A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations
We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Uložené v:
| Vydané v: | The Ramanujan journal Ročník 56; číslo 2; s. 585 - 596 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We describe a computationally efficient approach to resolving equations of the form
C
1
x
2
+
C
2
=
y
n
in coprime integers, for fixed values of
C
1
,
C
2
subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier. |
|---|---|
| AbstractList | We describe a computationally efficient approach to resolving equations of the form C1x2+C2=yn in coprime integers, for fixed values of C1, C2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier. We describe a computationally efficient approach to resolving equations of the form $$C_1x^2 + C_2 = y^n$$ C 1 x 2 + C 2 = y n in coprime integers, for fixed values of $$C_1$$ C 1 , $$C_2$$ C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier. We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier. |
| Author | Patel, Vandita |
| Author_xml | – sequence: 1 givenname: Vandita orcidid: 0000-0003-0252-963X surname: Patel fullname: Patel, Vandita email: vandita.patel@manchester.ac.uk organization: Department of Mathematics, University of Manchester |
| BookMark | eNp9kM1Kw0AUhQepYFt9AVcB19H5ayZZluIfBBXR9XA7uUlT0kk7kyzc-Q6-oU_itBEEF4WBuXc43z13zoSMbGuRkEtGrxml6sYzxkQWU85iSiVN4-yEjNlM8TgTVIxCLVIeS5rRMzLxfk33KqHG5GUe5b0B__35leNqgy6C7da1YFZR10YVWnTQ1B6LKMcl-qrHoHyFDdh-DTbUT1Bh00S466GrW-vPyWkJjceL33tK3u9u3xYPcf58_7iY57ERiehiA4lkXLHQFSYpeIKwDA8sVcBNkZXSCD5blokpUl7KFIwqMFMSpAQGQikxJVfD3LDtrkff6XXbOxssNZ-l4Ugms6Dig8q41nuHpd66egPuQzOq98npITkdktOH5PQeSv9Bpu4Ov-sc1M1xVAyoDz62Qve31RHqB5I6h7I |
| CitedBy_id | crossref_primary_10_1112_blms_70141 crossref_primary_10_1016_j_indag_2024_03_011 |
| Cites_doi | 10.4153/CJM-2004-002-2 10.4064/aa127-1-6 10.1007/BF01457454 10.4064/aa-65-4-367-381 10.4064/aa-68-2-171-192 10.1016/S0019-3577(04)90021-3 10.1007/s11139-019-00165-w 10.1515/crll.1909.135.284 10.1006/jsco.1996.0125 10.1017/S0017089500031293 10.1112/S0010437X05001739 10.4064/aa-67-2-177-196 10.4064/aa109-2-8 10.1142/S1793042109002572 10.1017/CBO9781107359994 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s11139-021-00408-9 |
| DatabaseName | Springer Nature Open Access Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1572-9303 |
| EndPage | 596 |
| ExternalDocumentID | 10_1007_s11139_021_00408_9 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c363t-ca641271c36dc6d26eab412187a2cd9f4c325bf6cd82f48ac7de974a44a1a3773 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659798700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-4090 |
| IngestDate | Thu Sep 25 00:54:06 EDT 2025 Sat Nov 29 03:20:58 EST 2025 Tue Nov 18 20:49:13 EST 2025 Fri Feb 21 02:47:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Lehmer sequences 11D59 Secondary 11D41 Primitive divisor theorem Thue equation Primary 11D61 Exponential equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-ca641271c36dc6d26eab412187a2cd9f4c325bf6cd82f48ac7de974a44a1a3773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0252-963X |
| OpenAccessLink | https://link.springer.com/10.1007/s11139-021-00408-9 |
| PQID | 2582584149 |
| PQPubID | 2043831 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2582584149 crossref_primary_10_1007_s11139_021_00408_9 crossref_citationtrail_10_1007_s11139_021_00408_9 springer_journals_10_1007_s11139_021_00408_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
| PublicationTitle | The Ramanujan journal |
