A machine learning model for predicting short‐term outcomes after rapid response system activation

Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety. Although rapid response system (RRS) triggers have been well-studied, studies on the prediction models of short-term prognosis after RRS activati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acute medicine & surgery Jg. 12; H. 1; S. e70083
Hauptverfasser: Naito, Takaki, Li, Micheal, Fujitani, Shigeki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States John Wiley & Sons, Inc 12.08.2025
John Wiley and Sons Inc
Schlagworte:
ISSN:2052-8817, 2052-8817
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety. Although rapid response system (RRS) triggers have been well-studied, studies on the prediction models of short-term prognosis after RRS activation are scarce. We aimed to develop a model to predict short-term outcomes after RRS activation using machine learning. This retrospective cohort study used the In-Hospital Emergency Registry in Japan, a multicentre RRS online registry. We collected data on patient demographics, treatment before RRS, RRT calls, and physiological parameters. The outcome was death within 24 h after RRS calls or unplanned transfers to an intensive care unit. To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic regression (LR) algorithm was used. For model comparison, receiver-operating area under the curve (AUC) was evaluated and compared with those of the National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS). 5414 cases were included in the study. The outcome occurred in 28.4% of the cases. The XGB model showed the highest AUC (0.798) compared to the RF model (0.796), LR model (0.785), NEWS (0.696), and MEWS (0.660). The most weighted feature in the XGB model was doctor activation, followed by hypotension as the activation criteria and usage of oxygen. We developed the first machine learning model for short-term prognosis after RRS. This model has the potential to support decision-making by RRT.
AbstractList Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety. Although rapid response system (RRS) triggers have been well-studied, studies on the prediction models of short-term prognosis after RRS activation are scarce. We aimed to develop a model to predict short-term outcomes after RRS activation using machine learning. This retrospective cohort study used the In-Hospital Emergency Registry in Japan, a multicentre RRS online registry. We collected data on patient demographics, treatment before RRS, RRT calls, and physiological parameters. The outcome was death within 24 h after RRS calls or unplanned transfers to an intensive care unit. To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic regression (LR) algorithm was used. For model comparison, receiver-operating area under the curve (AUC) was evaluated and compared with those of the National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS). 5414 cases were included in the study. The outcome occurred in 28.4% of the cases. The XGB model showed the highest AUC (0.798) compared to the RF model (0.796), LR model (0.785), NEWS (0.696), and MEWS (0.660). The most weighted feature in the XGB model was doctor activation, followed by hypotension as the activation criteria and usage of oxygen. We developed the first machine learning model for short-term prognosis after RRS. This model has the potential to support decision-making by RRT.
In this study, we developed a machine learning model for short‐term prognosis after RRS activation. The XGBoost model showed better prediction than widely used EWSs. The most weighted feature in the XGB model was doctor activation, followed by hypotension as the activation criteria and usage of oxygen.
Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety. Although rapid response system (RRS) triggers have been well-studied, studies on the prediction models of short-term prognosis after RRS activation are scarce. We aimed to develop a model to predict short-term outcomes after RRS activation using machine learning.AimMaintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety. Although rapid response system (RRS) triggers have been well-studied, studies on the prediction models of short-term prognosis after RRS activation are scarce. We aimed to develop a model to predict short-term outcomes after RRS activation using machine learning.This retrospective cohort study used the In-Hospital Emergency Registry in Japan, a multicentre RRS online registry. We collected data on patient demographics, treatment before RRS, RRT calls, and physiological parameters. The outcome was death within 24 h after RRS calls or unplanned transfers to an intensive care unit. To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic regression (LR) algorithm was used. For model comparison, receiver-operating area under the curve (AUC) was evaluated and compared with those of the National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS).MethodsThis retrospective cohort study used the In-Hospital Emergency Registry in Japan, a multicentre RRS online registry. We collected data on patient demographics, treatment before RRS, RRT calls, and physiological parameters. The outcome was death within 24 h after RRS calls or unplanned transfers to an intensive care unit. To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic regression (LR) algorithm was used. For model comparison, receiver-operating area under the curve (AUC) was evaluated and compared with those of the National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS).5414 cases were included in the study. The outcome occurred in 28.4% of the cases. The XGB model showed the highest AUC (0.798) compared to the RF model (0.796), LR model (0.785), NEWS (0.696), and MEWS (0.660). The most weighted feature in the XGB model was doctor activation, followed by hypotension as the activation criteria and usage of oxygen.Results5414 cases were included in the study. The outcome occurred in 28.4% of the cases. The XGB model showed the highest AUC (0.798) compared to the RF model (0.796), LR model (0.785), NEWS (0.696), and MEWS (0.660). The most weighted feature in the XGB model was doctor activation, followed by hypotension as the activation criteria and usage of oxygen.We developed the first machine learning model for short-term prognosis after RRS. This model has the potential to support decision-making by RRT.ConclusionsWe developed the first machine learning model for short-term prognosis after RRS. This model has the potential to support decision-making by RRT.
