chen, Ma (b0115) 2000
Tseng, Kuo, Huang (b0160) 2010; 180
R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in: ACM SIGMOD Record, vol. 22, ACM, pp. 207–216.
Ke, Cheng, Ng (b0095) 2008; 16
Li, Li (b0105) 2010; 180
M. Asadollahpoor-Chamazi, B. Minaei-Bidgoli, M. Nasiri, Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach, Soft Computing (2013)
C. Chen, T. Hong, V. Tseng, L. Chen, A multi-objective genetic-fuzzy mining algorithm, in: IEEE International Conference on Granular Computing, 2008, GrC 2008, IEEE, pp. 115–120.
Wakabi-Waiswa, Baryamureeba (b0165) 2008; 2
Mata, Alvarez, Riquelme (b0135) 2002
Lobo, Goldberg, Pelikan (b0120) 2000
A. Salleb-Aouissi, C. Vrain, C. Nortet, Quantminer: a genetic algorithm for mining quantitative association rules, in: Proceedings of the 2007 International Join Conference on Artificial Intelligence, pp. 1035–1040.
Mansingh, Osei-Bryson, Reichgelt (b0130) 2011; 181
Alatas, Akin (b0025) 2008; 12
H. Guvenir, I. Uysal, Bilkent University Function Approximation Repository, 2000.
Kumar (b0100) 2011
B. Chien, Z. Lin, T. Hong, An efficient clustering algorithm for mining fuzzy quantitative association rules, in: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, vol. 3, IEEE, pp. 1306–1311.
Abraham, Jain (b0005) 2005
Freitas (b0065) 2003
Alatas, Akin, Karci (b0035) 2008; 8
Kaya, Alhajj (b0090) 2005; 152
Alatas, Akin (b0030) 2009; 41
Ghosh, Nath (b0075) 2004; 163
D. Olson, Y. Li, Mining fuzzy weighted association rules, in: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, IEEE, pp. 53–53.
Cios, Pedrycz, Świniarski, Swiniarski (b0060) 1998
Yan, Zhang, Zhang (b0170) 2009; 36
Fukuda, Morimoto, Morishita, Tokuyama (b0070) 1996
Lin, Kedem (b0110) 2002
Alataş, Akin (b0020) 2006; 10
.
R. Agrawal, R. Srikant, et al., Fast algorithms for mining association rules, in: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, Citeseer, pp. 487–499.
Pachón, Mata, Domı´nguez, Maña (b0150) 2011; 6679
C. Lucas, Practical Multiobjective Optimisation, 2006.
Aumann, Lindell (b0040) 2003; 20
Qodmanan, Nasiri, Minaei-Bidgoli (b0180) 2011; 38
M. Houtsma, A. Swami, Set-oriented mining for association rules in relational databases, International Conference on Data Engineering, 1995, pp. 25.
Kumar (10.1016/j.ins.2013.01.028_b0100) 2011
Alatas (10.1016/j.ins.2013.01.028_b0035) 2008; 8
10.1016/j.ins.2013.01.028_b0015
Wakabi-Waiswa (10.1016/j.ins.2013.01.028_b0165) 2008; 2
10.1016/j.ins.2013.01.028_b0055
10.1016/j.ins.2013.01.028_b0155
10.1016/j.ins.2013.01.028_b0010
Kaya (10.1016/j.ins.2013.01.028_b0090) 2005; 152
Qodmanan (10.1016/j.ins.2013.01.028_b0180) 2011; 38
Mansingh (10.1016/j.ins.2013.01.028_b0130) 2011; 181
Li (10.1016/j.ins.2013.01.028_b0105) 2010; 180
Tseng (10.1016/j.ins.2013.01.028_b0160) 2010; 180
Ke (10.1016/j.ins.2013.01.028_b0095) 2008; 16
Alatas (10.1016/j.ins.2013.01.028_b0025) 2008; 12
Pachón (10.1016/j.ins.2013.01.028_b0150) 2011; 6679
Chen (10.1016/j.ins.2013.01.028_b0050) 2008; 16
Aumann (10.1016/j.ins.2013.01.028_b0040) 2003; 20
Lin (10.1016/j.ins.2013.01.028_b0110) 2002
Freitas (10.1016/j.ins.2013.01.028_b0065) 2003
Fukuda (10.1016/j.ins.2013.01.028_b0070) 1996
10.1016/j.ins.2013.01.028_b0085
Liu (10.1016/j.ins.2013.01.028_b0115) 2000
10.1016/j.ins.2013.01.028_b0080
Abraham (10.1016/j.ins.2013.01.028_b0005) 2005
Alatas (10.1016/j.ins.2013.01.028_b0030) 2009; 41
10.1016/j.ins.2013.01.028_b0125
10.1016/j.ins.2013.01.028_b0145
10.1016/j.ins.2013.01.028_b0045
10.1016/j.ins.2013.01.028_b0185
Ghosh (10.1016/j.ins.2013.01.028_b0075) 2004; 163
Lobo (10.1016/j.ins.2013.01.028_b0120) 2000
Cios (10.1016/j.ins.2013.01.028_b0060) 1998
Mata (10.1016/j.ins.2013.01.028_b0135) 2002