| PublicationTitleAbbrev | Ramanujan J |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ghanmi, Abu Muriefah (CR10) 2020; 53 Bilu, Hanrot, Voutier (CR4) 2001; 539 Cohn (CR8) 2003; 109 Bérczes, Pink (CR3) 2014; 22 Nagell (CR15) 1948; 30 Cohn (CR7) 1993; 4 Smart (CR17) 1998 Bugeaud, Mignotte, Siksek (CR5) 2006; 142 Lenstra, Lenstra, Lovász (CR13) 1982; 261 Stroeker, Tzanakis (CR18) 1994; 67 Gebel, Pethő, Zimmer (CR9) 1994; 68 Tengely (CR19) 2004; 15 Lebesgue (CR12) 1850; 9 Mignotte, de Weger (CR14) 1996; 38 Abu Muriefah, Luca, Siksek, Tengely (CR1) 2009; 5 Le, Soydan (CR11) 2020; 15 Ramanujan (CR16) 1913; 5 Thue (CR21) 1909; 135 Bennett, Skinner (CR2) 2004; 56 Tengely (CR20) 2007; 127 Bosma, Cannon, Playoust (CR6) 1997; 24 N Smart (408_CR17) 1998 A Bérczes (408_CR3) 2014; 22 T Nagell (408_CR15) 1948; 30 A Thue (408_CR21) 1909; 135 S Tengely (408_CR19) 2004; 15 FS Abu Muriefah (408_CR1) 2009; 5 Yu Bilu (408_CR4) 2001; 539 AK Lenstra (408_CR13) 1982; 261 MA Bennett (408_CR2) 2004; 56 N Ghanmi (408_CR10) 2020; 53 S Ramanujan (408_CR16) 1913; 5 M Mignotte (408_CR14) 1996; 38 VA Lebesgue (408_CR12) 1850; 9 RJ Stroeker (408_CR18) 1994; 67 JHE Cohn (408_CR7) 1993; 4 JHE Cohn (408_CR8) 2003; 109 M Le (408_CR11) 2020; 15 J Gebel (408_CR9) 1994; 68 W Bosma (408_CR6) 1997; 24 S Tengely (408_CR20) 2007; 127 Y Bugeaud (408_CR5) 2006; 142 |
| References_xml | – volume: 9 start-page: 178 year: 1850 end-page: 181 ident: CR12 article-title: Sur l’impossibilité en nombres entiers de l’équation publication-title: Nouvelles Ann. des Math. – volume: 56 start-page: 23 issue: 1 year: 2004 end-page: 54 ident: CR2 article-title: Ternary Diophantine equations via Galois representations and modular forms publication-title: Can. J. Math. doi: 10.4153/CJM-2004-002-2 – volume: 127 start-page: 71 year: 2007 end-page: 86 ident: CR20 article-title: On the Diophantine equation publication-title: Acta Arith doi: 10.4064/aa127-1-6 – volume: 261 start-page: 515 issue: 4 year: 1982 end-page: 534 ident: CR13 article-title: Factoring polynomials with rational coefficients publication-title: Math. Ann. doi: 10.1007/BF01457454 – volume: 4 start-page: 367 year: 1993 end-page: 381 ident: CR7 article-title: The Diophantine equation publication-title: Acta Arith. LXV. doi: 10.4064/aa-65-4-367-381 – volume: 68 start-page: 171 issue: 2 year: 1994 end-page: 192 ident: CR9 article-title: Computing integral points on elliptic curves publication-title: Acta Arith. doi: 10.4064/aa-68-2-171-192 – volume: 15 start-page: 291 year: 2004 end-page: 304 ident: CR19 article-title: On the Diophantine equation publication-title: Indag. Math. (N.S.), doi: 10.1016/S0019-3577(04)90021-3 – volume: 15 start-page: 473 year: 2020 end-page: 523 ident: CR11 article-title: A brief survey on the generalized Lebesgue–Ramanujan–Nagell equation publication-title: Surv. Math. Appl. – volume: 53 start-page: 389 issue: 2 year: 2020 end-page: 397 ident: CR10 article-title: On the Diophantine equation publication-title: Ramanujan J. doi: 10.1007/s11139-019-00165-w – volume: 135 start-page: 284 year: 1909 end-page: 305 ident: CR21 article-title: Über Annäherungswerte algebraischer Zahlen publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1909.135.284 – volume: 24 start-page: 235 issue: 3—-4 year: 1997 end-page: 265 ident: CR6 article-title: The Magma algebra system. I. The user language publication-title: J. Symbolic Comput doi: 10.1006/jsco.1996.0125 – volume: 38 start-page: 77 issue: 1 year: 1996 end-page: 85 ident: CR14 article-title: On the Diophantine equations and publication-title: Glasgow Math. J. doi: 10.1017/S0017089500031293 – volume: 142 start-page: 31 year: 2006 end-page: 62 ident: CR5 article-title: Classical and modular approaches to exponential Diophantine