Generalized Partial-Slice Monogenic Functions: A Synthesis of Two Function Theories
In this paper, we review the notion of generalized partial-slice monogenic functions that was introduced by the authors in Xu and Sabadini (Generalized partial-slice monogenic functions, arXiv:2309.03698 , 2023). The class of these functions includes both the theory of monogenic functions and of sli...
Uloženo v:
| Vydáno v: | Advances in applied Clifford algebras Ročník 34; číslo 2; s. 10 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.04.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0188-7009, 1661-4909 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we review the notion of generalized partial-slice monogenic functions that was introduced by the authors in Xu and Sabadini (Generalized partial-slice monogenic functions,
arXiv:2309.03698
, 2023). The class of these functions includes both the theory of monogenic functions and of slice monogenic functions over Clifford algebras and it is obtained via a synthesis operator which combines a generalized Cauchy–Riemann operator with an operator acting on slices. Besides recalling the fundamental features, we provide a notion of
∗
-product based on the CK-extension and discuss the smoothness of generalized partial-slice functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0188-7009 1661-4909 |
| DOI: | 10.1007/s00006-024-01314-1 |