Nasiri (10.1016/j.ins.2013.01.028_b0140) 2010; 5
Yan (10.1016/j.ins.2013.01.028_b0170) 2009; 36
Alataş (10.1016/j.ins.2013.01.028_b0020) 2006; 10
References_xml – year: 1998
  ident: b0060
  article-title: Data Mining Methods for Knowledge Discovery
– reference: R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in: ACM SIGMOD Record, vol. 22, ACM, pp. 207–216.
– volume: 10
  start-page: 230
  year: 2006
  end-page: 237
  ident: b0020
  article-title: An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Computing-A Fusion of Foundations
  publication-title: Methodologies and Applications
– start-page: 1
  year: 2005
  end-page: 6
  ident: b0005
  article-title: Evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization
– volume: 41
  start-page: 939
  year: 2009
  end-page: 950
  ident: b0030
  article-title: Chaotically encoded particle swarm optimization algorithm and its applications
  publication-title: Chaos, Solitons & Fractals
– reference: A. Salleb-Aouissi, C. Vrain, C. Nortet, Quantminer: a genetic algorithm for mining quantitative association rules, in: Proceedings of the 2007 International Join Conference on Artificial Intelligence, pp. 1035–1040.
– reference: B. Chien, Z. Lin, T. Hong, An efficient clustering algorithm for mining fuzzy quantitative association rules, in: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, vol. 3, IEEE, pp. 1306–1311.
– volume: 180
  start-page: 2960
  year: 2010
  end-page: 2978
  ident: b0105
  article-title: Novel alarm correlation analysis system based on association rules mining in telecommunication networks
  publication-title: Information Sciences
– reference: R. Agrawal, R. Srikant, et al., Fast algorithms for mining association rules, in: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, Citeseer, pp. 487–499.
– volume: 12
  start-page: 1205
  year: 2008
  end-page: 1218
  ident: b0025
  article-title: Rough particle swarm optimization and its applications in data mining, Soft Computing-A Fusion of Foundations
  publication-title: Methodologies and Applications
– reference: C. Chen, T. Hong, V. Tseng, L. Chen, A multi-objective genetic-fuzzy mining algorithm, in: IEEE International Conference on Granular Computing, 2008, GrC 2008, IEEE, pp. 115–120.
– reference: M. Houtsma, A. Swami, Set-oriented mining for association rules in relational databases, International Conference on Data Engineering, 1995, pp. 25.
– volume: 6679
  start-page: 271
  year: 2011
  end-page: 278
  ident: b0150
  article-title: Multi-objective evolutionary approach for subgroup discovery
  publication-title: Hybrid Artificial Intelligent Systems
– volume: 180
  start-page: 4263
  year: 2010
  end-page: 4289
  ident: b0160
  article-title: Toward boosting distributed association rule mining by data de-clustering
  publication-title: Information Sciences
– reference: M. Asadollahpoor-Chamazi, B. Minaei-Bidgoli, M. Nasiri, Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach, Soft Computing (2013),
– year: 2003
  ident: b0065
  article-title: A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery
– volume: 163
  start-page: 123
  year: 2004
  end-page: 133
  ident: b0075
  article-title: Multi-objective rule mining using genetic algorithms
  publication-title: Information Sciences
– volume: 36
  start-page: 3066
  year: 2009
  end-page: 3076
  ident: b0170
  article-title: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
  publication-title: Expert Systems with Applications
– reference: D. Olson, Y. Li, Mining fuzzy weighted association rules, in: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, IEEE, pp. 53–53.