equations II publication-title: Compos. Math. doi: 10.1112/S0010437X05001739 – volume: 30 start-page: 62 year: 1948 end-page: 64 ident: CR15 article-title: L sning til oppgave nr 2, 1943, s. 29 publication-title: Nordisk Mat. Tidskr. – volume: 539 start-page: 75 year: 2001 end-page: 122 ident: CR4 article-title: Existence of primitive divisors of Lucas and Lehmer numbers publication-title: J. Reine Angew. Math. – volume: 67 start-page: 177 year: 1994 end-page: 196 ident: CR18 article-title: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms publication-title: Acta Arith. doi: 10.4064/aa-67-2-177-196 – volume: 5 start-page: 120 year: 1913 ident: CR16 article-title: Question 464 publication-title: J. Indian Math. Soc. – volume: 109 start-page: 205 issue: 2 year: 2003 end-page: 206 ident: CR8 article-title: The Diophantine equation . II publication-title: Acta Arith. doi: 10.4064/aa109-2-8 – volume: 22 start-page: 51 year: 2014 end-page: 71 ident: CR3 article-title: On generalized Lebesgue–Ramanujan–Nagell equations publication-title: An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. – volume: 5 start-page: 1117 issue: 6 year: 2009 end-page: 1128 ident: CR1 article-title: On the Diophantine equation publication-title: Int. J. Number Theory doi: 10.1142/S1793042109002572 – year: 1998 ident: CR17 publication-title: Efficient Resolution of Diophantine Equations, LMSST 41 doi: 10.1017/CBO9781107359994 – volume: 539 start-page: 75 year: 2001 ident: 408_CR4 publication-title: J. Reine Angew. Math. – volume-title: Efficient Resolution of Diophantine Equations, LMSST 41 year: 1998 ident: 408_CR17 doi: 10.1017/CBO9781107359994 – volume: 30 start-page: 62 year: 1948 ident: 408_CR15 publication-title: Nordisk Mat. Tidskr. – volume: 56 start-page: 23 issue: 1 year: 2004 ident: 408_CR2 publication-title: Can. J. Math. doi: 10.4153/CJM-2004-002-2 – volume: 38 start-page: 77 issue: 1 year: 1996 ident: 408_CR14 publication-title: Glasgow Math. J. doi: 10.1017/S0017089500031293 – volume: 127 start-page: 71 year: 2007 ident: 408_CR20 publication-title: Acta Arith doi: 10.4064/aa127-1-6 – volume: 15 start-page: 291 year: 2004 ident: 408_CR19 publication-title: Indag. Math. (N.S.), doi: 10.1016/S0019-3577(04)90021-3 – volume: 15 start-page: 473 year: 2020 ident: 408_CR11 publication-title: Surv. Math. Appl. – volume: 9 start-page: 178 year: 1850 ident: 408_CR12 publication-title: Nouvelles Ann. des Math. – volume: 5 start-page: 1117 issue: 6 year: 2009 ident: 408_CR1 publication-title: Int. J. Number Theory doi: 10.1142/S1793042109002572 – volume: 261 start-page: 515 issue: 4 year: 1982 ident: 408_CR13 publication-title: Math. Ann. doi: 10.1007/BF01457454 – volume: 109 start-page: 205 issue: 2 year: 2003 ident: 408_CR8 publication-title: Acta Arith. doi: 10.4064/aa109-2-8 – volume: 4 start-page: 367 year: 1993 ident: 408_CR7 publication-title: Acta Arith. LXV. doi: 10.4064/aa-65-4-367-381 – volume: 142 start-page: 31 year: 2006 ident: 408_CR5 publication-title: Compos. Math. doi: 10.1112/S0010437X05001739 – volume: 53 start-page: 389 issue: 2 year: 2020 ident: 408_CR10 publication-title: Ramanujan J. doi: 10.1007/s11139-019-00165-w – volume: 22 start-page: 51 year: 2014 ident: 408_CR3 publication-title: An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. – volume: 68 start-page: 171 issue: 2 year: 1994 ident: 408_CR9 publication-title: Acta Arith. doi: 10.4064/aa-68-2-171-192 – volume: 135 start-page: 284 year: 1909 ident: 408_CR21 publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1909.135.284 – volume: 67 start-page: 177 year: 1994 ident: 408_CR18 publication-title: Acta Arith. doi: 10.4064/aa-67-2-177-196 – volume: 24 start-page: 235 issue: 3—-4 year: 1997 ident: 408_CR6 publication-title: J. Symbolic Comput doi: 10.1006/jsco.1996.0125 – volume: 5 start-page: 120 year: 1913 ident: 408_CR16 publication-title: J. Indian Math. Soc. |
