A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations
We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Gespeichert in:
| Veröffentlicht in: | The Ramanujan journal Jg. 56; H. 2; S. 585 - 596 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-4090, 1572-9303 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We describe a computationally efficient approach to resolving equations of the form
C
1
x
2
+
C
2
=
y
n
in coprime integers, for fixed values of
C
1
,
C
2
subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-021-00408-9 |