– volume: 2
  start-page: 1139
  year: 2008
  end-page: 1818
  ident: b0165
  article-title: Extraction of interesting association rules using genetic algorithms
  publication-title: International Journal of Computing and ICT Research
– volume: 181
  start-page: 419
  year: 2011
  end-page: 434
  ident: b0130
  article-title: Using ontologies to facilitate post-processing of association rules by domain experts
  publication-title: Information Sciences
– start-page: 40
  year: 2002
  end-page: 51
  ident: b0135
  article-title: Discovering numeric association rules via evolutionary algorithm
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: 8
  start-page: 646
  year: 2008
  end-page: 656
  ident: b0035
  article-title: Modenar: multi-objective differential evolution algorithm for mining numeric association rules
  publication-title: Applied Soft Computing
– start-page: 553
  year: 2002
  end-page: 566
  ident: b0110
  article-title: Pincer-search: an efficient algorithm for discovering the maximum frequent set
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 604
  year: 2011
  end-page: 613
  ident: b0100
  article-title: A genetic algorithm with entropy based probabilistic initialization and memory for automated rule mining
  publication-title: Advances in Computer Science and Information Technology
– volume: 16
  start-page: 249
  year: 2008
  end-page: 262
  ident: b0050
  article-title: Cluster-based evaluation in fuzzy-genetic data mining
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: C. Lucas, Practical Multiobjective Optimisation, 2006. <
– volume: 5
  start-page: 60
  year: 2010
  end-page: 68
  ident: b0140
  article-title: Multi-objective rule mining using simulated annealing algorithm
  publication-title: Journal of Convergence Information Technology
– reference: >.
– start-page: 151
  year: 2000
  end-page: 158
  ident: b0120
  article-title: Time complexity of genetic algorithms on exponentially scaled problems
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– volume: 16
  start-page: 213
  year: 2008
  end-page: 244
  ident: b0095
  article-title: An information-theoretic approach to quantitative association rule mining
  publication-title: Knowledge and Information Systems
– reference: H. Guvenir, I. Uysal, Bilkent University Function Approximation Repository, 2000. <
– start-page: 182
  year: 1996
  end-page: 191
  ident: b0070
  article-title: Mining optimized association rules for numeric attributes
  publication-title: Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of database systems, PODS ’96
– reference: .
– start-page: 47
  year: 2000
  end-page: 55
  ident: b0115
  article-title: Analyzing the subjective interestingness of association rules
  publication-title: IEEE Intelligent Systems
– volume: 20
  start-page: 255
  year: 2003
  end-page: 283
  ident: b0040
  article-title: A statistical theory for quantitative association rules
  publication-title: Journal of Intelligent Information Systems
– volume: 38
  start-page: 288
  year: 2011
  end-page: 298
  ident: b0180
  article-title: Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence
  publication-title: Expert Systems with applications
– volume: 152
  start-page: 587
  year: 2005
  end-page: 601
  ident: b0090
  article-title: Genetic algorithm based framework for mining fuzzy association rules
  publication-title: Fuzzy Sets and Systems
– start-page: 151
  year: 2000
  ident: 10.1016/j.ins.2013.01.028_b0120
  article-title: Time complexity of genetic algorithms on exponentially scaled problems
– volume: 38
  start-page: 288
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2013.01.028_b0180
  article-title: Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence
  publication-title: Expert Systems with applications