Aim Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety. Although rapid response system (RRS) triggers have been well‐studied, studies on the prediction models of short‐term prognosis after RRS activation are scarce. We aimed to develop a model to predict short‐term outcomes after RRS activation using machine learning. Methods This retrospective cohort study used the In‐Hospital Emergency Registry in Japan, a multicentre RRS online registry. We collected data on patient demographics, treatment before RRS, RRT calls, and physiological parameters. The outcome was death within 24 h after RRS calls or unplanned transfers to an intensive care unit. To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic regression (LR) algorithm was used. For model comparison, receiver‐operating area under the curve (AUC) was evaluated and compared with those of the National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS). Results 5414 cases were included in the study. The outcome occurred in 28.4% of the cases. The XGB model showed the highest AUC (0.798) compared to the RF model (0.796), LR model (0.785), NEWS (0.696), and MEWS (0.660). The most weighted feature in the XGB model was doctor activation, followed by hypotension as the activation criteria and usage of oxygen. Conclusions We developed the first machine learning model for short‐term prognosis after RRS. This model has the potential to support decision‐making by RRT.
Author Naito, Takaki
Fujitani, Shigeki
Li, Micheal
AuthorAffiliation 1 Enterprise Analytics Thomas Jefferson University Hospital Philadelphia Pennsylvania USA
2 Department of Emergency and Critical Care Medicine St. Marianna University School of Medicine Kawasaki‐shi Kanagawa Japan
AuthorAffiliation_xml – name: 2 Department of Emergency and Critical Care Medicine St. Marianna University School of Medicine Kawasaki‐shi Kanagawa Japan
– name: 1 Enterprise Analytics Thomas Jefferson University Hospital Philadelphia Pennsylvania USA
Author_xml – sequence: 1
  givenname: Takaki
  orcidid: 0000-0001-8333-0141
  surname: Naito
  fullname: Naito, Takaki
  organization: Enterprise Analytics Thomas Jefferson University Hospital Philadelphia Pennsylvania USA, Department of Emergency and Critical Care Medicine St. Marianna University School of Medicine Kawasaki‐shi Kanagawa Japan
– sequence: 2
  givenname: Micheal
  orcidid: 0000-0003-0351-2637
  surname: Li
  fullname: Li, Micheal
  organization: Enterprise Analytics Thomas Jefferson University Hospital Philadelphia Pennsylvania USA
– sequence: 3
  givenname: Shigeki
  orcidid: 0000-0001-6327-682X
  surname: Fujitani
  fullname: Fujitani, Shigeki
  organization: Department of Emergency and Critical Care Medicine St. Marianna University School of Medicine Kawasaki‐shi Kanagawa Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40800661$$D View this record in MEDLINE/PubMed
BookMark eNpdkcFKHTEUhkOxVHvrpg9QAt2UwrUnyUwmWRURbQXBjV2H3MwZb2SSTJMZwZ2P0GfskzS3WtEuwjk5-c7PH_63ZC-miIS8Z3DEAPgXGwo_6gCUeEUOOLR8rRTr9p71--SwlBsAYAyElOwN2W9AAdT2gPTHNFi39RHpiDZHH69pSD2OdEiZThl77-bdsGxTnn_f_5oxB5qW2aWAhdqh3mm2k-9pxjKlWJCWuzJjoLYu3trZp_iOvB7sWPDwsa7Ij7PTq5Pv64vLb-cnxxdrJ6SY1061anDQaWXbTddJprteso3slWw4d9JpbbEB7XQ_SM3VpsFOMK3QattKDmJFvj7oTssmYO8wztmOZso-2HxnkvXm5Uv0W3Odbg3jogEJXVX49KiQ088Fy2yCLw7H0UZMSzGCC804Y42s6Mf_0Ju05Fj_V6mWCSFUPSvy4bmlJy__EqjA5wfA5VRKxuEJYWB2CZtdwuZvwuIPIoaZzA