| SSID | ssj0004037 |
| Score | 2.2777705 |
| Snippet | We describe a computationally efficient approach to resolving equations of the form
C
1
x
2
+
C
2
=
y
n
in coprime integers, for fixed values of
C
1
,
C
2... We describe a computationally efficient approach to resolving equations of the form $$C_1x^2 + C_2 = y^n$$ C 1 x 2 + C 2 = y n in coprime integers, for fixed... We describe a computationally efficient approach to resolving equations of the form C1x2+C2=yn in coprime integers, for fixed values of C1, C2 subject to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 585 |
| SubjectTerms | Combinatorics Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Mathematical analysis Mathematics Mathematics and Statistics Number Theory |
| Title | A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations |
| URI | https://link.springer.com/article/10.1007/s11139-021-00408-9 https://www.proquest.com/docview/2582584149 |
| Volume | 56 |
| WOSCitedRecordID | wos000659798700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004037 issn: 1382-4090 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8RgoBy4QaQ2Tdv0OCEmDmOaxkO7VWmSjqGtg3XjzH_gH_JLcPpYBQIkuDWta0W2E9tK_BmhU3DqUqjYJ64fRYRRKYmwXE3s2LGZgAiW8rzZhN_p8H4_6BZFYWl52708ksx26qrYzYZohZgrBcbyYJkuoxVwd9wsx97NfVUNaWVImQZcD7KjwCpKZb7n8dkdVTHml2PRzNu0Nv83zy20UUSXuJmbwzZa0skOWr9eQLOmu6jbxG3T6Oz99a2tH8Z6iktYcTyb4EGOQj1MtcJtkHw6mGug7ImxSOaPIoHnDuxAoxHWzzlIeLqH7lqXtxdXpGirQKTjOTMihcds6tswUtJT1NMighc29wWVKoiZdKgbxZ5UnMaMC-krDVmHYEzYwvF9Zx_VkkmiDxB2g4hqppgrFLDQmluu1J5j8QDYwbCO7FK6oSwwx03ri1FYoSUbaYUgrTCTVhjU0dnin6ccceNX6kaptLBYfWlIXch7OYPkr47OSyVVn3_mdvg38iO0Ro2es9LEBqrNpnN9jFbly2yYTk8yq_wAgW3dSA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEH3ojBgB64QaU2TV_HCTENUaZpDLRblSbpGNo6WDfO_Af-Ib8E97UKBEhwa9rUimwnthX7M8ApGnXORGirph0EKiWcq0wzpaqHhk4ZerDEyZpN2K2W0-u57bwoLC6y3YsryfSkLovddPRW1CSlINE83KaLsETRYiWJfJ3b-7IaUkuRMhNwPYyOXC0vlfmexmdzVPqYX65FU2vT2PjfOjdhPfculXqmDluwIKNtWLuZQ7PGO9CuK17S6Oz99c2TDyM5UQpYcWU6VvoZCvUglkLxkPNxfyZxZoeNWDR7ZBE-t_AEGg4V-ZyBhMe7cNe47F401bytgsoNy5iqnFlUJ7aOI8EtQSzJAnyhOzYjXLgh5QYxg9DiwiEhdRi3hcSog1HKdGbYtrEHlWgcyX1QTDcgkgpqMoEkpHQ0k0vL0BwXyeGwCnrBXZ_nmONJ64uhX6IlJ9zykVt-yi3frcLZ_J-nDHHj19m1Qmh-vvtin5gY9zoUg78qnBdCKj__TO3gb9NPYKXZvfF876p1fQirJJF5WqZYg8p0MpNHsMxfpoN4cpxq6Afp9OAs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgO7Iiy5sANoiaOsx0roAJRqopNvUWO7RRQCdCknPkH_pAvYZyFAAIkxC1OJqNoZhzPyH5vAHZwUedMRK5uu2GoU8K5zgxb6mZkmZRhBku8vNmE2-l4vZ7f_YDiz067l1uSOaZBsTTFaeNBRI0K-GZi5qKr4wUqCnHKjsMEVU2DVL1-flUhI42MNVMR7WGl5BsFbOZ7HZ-Xpirf_LJFmq08rbn_f_M8zBZZp9bMw2QBxmS8CDOn75StyRJ0m1pbNUB7fX5py-s7OdRKunEtvdf6OTv1TSKF1kaPJP2RRMkzdsfi0S2L8bqDf6bBQJOPOXl4sgyXrcOL_SO9aLegc8uxUp0zh5rENXEkuCOII1mIN0zPZYQLP6LcInYYOVx4JKIe466QWI0wSpnJLNe1VqAW38dyFTTbD4mkgtpMoAopPcPm0rEMz0d1OKyDWVo64AUXuWqJMQgqFmVlrQCtFWTWCvw67L6_85AzcfwqvVE6MChmZRIQG-thj2JRWIe90mHV45-1rf1NfBumugetoH3cOVmHaaJcnqEXN6CWDkdyEyb5U3qTDLeyYH0DJGLpEA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lucas%E2%80%93Lehmer+approach+to+generalised+Lebesgue%E2%80%93Ramanujan%E2%80%93Nagell+equations&rft.jtitle=The+Ramanujan+journal&rft.au=Patel%2C+Vandita&rft.date=2021-11-01&rft.pub=Springer+US&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=56&rft.issue=2&rft.spage=585&rft.epage=596&rft_id=info:doi/10.1007%2Fs11139-021-00408-9&rft.externalDocID=10_1007_s11139_021_00408_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |