Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free‐surface fluid flows

This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly compressible SPH (Smoothed Particle Hydrodynamics) simulations of incompressible free-surface fluid flows. In the explicit weakly compressib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling Jg. 116; S. 84 - 121
Hauptverfasser: Khayyer, Abbas, Shimizu, Yuma, Gotoh, Takafumi, Gotoh, Hitoshi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.04.2023
Schlagworte:
ISSN:0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly compressible SPH (Smoothed Particle Hydrodynamics) simulations of incompressible free-surface fluid flows. In the explicit weakly compressible SPH methods, including δ-SPH with a widely adopted particle shifting scheme (or the so-called δ-plus-SPH), two incompressibility conditions corresponding to the invariant density condition and divergence-free velocity condition are not well resolved. To achieve enhanced resolution of the continuity equation as well as satisfaction of both incompressibility conditions, this paper presents two novel schemes, namely, Velocity-divergence Error Mitigating (VEM) and Volume Conservation Shifting (VCS) schemes. The VEM scheme corresponds to an additional term in the momentum equation that mitigates the velocity divergence error at every computational time step. The VEM term is derived by linking the instantaneous velocity divergence error to the undesired density time variations and accordingly to an error mitigating pressure pVEM obtained through an Equation of State (EOS). The corresponding pressure gradient term or acceleration leads to attenuation of numerical noise in the velocity divergence field. The VCS acts as a distinct particle shifting scheme to enforce local and thus global volume conservation. This distinct shifting is obtained through calculation of the gradient of a corresponding pressure, namely, pVCS, obtained through efficient solution of a Poisson Pressure Equation (PPE) derived from the concept of projection-based particle methods. By adopting both proposed schemes, the explicit SPH method is shown to provide enhanced satisfaction of both incompressibility conditions, i.e., divergence-free velocity and invariant density conditions, in simulation of incompressible free-surface fluid flows. [Display omitted]
AbstractList This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly compressible SPH (Smoothed Particle Hydrodynamics) simulations of incompressible free-surface fluid flows. In the explicit weakly compressible SPH methods, including δ-SPH with a widely adopted particle shifting scheme (or the so-called δ-plus-SPH), two incompressibility conditions corresponding to the invariant density condition and divergence-free velocity condition are not well resolved. To achieve enhanced resolution of the continuity equation as well as satisfaction of both incompressibility conditions, this paper presents two novel schemes, namely, Velocity-divergence Error Mitigating (VEM) and Volume Conservation Shifting (VCS) schemes. The VEM scheme corresponds to an additional term in the momentum equation that mitigates the velocity divergence error at every computational time step. The VEM term is derived by linking the instantaneous velocity divergence error to the undesired density time variations and accordingly to an error mitigating pressure pVEM obtained through an Equation of State (EOS). The corresponding pressure gradient term or acceleration leads to attenuation of numerical noise in the velocity divergence field. The VCS acts as a distinct particle shifting scheme to enforce local and thus global volume conservation. This distinct shifting is obtained through calculation of the gradient of a corresponding pressure, namely, pVCS, obtained through efficient solution of a Poisson Pressure Equation (PPE) derived from the concept of projection-based particle methods. By adopting both proposed schemes, the explicit SPH method is shown to provide enhanced satisfaction of both incompressibility conditions, i.e., divergence-free velocity and invariant density conditions, in simulation of incompressible free-surface fluid flows. [Display omitted]
Author Gotoh, Hitoshi
Shimizu, Yuma
Gotoh, Takafumi
Khayyer, Abbas
Author_xml – sequence: 1
  givenname: Abbas
  surname: Khayyer
  fullname: Khayyer, Abbas
  email: khayyer@particle.kuciv.kyoto-u.ac.jp
– sequence: 2
  givenname: Yuma
  surname: Shimizu
  fullname: Shimizu, Yuma
– sequence: 3
  givenname: Takafumi
  surname: Gotoh
  fullname: Gotoh, Takafumi
– sequence: 4
  givenname: Hitoshi
  surname: Gotoh
  fullname: Gotoh, Hitoshi
BookMark eNp9kL9OwzAQxj0UibbwAGx-gQQ7_ysmVBWKVAkkQGKzHPuiuiROsB1KN3YWnpEnwWlZYGCx9d19v9PdN0Ej3WpA6IySkBKanW9C3jVhRKLI65DE-QiNSUzyYEaSp2M0sXZDCEm9GqOPhV5zLUBiA7ate6dajdsKuzVg0WqndK_cDsNLz_ctpTG8dbUSyuEt8Od6521N52Gryhrw_d0SW9X09d5uh1FK_3JUBuDr_dP2puLCy7pX0r_t1p6go4rXFk5__il6vFo8zJfB6vb6Zn65CkScxS4oZZzEScVpASQVeZKXZVnNpKxEDEUqi0RSIrg3lbSYcSHSnJfEV6IsowmhJJ6i_DBXmNZaAxXz1-z3dYarmlHChhzZhvkc2ZDjUPI5epL-ITujGm52_zIXBwb8Sa8KDLNCwRC5MiAck636h_4GlxuVlA
CitedBy_id crossref_primary_10_1371_journal_pone_0289276
crossref_primary_10_1016_j_apm_2025_116104
crossref_primary_10_1016_j_coastaleng_2023_104315
crossref_primary_10_1016_j_compfluid_2023_106048
crossref_primary_10_1002_pen_26983
crossref_primary_10_1016_j_est_2024_110496
crossref_primary_10_1007_s00707_023_03763_4
crossref_primary_10_1016_j_apor_2024_103885
crossref_primary_10_1016_j_cpc_2024_109389
crossref_primary_10_1016_j_enganabound_2023_08_004
crossref_primary_10_1007_s40571_024_00892_y
crossref_primary_10_1016_j_oceaneng_2023_115938
crossref_primary_10_1016_j_enganabound_2023_10_018
crossref_primary_10_1108_HFF_01_2024_0045
crossref_primary_10_1016_j_cma_2024_117255
crossref_primary_10_1016_j_jfluidstructs_2023_104049
crossref_primary_10_1016_j_oceaneng_2024_117037
crossref_primary_10_1016_j_coastaleng_2024_104521
crossref_primary_10_1016_j_coastaleng_2024_104565
crossref_primary_10_1108_EC_06_2022_0394
crossref_primary_10_1016_j_oceaneng_2025_120601
crossref_primary_10_1016_j_cma_2023_116460
crossref_primary_10_1016_j_compfluid_2025_106638
crossref_primary_10_1016_j_oceaneng_2025_122868
crossref_primary_10_1007_s42452_025_06651_9
crossref_primary_10_1016_j_compfluid_2024_106266
crossref_primary_10_1016_j_coastaleng_2025_104811
crossref_primary_10_1016_j_jfluidstructs_2025_104295
crossref_primary_10_1016_j_jcp_2024_113039
crossref_primary_10_1016_j_cma_2025_118339
crossref_primary_10_1016_j_jcp_2025_113951
crossref_primary_10_1007_s11804_024_00511_5
crossref_primary_10_1002_nme_7657
crossref_primary_10_1016_j_coastaleng_2024_104658
crossref_primary_10_1038_s41598_025_09592_w
crossref_primary_10_1016_j_apor_2025_104760
crossref_primary_10_1080_21664250_2025_2531704
crossref_primary_10_1016_j_apor_2024_104244
crossref_primary_10_1016_j_coastaleng_2023_104379
crossref_primary_10_1016_j_cma_2024_117484
crossref_primary_10_1016_j_coastaleng_2023_104333
crossref_primary_10_1016_j_compgeo_2025_107338
crossref_primary_10_1080_21664250_2024_2345233
crossref_primary_10_1016_j_oceaneng_2024_119772
crossref_primary_10_1016_j_enganabound_2024_105848
crossref_primary_10_1016_j_compfluid_2025_106753
crossref_primary_10_1016_j_geomorph_2025_109735
crossref_primary_10_1007_s40571_024_00856_2
crossref_primary_10_1016_j_cma_2023_116700
crossref_primary_10_1016_j_compstruc_2025_107862
crossref_primary_10_1016_j_cma_2023_116640
crossref_primary_10_1080_21664250_2024_2442201
crossref_primary_10_1007_s11071_023_08940_7
crossref_primary_10_1007_s11802_025_5853_8
crossref_primary_10_1007_s00366_023_01857_0
crossref_primary_10_1016_j_csite_2025_105991
crossref_primary_10_3390_fluids8050137
crossref_primary_10_1016_j_oceaneng_2023_116623
crossref_primary_10_1002_nme_70116
crossref_primary_10_1016_j_cma_2025_118142
crossref_primary_10_1016_j_coastaleng_2024_104663
crossref_primary_10_1063_5_0216702
crossref_primary_10_1016_j_apor_2023_103712
crossref_primary_10_1016_j_oceaneng_2024_119460
crossref_primary_10_1016_j_apor_2023_103559
crossref_primary_10_1016_j_apor_2023_103757
crossref_primary_10_1016_j_coastaleng_2023_104362
crossref_primary_10_1016_j_oceaneng_2024_118571
crossref_primary_10_1016_j_apor_2023_103832
crossref_primary_10_1016_j_oceaneng_2025_121203
crossref_primary_10_1016_j_oceaneng_2025_122413
crossref_primary_10_1002_ese3_1638
crossref_primary_10_1016_j_oceaneng_2024_118532
crossref_primary_10_1016_j_enganabound_2025_106405
crossref_primary_10_1007_s40571_023_00673_z
crossref_primary_10_1016_j_jcp_2025_114203
crossref_primary_10_1016_j_cma_2023_115989
Cites_doi 10.1016/j.cma.2019.112580
10.1016/j.euromechflu.2022.04.002
10.1016/j.apm.2019.11.046
10.1016/j.advwatres.2016.08.010
10.1016/j.camwa.2018.06.002
10.1016/j.advwatres.2017.07.011
10.1016/j.apor.2020.102508
10.1016/j.apor.2021.102822
10.1016/j.compgeo.2021.104356
10.1016/j.cpc.2017.11.016
10.1016/j.apm.2021.08.014
10.1016/j.jcp.2012.05.005
10.1006/jcph.1999.6246
10.1016/j.apm.2021.01.005
10.1016/j.cpc.2018.06.006
10.1007/s40571-020-00354-1
10.1016/j.cma.2013.05.017
10.1080/21664250.2018.1554203
10.1006/jcph.1994.1034
10.1016/j.compfluid.2018.11.022
10.1016/j.oceaneng.2020.108552
10.1016/j.cma.2019.01.045
10.1080/21664250.2018.1560683
10.1016/0141-1187(94)00029-8
10.1016/j.cma.2010.12.016
10.1016/j.jcp.2021.110563
10.1016/j.cma.2016.10.028
10.1007/s00773-006-0216-7
10.1006/jcph.2000.6439
10.1016/j.jfluidstructs.2017.01.005
10.1016/0021-9991(89)90032-6
10.1016/j.compgeo.2021.104315
10.1016/j.cpc.2008.12.004
10.1007/s00371-018-1488-8
10.1016/j.euromechflu.2017.01.014
10.1093/mnras/181.3.375
10.1016/j.apm.2021.01.011
10.1016/j.advwatres.2016.09.008
10.1006/jcph.2002.7053
10.1002/fld.3671
10.13182/NSE96-A24205
10.1080/21664250.2020.1815362
10.3390/w12113189
10.1016/j.cma.2009.04.001
10.1016/j.enganabound.2019.06.010
10.1016/j.apor.2020.102414
10.1016/j.jcp.2010.02.011
10.1016/S0029-5493(98)00270-2
10.1016/j.jcp.2009.05.032
10.1016/j.jcp.2011.01.009
10.1016/j.coastaleng.2008.10.004
10.1016/j.cma.2006.12.006
10.1007/s42241-022-0042-3
10.1063/1.5068697
10.1016/j.jcp.2021.110202
10.1016/0021-9991(83)90036-0
10.1016/S0898-1221(01)00290-5
10.1002/fld.4737
10.1016/j.jcp.2022.110999
10.1016/j.jcp.2016.12.005
10.1016/j.cma.2021.114416
10.1016/j.jfluidstructs.2014.03.009
10.1007/s40571-021-00404-2
10.1016/j.apor.2021.102957
10.1016/j.jhydrol.2019.06.048
10.1016/j.coastaleng.2022.104146
10.1016/S0309-1708(03)00030-7
10.1007/s42241-022-0052-1
10.1016/j.cma.2015.02.004
10.1016/j.compfluid.2018.10.018
10.1016/j.oceaneng.2019.05.034
10.1016/S0021-9991(03)00324-3
10.1016/j.jcp.2011.10.027
10.1002/fld.2207
10.1016/j.jcp.2019.109135
10.1016/j.enganabound.2021.10.023
10.1016/j.cma.2022.114716
10.1016/j.jcp.2010.01.019
10.1016/j.euromechflu.2022.03.007
10.1016/j.apor.2021.102734
10.1007/BF02123482
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2022.10.037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 121
ExternalDocumentID 10_1016_j_apm_2022_10_037
S0307904X22005091
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-bd3434fa18e05c747bbbf9ddfc3e85d84d10cad34b189acc57ab00ca266140103
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891775000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Tue Nov 18 22:35:12 EST 2025
Sat Nov 29 07:21:20 EST 2025
Fri Feb 23 02:39:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Continuity equation resolution
Smoothed Particle Hydrodynamics
Incompressible fluid
Incompressibility conditions
Volume conservation
Divergence-free velocity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-bd3434fa18e05c747bbbf9ddfc3e85d84d10cad34b189acc57ab00ca266140103
PageCount 38
ParticipantIDs crossref_citationtrail_10_1016_j_apm_2022_10_037
crossref_primary_10_1016_j_apm_2022_10_037
elsevier_sciencedirect_doi_10_1016_j_apm_2022_10_037
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Applied mathematical modelling
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Meng, Zhang, Ming, Sun (bib0056) 2019; 357
Kishev, Hu, Kashiwagi (bib0036) 2006; 11
Molteni, Colagrossi (bib0014) 2009; 180
Huang, Long, Li, Liu (bib0049) 2019; 106
Gingold, Monaghan (bib0010) 1977; 181
English, Domínguez, Vacondio, Crespo, Stansby, Lind, Chiapponi, Gómez-Gesteira (bib0021) 2021; 9
Gotoh, Khayyer, Shimizu (bib0004) 2021; 115
Tanaka, Masunaga (bib0065) 2010; 229
Wendland (bib0039) 1995; 4
Krimi, Jandaghian, Shakibaeinia (bib0026) 2020; 12
Jandaghian, Krimi, Zarrati, Shakibaeinia (bib0051) 2021; 434
Suzuki, Koshizuka, Oka (bib0034) 2007; 196
Koshizuka, Ikeda, Oka (bib0068) 1999; 189
[physics.comp-ph].
You, Khayyer, Zheng, Gotoh, Ma (bib0043) 2021; 110
Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (bib0015) 2011; 200
Lyu, Sun (bib0025) 2022; 101
Basser, Rudman, Daly (bib0030) 2017; 108
Koshizuka, Oka (bib0062) 1996; 123
Pahar, Dhar (bib0066) 2016; 96
Zhang, Rezavand, Hu (bib0044) 2020; 404
Belytschko, Xiao (bib0016) 2002; 43
Serroukh, Mabssout, Herreros (bib0084) 2020; 80
Chow, Rogers, Lind, Stansby (bib0089) 2019; 179
Luo, Khayyer, Lin (bib0005) 2021; 114
Nasar, Fourtakas, Lind, King, Rogers, Stansby (bib0085) 2021; 444
He, Gao, Xu, Ren, Wang (bib0041) 2019; 185
Khayyer, Gotoh (bib0064) 2011; 230
Lind, Xu, Stansby, Rogers (bib0017) 2012; 231
Khayyer, Gotoh, Shimizu (bib0050) 2019; 179
Violeau (bib0002) 2012
Lobovský, Botia-Vera, Castellana, Mas-Soler (bib0035) 2014; 48
Sun, Colagrossi, Marrone, Antuono, Zhang (bib0038) 2018; 224
Sun, Colagrossi, Marrone, Zhang (bib0047) 2017; 315
Matsunaga, Koshizuka (bib0052) 2022; 389
Rastelli, Vacondio, Marongiu, Fourtakas (bib0053) 2022; 393
Szymczak, Blake, Boulton-Stone, Thomas (bib0075) 1994; 23
Harada, Ikari, Khayyer, Gotoh (bib0082) 2019; 61
Shimizu, Khayyer, Gotoh, Nagashima (bib0077) 2020; 62
Shimizu, Khayyer, Gotoh (bib0080) 2022; 137
Lyu, Sun, Xiao, Huang, Zhang (bib0057) 2021; 114
Vyas, Cummins, Rudman, Cleary, Delaney, Khakhar (bib0086) 2021; 94
Khayyer, Gotoh, Shimizu (bib0032) 2017; 332
Bui, Nguyen (bib0008) 2021; 138
Tsuruta, Gotoh, Suzuki, Ikari, Shimosako (bib0074) 2019; 61
O'Connor, Rogers (bib0020) 2021; 104
Rafiee, Thiagarajan (bib0028) 2009; 198
Kondo, Koshizuka (bib0063) 2011; 65
Akbari (bib0048) 2019; 90
Colagrossi, Landrini (bib0012) 2003; 191
Khayyer, Shimizu, Gotoh, Nagashima (bib0079) 2021; 94
Vacondio, Altomare, De Leffe, Hu, Le Touzé, Lind, Marongiu, Marrone, Rogers, Souto-Iglesias (bib0006) 2021; 8
Basser, Rudman, Daly (bib0031) 2019; 576
Cornelis, Bender, Gissler, Ihmsen, Teschner (bib0067) 2019; 35
Ye, Pan, Huang, Liu (bib0007) 2019; 31
Skillen, Lind, Stansby, Rogers (bib0055) 2013; 265
Sun, Colagrossi, Marrone, Antuono, Zhang (bib0024) 2019; 348
Khayyer, Gotoh (bib0069) 2009; 56
Feng, Fourtakas, Rogers, Lombardi (bib0087) 2021; 138
Xu, Stansby, Laurence (bib0046) 2009; 228
He, Khayyer, Gao, Xu, Liu (bib0023) 2021; 106
Bonet Avalos, Antuono, Colagrossi, Souto-Iglesias (bib0090) 2020; 101
Monaghan (bib0042) 1989; 82
Khayyer, Gotoh, Shimizu (bib0001) 2022; 34
Jandaghian, Siaben, Shakibaenia (bib0027) 2022; 94
Gotoh (bib0003) 2018
Fang, Ming, Wang, Sun, Zhang (bib0019) 2022; 244
Domínguez, Fourtakas, Altomare, Canelas, Tafuni, García-Feal, Martínez-Estévez, Mokos, Vacondio, Crespo, Rogers, Stansby, Gómez-Gesteira (bib0022) 2021; 9
Shimizu, Gotoh, Khayyer (bib0072) 2018; 76
Sun, Le Touzé, Oger, Zhang (bib0018) 2021; 221
Adami, Hu, Adams (bib0040) 2012; 231
Inutsuka (bib0013) 2002; 179