Cites_doi 10.1097/CCM.0000000000004236
10.1016/j.resuscitation.2021.08.024
10.1097/CCM.0000000000001272
10.1111/aas.14017
10.1186/s13054-015-0973-y
10.1016/j.resuscitation.2014.06.003
10.1097/CCM.0000000000000038
10.1186/cc7996
10.1016/j.resuscitation.2021.04.013
10.1093/qjmed/94.10.521
10.1097/CCM.0000000000001571
10.1002/ams2.666
10.1186/s12873-022-00739-w
10.1007/BF03021506
10.1016/j.resuscitation.2019.05.012
10.1053/jcrc.2003.50002
10.1002/ams2.454
10.1164/rccm.202007-2700OC
10.5694/j.1326-5377.2011.tb03113.x
10.1016/j.resuscitation.2008.08.010
10.1056/NEJMsa2001090
10.1016/j.resuscitation.2012.12.016
10.1016/S0140-6736(05)66733-5
10.1136/bmjqs-2022-015637
10.1016/j.aucc.2020.11.006
10.1016/j.jbi.2016.09.013
10.1186/cc3906
10.1109/JBHI.2019.2937803
10.1038/s41598-021-97121-w
ContentType Journal Article
Copyright 2025 The Author(s). Acute Medicine & Surgery published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine.
2025. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine.
Copyright_xml – notice: 2025 The Author(s). Acute Medicine & Surgery published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1002/ams2.70083
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Text complet a ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate xxx
EISSN 2052-8817
ExternalDocumentID PMC12340607
40800661
10_1002_ams2_70083
Genre Journal Article
GeographicLocations United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Japan
GrantInformation_xml – fundername: ;
  grantid: JP18K16548
GroupedDBID 0R~
1OC
24P
7X7
8FI
8FJ
AAESR
AAMMB
AAYXX
AAZKR
ABUWG
ACCMX
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AFBPY
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZVAB
BCNDV
BENPR
BPHCQ
BRXPI
BVXVI
CCPQU
CITATION
DPXWK
EBS
EJD
EMOBN
FYUFA
G-S
GODZA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
INH
ITC
LITHE
MY~
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
R.K
RPM
UKHRP
WBKPD
WIN
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c363t-c858fc0798a5b776197d61b6d86422c6c99ae409c9df6928b4e73198ea9a56203
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547594100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-8817
IngestDate Tue Nov 04 02:05:06 EST 2025
Sat Aug 23 12:15:53 EDT 2025
Sun Nov 30 08:11:07 EST 2025
Sun Aug 17 02:21:42 EDT 2025
Thu Nov 27 00:09:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords medical emergency team
rapid response system
machine learning
early warning score
Language English
License 2025 The Author(s). Acute Medicine & Surgery published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-c858fc0798a5b776197d61b6d86422c6c99ae409c9df6928b4e73198ea9a56203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8333-0141
0000-0003-0351-2637
0000-0001-6327-682X
OpenAccessLink https://www.proquest.com/docview/3251333833?pq-origsite=%requestingapplication%
PMID 40800661
PQID 3251333833
PQPubID 2034583
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12340607
proquest_miscellaneous_3239121146
proquest_journals_3251333833
pubmed_primary_40800661
crossref_primary_10_1002_ams2_70083
PublicationCentury 2000
PublicationDate 2025-08-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Acute medicine & surgery
PublicationTitleAlternate Acute Med Surg
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Kia A (e_1_2_11_9_1) 2020; 9
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 9
  year: 2020
  ident: e_1_2_11_9_1
  article-title: MEWS++: enhancing the prediction of clinical deterioration in admitted patients through a machine learning model
  publication-title: J Clin Med Res
– ident: e_1_2_11_8_1
  doi: 10.1097/CCM.0000000000004236
– ident: e_1_2_11_25_1
  doi: 10.1016/j.resuscitation.2021.08.024
– ident: e_1_2_11_2_1
  doi: 10.1097/CCM.0000000000001272
– ident: e_1_2_11_16_1
  doi: 10.1111/aas.14017
– ident: e_1_2_11_3_1
  doi: 10.1186/s13054-015-0973-y
– ident: e_1_2_11_5_1
  doi: 10.1016/j.resuscitation.2014.06.003
– ident: e_1_2_11_17_1
  doi: 10.1097/CCM.0000000000000038
– ident: e_1_2_11_22_1
  doi: 10.1186/cc7996
– ident: e_1_2_11_7_1
  doi: 10.1016/j.resuscitation.2021.04.013
– ident: e_1_2_11_11_1
  doi: 10.1093/qjmed/94.10.521
– ident: e_1_2_11_6_1
  doi: 10.1097/CCM.0000000000001571
– ident: e_1_2_11_19_1
  doi: 10.1002/ams2.666
– ident: e_1_2_11_31_1
  doi: 10.1186/s12873-022-00739-w
– ident: e_1_2_11_24_1
  doi: 10.1007/BF03021506
– ident: e_1_2_11_15_1
  doi: 10.1016/j.resuscitation.2019.05.012
– ident: e_1_2_11_23_1
  doi: 10.1053/jcrc.2003.50002
– ident: e_1_2_11_27_1
  doi: 10.1002/ams2.454
– ident: e_1_2_11_10_1
  doi: 10.1164/rccm.202007-2700OC
– ident: e_1_2_11_18_1
  doi: 10.5694/j.1326-5377.2011.tb03113.x
– ident: e_1_2_11_21_1
  doi: 10.1016/j.resuscitation.2008.08.010
– ident: e_1_2_11_26_1
  doi: 10.1056/NEJMsa2001090
– ident: e_1_2_11_12_1
  doi: 10.1016/j.resuscitation.2012.12.016
– ident: e_1_2_11_20_1
  doi: 10.1016/S0140-6736(05)66733-5
– ident: e_1_2_11_13_1
  doi: 10.1136/bmjqs-2022-015637
– ident: e_1_2_11_14_1
  doi: 10.1016/j.aucc.2020.11.006
– ident: e_1_2_11_28_1
  doi: 10.1016/j.jbi.2016.09.013
– ident: e_1_2_11_4_1
  doi: 10.1186/cc3906
– ident: e_1_2_11_29_1
  doi: 10.1109/JBHI.2019.2937803
– ident: e_1_2_11_30_1
  doi: 10.1038/s41598-021-97121-w
SSID ssj0001103661
Score 2.300727
Snippet Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety....
Aim Maintaining rapid response team (RRT) response quality is difficult. A system that supports RRT assessment could potentially contribute to medical safety....
In this study, we developed a machine learning model for short‐term prognosis after RRS activation. The XGBoost model showed better prediction than widely used...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e70083
SubjectTerms Algorithms
Artificial intelligence
Blood pressure
Consciousness
Hospitals
Machine learning
Original
Patient safety
Variables
Title A machine learning model for predicting short‐term outcomes after rapid response system activation
URI https://www.ncbi.nlm.nih.gov/pubmed/40800661
https://www.proquest.com/docview/3251333833
https://www.proquest.com/docview/3239121146
https://pubmed.ncbi.nlm.nih.gov/PMC12340607
Volume 12
WOSCitedRecordID wos001547594100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001103661
  issn: 2052-8817
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2052-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001103661
  issn: 2052-8817
