A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations

We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 56; číslo 2; s. 585 - 596
Hlavný autor: Patel, Vandita
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2021
Springer Nature B.V
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
AbstractList We describe a computationally efficient approach to resolving equations of the form C1x2+C2=yn in coprime integers, for fixed values of C1, C2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
We describe a computationally efficient approach to resolving equations of the form $$C_1x^2 + C_2 = y^n$$ C 1 x 2 + C 2 = y n in coprime integers, for fixed values of $$C_1$$ C 1 , $$C_2$$ C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Author Patel, Vandita
Author_xml – sequence: 1
  givenname: Vandita
  orcidid: 0000-0003-0252-963X
  surname: Patel
  fullname: Patel, Vandita
  email: vandita.patel@manchester.ac.uk
  organization: Department of Mathematics, University of Manchester
BookMark eNp9kM1Kw0AUhQepYFt9AVcB19H5ayZZluIfBBXR9XA7uUlT0kk7kyzc-Q6-oU_itBEEF4WBuXc43z13zoSMbGuRkEtGrxml6sYzxkQWU85iSiVN4-yEjNlM8TgTVIxCLVIeS5rRMzLxfk33KqHG5GUe5b0B__35leNqgy6C7da1YFZR10YVWnTQ1B6LKMcl-qrHoHyFDdh-DTbUT1Bh00S466GrW-vPyWkJjceL33tK3u9u3xYPcf58_7iY57ERiehiA4lkXLHQFSYpeIKwDA8sVcBNkZXSCD5blokpUl7KFIwqMFMSpAQGQikxJVfD3LDtrkff6XXbOxssNZ-l4Ugms6Dig8q41nuHpd66egPuQzOq98npITkdktOH5PQeSv9Bpu4Ov-sc1M1xVAyoDz62Qve31RHqB5I6h7I
CitedBy_id crossref_primary_10_1112_blms_70141
crossref_primary_10_1016_j_indag_2024_03_011
Cites_doi 10.4153/CJM-2004-002-2
10.4064/aa127-1-6
10.1007/BF01457454
10.4064/aa-65-4-367-381
10.4064/aa-68-2-171-192
10.1016/S0019-3577(04)90021-3
10.1007/s11139-019-00165-w
10.1515/crll.1909.135.284
10.1006/jsco.1996.0125
10.1017/S0017089500031293
10.1112/S0010437X05001739
10.4064/aa-67-2-177-196
10.4064/aa109-2-8
10.1142/S1793042109002572
10.1017/CBO9781107359994
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11139-021-00408-9
DatabaseName Springer Nature Open Access Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 596
ExternalDocumentID 10_1007_s11139_021_00408_9
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c363t-ca641271c36dc6d26eab412187a2cd9f4c325bf6cd82f48ac7de974a44a1a3773
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659798700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Thu Sep 25 00:54:06 EDT 2025
Sat Nov 29 03:20:58 EST 2025
Tue Nov 18 20:49:13 EST 2025
Fri Feb 21 02:47:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lehmer sequences
11D59
Secondary 11D41
Primitive divisor theorem
Thue equation
Primary 11D61
Exponential equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ca641271c36dc6d26eab412187a2cd9f4c325bf6cd82f48ac7de974a44a1a3773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0252-963X
OpenAccessLink https://link.springer.com/10.1007/s11139-021-00408-9
PQID 2582584149
PQPubID 2043831
PageCount 12
ParticipantIDs proquest_journals_2582584149
crossref_primary_10_1007_s11139_021_00408_9
crossref_citationtrail_10_1007_s11139_021_00408_9
springer_journals_10_1007_s11139_021_00408_9
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ghanmi, Abu Muriefah (CR10) 2020; 53
Bilu, Hanrot, Voutier (CR4) 2001; 539
Cohn (CR8) 2003; 109
Bérczes, Pink (CR3) 2014; 22
Nagell (CR15) 1948; 30
Cohn (CR7) 1993; 4
Smart (CR17) 1998
Bugeaud, Mignotte, Siksek (CR5) 2006; 142
Lenstra, Lenstra, Lovász (CR13) 1982; 261
Stroeker, Tzanakis (CR18) 1994; 67
Gebel, Pethő, Zimmer (CR9) 1994; 68
Tengely (CR19) 2004; 15
Lebesgue (CR12) 1850; 9
Mignotte, de Weger (CR14) 1996; 38
Abu Muriefah, Luca, Siksek, Tengely (CR1) 2009; 5
Le, Soydan (CR11) 2020; 15
Ramanujan (CR16) 1913; 5
Thue (CR21) 1909; 135
Bennett, Skinner (CR2) 2004; 56
Tengely (CR20) 2007; 127
Bosma, Cannon, Playoust (CR6) 1997; 24
N Smart (408_CR17) 1998
A Bérczes (408_CR3) 2014; 22
T Nagell (408_CR15) 1948; 30
A Thue (408_CR21) 1909; 135
S Tengely (408_CR19) 2004; 15
FS Abu Muriefah (408_CR1) 2009; 5
Yu Bilu (408_CR4) 2001; 539
AK Lenstra (408_CR13) 1982; 261
MA Bennett (408_CR2) 2004; 56
N Ghanmi (408_CR10) 2020; 53
S Ramanujan (408_CR16) 1913; 5
M Mignotte (408_CR14) 1996; 38
VA Lebesgue (408_CR12) 1850; 9
RJ Stroeker (408_CR18) 1994; 67
JHE Cohn (408_CR7) 1993; 4
JHE Cohn (408_CR8) 2003; 109
M Le (408_CR11) 2020; 15
J Gebel (408_CR9) 1994; 68
W Bosma (408_CR6) 1997; 24
S Tengely (408_CR20) 2007; 127
Y Bugeaud (408_CR5) 2006; 142
References_xml – volume: 9
  start-page: 178
  year: 1850
  end-page: 181
  ident: CR12
  article-title: Sur l’impossibilité en nombres entiers de l’équation
  publication-title: Nouvelles Ann. des Math.
– volume: 56
  start-page: 23
  issue: 1
  year: 2004
  end-page: 54
  ident: CR2
  article-title: Ternary Diophantine equations via Galois representations and modular forms
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2004-002-2
– volume: 127
  start-page: 71
  year: 2007
  end-page: 86
  ident: CR20
  article-title: On the Diophantine equation
  publication-title: Acta Arith
  doi: 10.4064/aa127-1-6
– volume: 261
  start-page: 515
  issue: 4
  year: 1982
  end-page: 534
  ident: CR13
  article-title: Factoring polynomials with rational coefficients
  publication-title: Math. Ann.
  doi: 10.1007/BF01457454
– volume: 4
  start-page: 367
  year: 1993
  end-page: 381
  ident: CR7
  article-title: The Diophantine equation
  publication-title: Acta Arith. LXV.
  doi: 10.4064/aa-65-4-367-381
– volume: 68
  start-page: 171
  issue: 2
  year: 1994
  end-page: 192
  ident: CR9
  article-title: Computing integral points on elliptic curves
  publication-title: Acta Arith.
  doi: 10.4064/aa-68-2-171-192
– volume: 15
  start-page: 291
  year: 2004
  end-page: 304
  ident: CR19
  article-title: On the Diophantine equation
  publication-title: Indag. Math. (N.S.),
  doi: 10.1016/S0019-3577(04)90021-3
– volume: 15
  start-page: 473
  year: 2020
  end-page: 523
  ident: CR11
  article-title: A brief survey on the generalized Lebesgue–Ramanujan–Nagell equation
  publication-title: Surv. Math. Appl.
– volume: 53
  start-page: 389
  issue: 2
  year: 2020
  end-page: 397
  ident: CR10
  article-title: On the Diophantine equation
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-019-00165-w
– volume: 135
  start-page: 284
  year: 1909
  end-page: 305
  ident: CR21
  article-title: Über Annäherungswerte algebraischer Zahlen
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1909.135.284
– volume: 24
  start-page: 235
  issue: 3—-4
  year: 1997
  end-page: 265
  ident: CR6
  article-title: The Magma algebra system. I. The user language
  publication-title: J. Symbolic Comput
  doi: 10.1006/jsco.1996.0125
– volume: 38
  start-page: 77
  issue: 1
  year: 1996
  end-page: 85
  ident: CR14
  article-title: On the Diophantine equations and
  publication-title: Glasgow Math. J.
  doi: 10.1017/S0017089500031293
– volume: 142
  start-page: 31
  year: 2006
  end-page: 62
  ident: CR5
  article-title: Classical and modular approaches to exponential Diophantine equations II
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X05001739
– volume: 30
  start-page: 62
  year: 1948
  end-page: 64
  ident: CR15
  article-title: L sning til oppgave nr 2, 1943, s. 29
  publication-title: Nordisk Mat. Tidskr.
– volume: 539
  start-page: 75
  year: 2001
  end-page: 122
  ident: CR4
  article-title: Existence of primitive divisors of Lucas and Lehmer numbers
  publication-title: J. Reine Angew. Math.
– volume: 67
  start-page: 177
  year: 1994
  end-page: 196
  ident: CR18
  article-title: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms
  publication-title: Acta Arith.
  doi: 10.4064/aa-67-2-177-196
– volume: 5
  start-page: 120
  year: 1913
  ident: CR16
  article-title: Question 464
  publication-title: J. Indian Math. Soc.
– volume: 109
  start-page: 205
  issue: 2
  year: 2003
  end-page: 206
  ident: CR8
  article-title: The Diophantine equation . II
  publication-title: Acta Arith.
  doi: 10.4064/aa109-2-8
– volume: 22
  start-page: 51
  year: 2014
  end-page: 71
  ident: CR3
  article-title: On generalized Lebesgue–Ramanujan–Nagell equations
  publication-title: An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat.
– volume: 5
  start-page: 1117
  issue: 6
  year: 2009
  end-page: 1128
  ident: CR1
  article-title: On the Diophantine equation
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042109002572
– year: 1998
  ident: CR17
  publication-title: Efficient Resolution of Diophantine Equations, LMSST 41
  doi: 10.1017/CBO9781107359994
– volume: 539
  start-page: 75
  year: 2001
  ident: 408_CR4
  publication-title: J. Reine Angew. Math.
– volume-title: Efficient Resolution of Diophantine Equations, LMSST 41
  year: 1998
  ident: 408_CR17
  doi: 10.1017/CBO9781107359994
– volume: 30
  start-page: 62
  year: 1948
  ident: 408_CR15
  publication-title: Nordisk Mat. Tidskr.
– volume: 56
  start-page: 23
  issue: 1
  year: 2004
  ident: 408_CR2
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2004-002-2
– volume: 38
  start-page: 77
  issue: 1
  year: 1996
  ident: 408_CR14
  publication-title: Glasgow Math. J.
  doi: 10.1017/S0017089500031293
– volume: 127
  start-page: 71
  year: 2007
  ident: 408_CR20
  publication-title: Acta Arith
  doi: 10.4064/aa127-1-6
– volume: 15
  start-page: 291
  year: 2004
  ident: 408_CR19
  publication-title: Indag. Math. (N.S.),
  doi: 10.1016/S0019-3577(04)90021-3
– volume: 15
  start-page: 473
  year: 2020
  ident: 408_CR11
  publication-title: Surv. Math. Appl.
– volume: 9
  start-page: 178
  year: 1850
  ident: 408_CR12
  publication-title: Nouvelles Ann. des Math.
– volume: 5
  start-page: 1117
  issue: 6
  year: 2009
  ident: 408_CR1
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042109002572
– volume: 261
  start-page: 515
  issue: 4
  year: 1982
  ident: 408_CR13
  publication-title: Math. Ann.
  doi: 10.1007/BF01457454
– volume: 109
  start-page: 205
  issue: 2
  year: 2003
  ident: 408_CR8
  publication-title: Acta Arith.
  doi: 10.4064/aa109-2-8
– volume: 4
  start-page: 367
  year: 1993
  ident: 408_CR7
  publication-title: Acta Arith. LXV.
  doi: 10.4064/aa-65-4-367-381
– volume: 142
  start-page: 31
  year: 2006
  ident: 408_CR5
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X05001739
– volume: 53
  start-page: 389
  issue: 2
  year: 2020
  ident: 408_CR10
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-019-00165-w
– volume: 22
  start-page: 51
  year: 2014
  ident: 408_CR3
  publication-title: An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat.
– volume: 68
  start-page: 171
  issue: 2
  year: 1994
  ident: 408_CR9
  publication-title: Acta Arith.
  doi: 10.4064/aa-68-2-171-192
– volume: 135
  start-page: 284
  year: 1909
  ident: 408_CR21
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1909.135.284
– volume: 67
  start-page: 177
  year: 1994
  ident: 408_CR18
  publication-title: Acta Arith.
  doi: 10.4064/aa-67-2-177-196
– volume: 24
  start-page: 235
  issue: 3—-4
  year: 1997
  ident: 408_CR6
  publication-title: J. Symbolic Comput
  doi: 10.1006/jsco.1996.0125
– volume: 5
  start-page: 120
  year: 1913
  ident: 408_CR16
  publication-title: J. Indian Math. Soc.
SSID ssj0004037
Score 2.2777705
Snippet We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2...
We describe a computationally efficient approach to resolving equations of the form $$C_1x^2 + C_2 = y^n$$ C 1 x 2 + C 2 = y n in coprime integers, for fixed...
We describe a computationally efficient approach to resolving equations of the form C1x2+C2=yn in coprime integers, for fixed values of C1, C2 subject to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 585
SubjectTerms Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematical analysis
Mathematics
Mathematics and Statistics
Number Theory
Title A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations
URI https://link.springer.com/article/10.1007/s11139-021-00408-9
https://www.proquest.com/docview/2582584149
Volume 56
WOSCitedRecordID wos000659798700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8RgoBy4QaQ2Tdv0OCEmDmOaxkO7VWmSjqGtg3XjzH_gH_JLcPpYBQIkuDWta0W2E9tK_BmhU3DqUqjYJ64fRYRRKYmwXE3s2LGZgAiW8rzZhN_p8H4_6BZFYWl52708ksx26qrYzYZohZgrBcbyYJkuoxVwd9wsx97NfVUNaWVImQZcD7KjwCpKZb7n8dkdVTHml2PRzNu0Nv83zy20UUSXuJmbwzZa0skOWr9eQLOmu6jbxG3T6Oz99a2tH8Z6iktYcTyb4EGOQj1MtcJtkHw6mGug7ImxSOaPIoHnDuxAoxHWzzlIeLqH7lqXtxdXpGirQKTjOTMihcds6tswUtJT1NMighc29wWVKoiZdKgbxZ5UnMaMC-krDVmHYEzYwvF9Zx_VkkmiDxB2g4hqppgrFLDQmluu1J5j8QDYwbCO7FK6oSwwx03ri1FYoSUbaYUgrTCTVhjU0dnin6ccceNX6kaptLBYfWlIXch7OYPkr47OSyVVn3_mdvg38iO0Ro2es9LEBqrNpnN9jFbly2yYTk8yq_wAgW3dSA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEH3ojBgB64QaU2TV_HCTENUaZpDLRblSbpGNo6WDfO_Af-Ib8E97UKBEhwa9rUimwnthX7M8ApGnXORGirph0EKiWcq0wzpaqHhk4ZerDEyZpN2K2W0-u57bwoLC6y3YsryfSkLovddPRW1CSlINE83KaLsETRYiWJfJ3b-7IaUkuRMhNwPYyOXC0vlfmexmdzVPqYX65FU2vT2PjfOjdhPfculXqmDluwIKNtWLuZQ7PGO9CuK17S6Oz99c2TDyM5UQpYcWU6VvoZCvUglkLxkPNxfyZxZoeNWDR7ZBE-t_AEGg4V-ZyBhMe7cNe47F401bytgsoNy5iqnFlUJ7aOI8EtQSzJAnyhOzYjXLgh5QYxg9DiwiEhdRi3hcSog1HKdGbYtrEHlWgcyX1QTDcgkgpqMoEkpHQ0k0vL0BwXyeGwCnrBXZ_nmONJ64uhX6IlJ9zykVt-yi3frcLZ_J-nDHHj19m1Qmh-vvtin5gY9zoUg78qnBdCKj__TO3gb9NPYKXZvfF876p1fQirJJF5WqZYg8p0MpNHsMxfpoN4cpxq6Afp9OAs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgO7Iiy5sANoiaOsx0roAJRqopNvUWO7RRQCdCknPkH_pAvYZyFAAIkxC1OJqNoZhzPyH5vAHZwUedMRK5uu2GoU8K5zgxb6mZkmZRhBku8vNmE2-l4vZ7f_YDiz067l1uSOaZBsTTFaeNBRI0K-GZi5qKr4wUqCnHKjsMEVU2DVL1-flUhI42MNVMR7WGl5BsFbOZ7HZ-Xpirf_LJFmq08rbn_f_M8zBZZp9bMw2QBxmS8CDOn75StyRJ0m1pbNUB7fX5py-s7OdRKunEtvdf6OTv1TSKF1kaPJP2RRMkzdsfi0S2L8bqDf6bBQJOPOXl4sgyXrcOL_SO9aLegc8uxUp0zh5rENXEkuCOII1mIN0zPZYQLP6LcInYYOVx4JKIe466QWI0wSpnJLNe1VqAW38dyFTTbD4mkgtpMoAopPcPm0rEMz0d1OKyDWVo64AUXuWqJMQgqFmVlrQCtFWTWCvw67L6_85AzcfwqvVE6MChmZRIQG-thj2JRWIe90mHV45-1rf1NfBumugetoH3cOVmHaaJcnqEXN6CWDkdyEyb5U3qTDLeyYH0DJGLpEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lucas%E2%80%93Lehmer+approach+to+generalised+Lebesgue%E2%80%93Ramanujan%E2%80%93Nagell+equations&rft.jtitle=The+Ramanujan+journal&rft.au=Patel%2C+Vandita&rft.date=2021-11-01&rft.pub=Springer+US&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=56&rft.issue=2&rft.spage=585&rft.epage=596&rft_id=info:doi/10.1007%2Fs11139-021-00408-9&rft.externalDocID=10_1007_s11139_021_00408_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon