Parameterized Counting of Partially Injective Homomorphisms

We study the parameterized complexity of the problem of counting graph homomorphisms with given partial injectivity constraints, i.e., inequalities between pairs of vertices, which subsumes counting of graph homomorphisms, subgraph counting and, more generally, counting of answers to equi-join queri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 83; číslo 6; s. 1829 - 1860
Hlavní autor: Roth, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2021
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the parameterized complexity of the problem of counting graph homomorphisms with given partial injectivity constraints, i.e., inequalities between pairs of vertices, which subsumes counting of graph homomorphisms, subgraph counting and, more generally, counting of answers to equi-join queries with inequalities. Our main result presents an exhaustive complexity classification for the problem in fixed-parameter tractable and # W [ 1 ] -complete cases. The proof relies on the framework of linear combinations of homomorphisms as independently discovered by Chen and Mengel (PODS 16) and by Curticapean, Dell and Marx in the recent breakthrough result regarding the exact complexity of the subgraph counting problem (STOC 17). Moreover, we invoke Rota’s NBC-Theorem to obtain an explicit criterion for fixed-parameter tractability based on treewidth. The abstract classification theorem is then applied to the problem of counting locally injective graph homomorphisms from small pattern graphs to large target graphs. As a consequence, we are able to fully classify its parameterized complexity depending on the class of allowed pattern graphs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00805-y