  databaseCode: 7X7
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001103661
  issn: 2052-8817
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2052-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001103661
  issn: 2052-8817
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2052-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001103661
  issn: 2052-8817
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2052-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001103661
  issn: 2052-8817
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6CMiEuwAYbGT_kabsG0sSN7ROCCQTSqKppk8opcm2X9kBakpYzfwJ_I3_J3kvcsoLEhUtyiKVYfvbz956fvw_ghxGStxDIhyLq8ZBrZUPFDQI5ZbQ0VvHEVReFf4l2W3a7quMTbqUvq5z5xMpR25GhHPlREpMSCcZTyfH4LiTVKDpd9RIay7BCTGW8ASunZ-3O7-csSxM9dNqc85LGR_q2jA8FIY_FnegVvHxZJfnftnO-8d4Ob8K6B5zspJ4hH2HJ5Z9g9cofqW-BPWG3VUGlY15B4oZV8jgM4SwbF9SQSqNZOUCk_vTwSL6cjaYT7IUrWaUxzgo9HlpW1PW2jtX00IzuTNQZ3234e3725-dF6KUXQpOkySQ0siX7JhJK6lZPUKpD2LTZS63EeCU2qVFKOwwNjbL9VMWyx53AxSydVhoRVZR8hkY-yt0OMAzBjOR9blskiSSMQoSiEcQ4GaU2ETaA7zMzZOOaYSOruZTjjIyVVcYKYG82yplfZWX2PMQBfJt_xvVBhx46d6MptUkU0djxNIAvtUHnv-EEl3F6BCAXTD1vQNzbi1_y4aDi4MYNH6FQJL6-3a9dWItJMJg4dOM9aEyKqduHD-Z-MiyLA1gWXVE95YGfufjuXF51rv8B3AD7Xg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFAGXln8WChgBx6Ubr7O2D6iqWqpGTaIcilROi2M7NIduwm4C4sYj8CR9qD5JZ_YnJSBx64Gzrd31zmfPN_Z4PoA3VirRQSIfymgkQmG0C7WwSOS0Nco6LWJfXhTuycFAnZzo4RqcN3dhKK2yWRPLhdpNLe2Rb8eclEgwnop3Zl9DUo2i09VGQqOCxZH_8R1DtuJ9dx_t-5bzgw_He4dhrSoQ2jiJ56FVHTW2kdTKdEaSonjpkvYocQqpOLeJ1dp4jHqsduNEczUSXiJOlTfaIFmIYnzuDVgXCHbVgvVhtz_8dLWr00aPkLSXdVD5tjkr-DtJTGfV8_1FZ__MyvzNzR1s_m8_6C5s1ISa7VYz4B6s-ew-3OrXKQMPwO2yszJh1LNaIeMLK-V_GNJ1NsupI6V-s-IUI5GLn7_IV7HpYo6j9gUrNdRZbmYTx_Iqn9izqvw1ozsh1Y72Q_h4LWN8BK1smvknwDDEtEqMheuQ5JO0GhmYQZLmVZS4WLoAXjdmT2dVBZG0qhXNUwJHWoIjgK3Gqmm9ihTplUkDeLVsxvlPhzom89MF9Yk1lekTSQCPKwAtXyMoHEA4BqBWoLXsQLXFV1uyyWlZYxwJDVK9SD7993e9hNuHx_1e2usOjp7BHU7iyFQvmG9Ba54v_HO4ab_NJ0X-op4pDD5fN_YuAamsUxE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFlVcKAVKlxYwAo7bbLzO2j4gVFEiorZRDiCV0-LYTptDN-luAuqtj8Dz8Dg8CTP7kxKQuPXQs639sT_PfGOP5wN4baUSHSTyoYyGIhRGu1ALi0ROW6Os0yL25UXhI9nvq5MTPViBn81dGEqrbGxiaajdxNIeeSvmpESC8VTcGtVpEYOD7rvpRUgKUnTS2shpVBA59JffMXwr3vYOcK7fcN798On9x7BWGAhtnMSz0KqOGtlIamU6Q0kRvXRJe5g4hbSc28RqbTxGQFa7UaK5GgovEbPKG22QOEQxPvcOrCElF7jG1ga948GX6x2eNnqHpL2oicpb5rzge5JYz7IX_Ifa_p2h-YfL627c5sF6APdros32q5WxCSs-ewjrx3UqwSNw--y8TCT1rFbOOGWlLBBDGs-mOXWklHBWnGGE8uvqB_kwNpnPcAR8wUptdZab6dixvMoz9qwqi83orki10_0YPt_IP27BajbJ_DYwDD2tEiPhOiQFJa1GZmaQvHkVJS6WLoBXDQTSaVVZJK1qSPOUgJKWQAlgt5nhtLYuRXo9vQG8XDSjXaDDHpP5yZz6xJrK94kkgCcVmBavERQmIDQDUEswW3SgmuPLLdn4rKw9jkQHKWAkn_7_u17AOgIuPer1D3fgHifNZCojzHdhdZbP_TO4a7_NxkX-vF40DL7eNPR-A4HKW9E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+model+for+predicting+short-term+outcomes+after+rapid+response+system+activation&rft.jtitle=Acute+medicine+%26+surgery&rft.au=Naito%2C+Takaki&rft.au=Li%2C+Micheal&rft.au=Fujitani%2C+Shigeki&rft.date=2025-08-12&rft.issn=2052-8817&rft.eissn=2052-8817&rft.volume=12&rft.issue=1&rft.spage=e70083&rft_id=info:doi/10.1002%2Fams2.70083&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-8817&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-8817&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-8817&client=summon