Recognizing Map Graphs of Bounded Treewidth

A map is a partition of the sphere into interior-disjoint regions homeomorphic to closed disks. Some regions are labeled as nations, while the remaining ones are labeled as holes. A map in which at most k nations touch at the same point is a k -map, while it is hole-free if it contains no holes. A g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 86; číslo 2; s. 613 - 637
Hlavní autoři: Angelini, Patrizio, Bekos, Michael A., Da Lozzo, Giordano, Gronemann, Martin, Montecchiani, Fabrizio, Tappini, Alessandra
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2024
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A map is a partition of the sphere into interior-disjoint regions homeomorphic to closed disks. Some regions are labeled as nations, while the remaining ones are labeled as holes. A map in which at most k nations touch at the same point is a k -map, while it is hole-free if it contains no holes. A graph is a map graph if there is a bijection between its vertices and the nations of a map, such that two nations touch if and only the corresponding vertices are connected by an edge. We present a fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. Its time complexity is linear in the size of the graph. It reports a certificate in the form of a so-called witness, if the input is a yes-instance. Our algorithmic framework is general enough to test, for any k , if the input graph admits a k -map or a hole-free  k -map.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-023-01180-6