Michel, Vergnaud, Oger, Hermange, Le Touzé (bib0054) 2022; 459
Tazaki, Harada, Gotoh (bib0081) 2022; 175
Shao, Lo (bib0061) 2003; 26
Nomeritae, Daly, Grimaldi, Bui (bib0029) 2016; 97
Monaghan (bib0045) 1994; 110
Marrone, Colagrossi, Le Touzé, Graziani (bib0059) 2010; 229
Sun, Pilloton, Antuono, Colagrossi (bib0076) 2022
Antuono, Marrone, Colagrossi, Bouscasse (bib0037) 2015; 289
Cummins, Rudman (bib0060) 1999; 152
Guo, Rogers, Lind, Stansby (bib0088) 2018; 233
Zhang C., Zhu Y., Wu D., Hu X. 2022. Review on smoothed particle hydrodynamics: Methodology development and recent achievement, arXiv preprint, arXiv
Monaghan, Rafiee (bib0033) 2013; 71
Tsurudome, Liang, Shimizu, Khayyer, Gotoh (bib0083) 2021; 117
Monaghan (bib0058) 2000; 159
Khayyer, Gotoh, Shimizu, Gotoh (bib0071) 2017; 66
Monaghan, Gingold (bib0011) 1983; 52
Wu, Taylor (bib0070) 1994; 16
Meringolo, Colagrossi, Marrone, Aristodemo (bib0073) 2017; 70
Wen, Zhao, Wan (bib0078) 2022; 95
Zhang (10.1016/j.apm.2022.10.037_bib0044) 2020; 404
Khayyer (10.1016/j.apm.2022.10.037_bib0001) 2022; 34
Khayyer (10.1016/j.apm.2022.10.037_bib0069) 2009; 56
Lind (10.1016/j.apm.2022.10.037_bib0017) 2012; 231
Tazaki (10.1016/j.apm.2022.10.037_bib0081) 2022; 175
Adami (10.1016/j.apm.2022.10.037_bib0040) 2012; 231
Marrone (10.1016/j.apm.2022.10.037_bib0059) 2010; 229
Antuono (10.1016/j.apm.2022.10.037_bib0037) 2015; 289
Guo (10.1016/j.apm.2022.10.037_bib0088) 2018; 233
Meringolo (10.1016/j.apm.2022.10.037_bib0073) 2017; 70
Sun (10.1016/j.apm.2022.10.037_bib0024) 2019; 348
Vyas (10.1016/j.apm.2022.10.037_bib0086) 2021; 94
Jandaghian (10.1016/j.apm.2022.10.037_bib0051) 2021; 434
Khayyer (10.1016/j.apm.2022.10.037_bib0071) 2017; 66
Colagrossi (10.1016/j.apm.2022.10.037_bib0012) 2003; 191
Domínguez (10.1016/j.apm.2022.10.037_bib0022) 2021; 9
Basser (10.1016/j.apm.2022.10.037_bib0030) 2017; 108
Wen (10.1016/j.apm.2022.10.037_bib0078) 2022; 95
Monaghan (10.1016/j.apm.2022.10.037_bib0011) 1983; 52
Shimizu (10.1016/j.apm.2022.10.037_bib0077) 2020; 62
Sun (10.1016/j.apm.2022.10.037_bib0076) 2022
Khayyer (10.1016/j.apm.2022.10.037_bib0079) 2021; 94
Luo (10.1016/j.apm.2022.10.037_bib0005) 2021; 114
Belytschko (10.1016/j.apm.2022.10.037_bib0016) 2002; 43
Basser (10.1016/j.apm.2022.10.037_bib0031) 2019; 576
Gotoh (10.1016/j.apm.2022.10.037_bib0003) 2018
Bonet Avalos (10.1016/j.apm.2022.10.037_bib0090) 2020; 101
Shimizu (10.1016/j.apm.2022.10.037_bib0072) 2018; 76
Monaghan (10.1016/j.apm.2022.10.037_bib0042) 1989; 82
Michel (10.1016/j.apm.2022.10.037_bib0054) 2022; 459
Wu (10.1016/j.apm.2022.10.037_bib0070) 1994; 16
He (10.1016/j.apm.2022.10.037_bib0023) 2021; 106
Tsuruta (10.1016/j.apm.2022.10.037_bib0074) 2019; 61
10.1016/j.apm.2022.10.037_bib0009
Jandaghian (10.1016/j.apm.2022.10.037_bib0027) 2022; 94
Serroukh (10.1016/j.apm.2022.10.037_bib0084) 2020; 80
Koshizuka (10.1016/j.apm.2022.10.037_bib0068) 1999; 189
Matsunaga (10.1016/j.apm.2022.10.037_bib0052) 2022; 389
Sun (10.1016/j.apm.2022.10.037_bib0047) 2017; 315
Krimi (10.1016/j.apm.2022.10.037_bib0026) 2020; 12
Khayyer (10.1016/j.apm.2022.10.037_bib0064) 2011; 230