  doi: 10.1016/j.eswa.2010.06.060
– ident: 10.1016/j.ins.2013.01.028_b0125
– ident: 10.1016/j.ins.2013.01.028_b0055
  doi: 10.1109/NAFIPS.2001.943736
– ident: 10.1016/j.ins.2013.01.028_b0155
– ident: 10.1016/j.ins.2013.01.028_b0085
  doi: 10.1109/ICDE.1995.380413
– volume: 6679
  start-page: 271
  year: 2011
  ident: 10.1016/j.ins.2013.01.028_b0150
  article-title: Multi-objective evolutionary approach for subgroup discovery
  publication-title: Hybrid Artificial Intelligent Systems
  doi: 10.1007/978-3-642-21222-2_33
– ident: 10.1016/j.ins.2013.01.028_b0010
  doi: 10.1145/170036.170072
– start-page: 604
  year: 2011
  ident: 10.1016/j.ins.2013.01.028_b0100
  article-title: A genetic algorithm with entropy based probabilistic initialization and memory for automated rule mining
  publication-title: Advances in Computer Science and Information Technology
– start-page: 40
  year: 2002
  ident: 10.1016/j.ins.2013.01.028_b0135
  article-title: Discovering numeric association rules via evolutionary algorithm
  publication-title: Advances in Knowledge Discovery and Data Mining
  doi: 10.1007/3-540-47887-6_5
– volume: 41
  start-page: 939
  year: 2009
  ident: 10.1016/j.ins.2013.01.028_b0030
  article-title: Chaotically encoded particle swarm optimization algorithm and its applications
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2008.04.024
– volume: 10
  start-page: 230
  year: 2006
  ident: 10.1016/j.ins.2013.01.028_b0020
  article-title: An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Computing-A Fusion of Foundations
  publication-title: Methodologies and Applications
– volume: 20
  start-page: 255
  year: 2003
  ident: 10.1016/j.ins.2013.01.028_b0040
  article-title: A statistical theory for quantitative association rules
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1023/A:1022812808206
– ident: 10.1016/j.ins.2013.01.028_b0080
– start-page: 1
  year: 2005
  ident: 10.1016/j.ins.2013.01.028_b0005
  article-title: Evolutionary multiobjective optimization
– volume: 180
  start-page: 2960
  year: 2010
  ident: 10.1016/j.ins.2013.01.028_b0105
  article-title: Novel alarm correlation analysis system based on association rules mining in telecommunication networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.04.013
– start-page: 553
  year: 2002
  ident: 10.1016/j.ins.2013.01.028_b0110
  article-title: Pincer-search: an efficient algorithm for discovering the maximum frequent set
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2002.1000342
– volume: 12
  start-page: 1205
  year: 2008
  ident: 10.1016/j.ins.2013.01.028_b0025
  article-title: Rough particle swarm optimization and its applications in data mining, Soft Computing-A Fusion of Foundations
  publication-title: Methodologies and Applications
– volume: 8
  start-page: 646
  year: 2008
  ident: 10.1016/j.ins.2013.01.028_b0035
  article-title: Modenar: multi-objective differential evolution algorithm for mining numeric association rules
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.05.003
– volume: 16
  start-page: 249
  year: 2008
  ident: 10.1016/j.ins.2013.01.028_b0050
  article-title: Cluster-based evaluation in fuzzy-genetic data mining
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2007.903327
– start-page: 182
  year: 1996
  ident: 10.1016/j.ins.2013.01.028_b0070
  article-title: Mining optimized association rules for numeric attributes
– year: 2003
  ident: 10.1016/j.ins.2013.01.028_b0065
– volume: 163
  start-page: 123
  year: 2004
  ident: 10.1016/j.ins.2013.01.028_b0075
  article-title: Multi-objective rule mining using genetic algorithms
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2003.03.021
– ident: 10.1016/j.ins.2013.01.028_b0015
– volume: 16
  start-page: 213
  year: 2008
  ident: 10.1016/j.ins.2013.01.028_b0095
  article-title: An information-theoretic approach to quantitative association rule mining
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-007-0104-4
– ident: 10.1016/j.ins.2013.01.028_b0185
– year: 1998
  ident: 10.1016/j.ins.2013.01.028_b0060
– volume: 180
  start-page: 4263
  year: 2010
  ident: 10.1016/j.ins.2013.01.028_b0160
  article-title: Toward boosting distributed association rule mining by data de-clustering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.07.020
– start-page: 47
  year: 2000
  ident: 10.1016/j.ins.2013.01.028_b0115
  article-title: Analyzing the subjective interestingness of association rules
  publication-title: IEEE Intelligent Systems
– ident: 10.1016/j.ins.2013.01.028_b0145
  doi: 10.1109/HICSS.2007.341
– ident: 10.1016/j.ins.2013.01.028_b0045
  doi: 10.1109/GRC.2008.4664771
– volume: 181
  start-page: 419
  year: 2011
  ident: 10.1016/j.ins.2013.01.028_b0130
  article-title: Using ontologies to facilitate post-processing of association rules by domain experts
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.09.027
– volume: 5
  start-page: 60
  year: 2010
  ident: 10.1016/j.ins.2013.01.028_b0140
  article-title: Multi-objective rule mining using simulated annealing algorithm
  publication-title: Journal of Convergence Information Technology
  doi: 10.4156/jcit.vol5.issue1.8
– volume: 36
  start-page: 3066
  year: 2009
  ident: 10.1016/j.ins.2013.01.028_b0170
  article-title: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.01.028
– volume: 152
  start-page: 587
  year: 2005
  ident: 10.1016/j.ins.2013.01.028_b0090
  article-title: Genetic algorithm based framework for mining fuzzy association rules
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2004.09.014
– volume: 2
  start-page: 1139
  year: 2008
  ident: 10.1016/j.ins.2013.01.028_b0165
  article-title: Extraction of interesting association rules using genetic algorithms
  publication-title: International Journal of Computing and ICT Research
SSID ssj0004766
Score 2.3632128
Snippet Association rule discovery is an ever increasing area of interest in data mining. Finding rules for attributes with numerical values is still a challenging...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Comprehensibility
Confidence
Interestingness
Multi-objective genetic algorithms
Numerical association rule
Rough value
Title Mining numerical association rules via multi-objective genetic algorithms
URI https://dx.doi.org/10.1016/j.ins.2013.01.028
Volume 233
WOSCitedRecordID wos000317546100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLambQ_wgGADMWDID4iHRZ6SuK3txw0NsYlVCA3Ut8hxjkeqKp16mfbzOY6dy8ZFMGkvUeXWTeTvy7nY50LIO0AlUCQuqJ2nwAZQaKZEbJm1qtC5Siyvi-l8_yzGYzmZqC8hfn5ZtxMQVSVvbtTVg0KNYwi2S539D7jbP8UB_Iyg4xVhx-s_AX9et3yIqrU_i5lFukMgWqxnsIyuS-0jCdk8n3qJ51opQ128dXY5X5SrH6GK-bSJdG-zHKOgNFtjHG-ooWTHZXE598nWx4fdBinO8p2xv7aDY70sfYL7-WF_16HuANHfdWjTYW5FazrbkzknxSsXL1GlSNko9S25GpGbct4Tmsmwp359RvUvgt3vMUzRG3E11hPua63KTou1sYXu-Ln2lNxBHTq3qJ-3UjFUKAS3jk5PJmdd2qzwR9nNUzeH3nX4350b_d5s6ZkiF0_Jk-BD0COP_TOyAdUOedyrLLlD9kM-Cn1Pe9DRIMl3yalnCW1ZQnssoTVLKLKE3mEJDSyhHUuek28fTy4-fGKhqwYzfMRXzMAIhhZfXGOMlTl6yGC51UMj8xxxEVJZJdMCva4k1uj_K7SY-SgxUBSuWiPwF2SzmlfwklArY6EgL_JE64EYSG3zGEwKhtsUv4j3SNwsWmZCyXnX-WSWNbGF0wzXOXPrnMVJhuu8Rw7aKVe-3srffjxokMgC970hmCFt_jzt1f2mvSaPujfhDdlcLdawT7bN9apcLt4Gcv0EtPiQjQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+numerical+association+rules+via+multi-objective+genetic+algorithms&rft.jtitle=Information+sciences&rft.au=Minaei-Bidgoli%2C+B.&rft.au=Barmaki%2C+R.&rft.au=Nasiri%2C+M.&rft.date=2013-06-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=233&rft.spage=15&rft.epage=24&rft_id=info:doi/10.1016%2Fj.ins.2013.01.028&rft.externalDocID=S0020025513001072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon