A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations

In this paper, we propose a fast inertial self-adaptive projection based algorithm for solving large-scale monotone equations with the relaxation factor. The modified hyperplane projection technique accelerates the computational performance of the proposed algorithm, and the self-adaptive parameter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 426; s. 115087
Hlavní autoři: Zhang, N., Liu, J.K., Zhang, L.Q., Lu, Z.L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a fast inertial self-adaptive projection based algorithm for solving large-scale monotone equations with the relaxation factor. The modified hyperplane projection technique accelerates the computational performance of the proposed algorithm, and the self-adaptive parameter enhances its stability. Under some appropriate assumptions, the global convergence of the proposed algorithm is established. Moreover, the proposed algorithm is suitable to solve large-scale problems because it does not need gradient information or Jacobian matrix. The numerical results indicate that the new algorithm is robust and efficient by comparing with other popular algorithms.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2023.115087