Gotoh (10.1016/j.apm.2022.10.037_bib0004) 2021; 115
Khayyer (10.1016/j.apm.2022.10.037_bib0050) 2019; 179
Rastelli (10.1016/j.apm.2022.10.037_bib0053) 2022; 393
Pahar (10.1016/j.apm.2022.10.037_bib0066) 2016; 96
Szymczak (10.1016/j.apm.2022.10.037_bib0075) 1994; 23
Ye (10.1016/j.apm.2022.10.037_bib0007) 2019; 31
Sun (10.1016/j.apm.2022.10.037_bib0018) 2021; 221
Cornelis (10.1016/j.apm.2022.10.037_bib0067) 2019; 35
Nasar (10.1016/j.apm.2022.10.037_bib0085) 2021; 444
Gingold (10.1016/j.apm.2022.10.037_bib0010) 1977; 181
Khayyer (10.1016/j.apm.2022.10.037_bib0032) 2017; 332
English (10.1016/j.apm.2022.10.037_bib0021) 2021; 9
Chow (10.1016/j.apm.2022.10.037_bib0089) 2019; 179
Akbari (10.1016/j.apm.2022.10.037_bib0048) 2019; 90
O'Connor (10.1016/j.apm.2022.10.037_bib0020) 2021; 104
Vacondio (10.1016/j.apm.2022.10.037_bib0006) 2021; 8
Fang (10.1016/j.apm.2022.10.037_bib0019) 2022; 244
Bui (10.1016/j.apm.2022.10.037_bib0008) 2021; 138
Monaghan (10.1016/j.apm.2022.10.037_bib0045) 1994; 110
Huang (10.1016/j.apm.2022.10.037_bib0049) 2019; 106
Suzuki (10.1016/j.apm.2022.10.037_bib0034) 2007; 196
Harada (10.1016/j.apm.2022.10.037_bib0082) 2019; 61
Violeau (10.1016/j.apm.2022.10.037_bib0002) 2012
Rafiee (10.1016/j.apm.2022.10.037_bib0028) 2009; 198
Wang (10.1016/j.apm.2022.10.037_bib0056) 2019; 357
Molteni (10.1016/j.apm.2022.10.037_bib0014) 2009; 180
Feng (10.1016/j.apm.2022.10.037_bib0087) 2021; 138
Koshizuka (10.1016/j.apm.2022.10.037_bib0062) 1996; 123
Xu (10.1016/j.apm.2022.10.037_bib0046) 2009; 228
He (10.1016/j.apm.2022.10.037_bib0041) 2019; 185
Skillen (10.1016/j.apm.2022.10.037_bib0055) 2013; 265
Kondo (10.1016/j.apm.2022.10.037_bib0063) 2011; 65
Lyu (10.1016/j.apm.2022.10.037_bib0025) 2022; 101
Inutsuka (10.1016/j.apm.2022.10.037_bib0013) 2002; 179
Marrone (10.1016/j.apm.2022.10.037_bib0015) 2011; 200
Monaghan (10.1016/j.apm.2022.10.037_bib0058) 2000; 159
Lyu (10.1016/j.apm.2022.10.037_bib0057) 2021; 114
Shimizu (10.1016/j.apm.2022.10.037_bib0080) 2022; 137
You (10.1016/j.apm.2022.10.037_bib0043) 2021; 110
Wendland (10.1016/j.apm.2022.10.037_bib0039) 1995; 4
Shao (10.1016/j.apm.2022.10.037_bib0061) 2003; 26
Cummins (10.1016/j.apm.2022.10.037_bib0060) 1999; 152
Nomeritae (10.1016/j.apm.2022.10.037_bib0029) 2016; 97
Monaghan (10.1016/j.apm.2022.10.037_bib0033) 2013; 71
Lobovský (10.1016/j.apm.2022.10.037_bib0035) 2014; 48
Tsurudome (10.1016/j.apm.2022.10.037_bib0083) 2021; 117
Tanaka (10.1016/j.apm.2022.10.037_bib0065) 2010; 229
Kishev (10.1016/j.apm.2022.10.037_bib0036) 2006; 11
Sun (10.1016/j.apm.2022.10.037_bib0038) 2018; 224
References_xml – volume: 244
  year: 2022
  ident: bib0019
  article-title: Application of SPH method in the study of ship capsizing induced by large-scale rising bubble
  publication-title: Ocean Eng.
– volume: 229
  start-page: 3652
  year: 2010
  end-page: 3663
  ident: bib0059
  article-title: Fast free-surface detection and level-set function definition in SPH solvers
  publication-title: J. Comput. Phys.
– volume: 175
  year: 2022
  ident: bib0081
  article-title: Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme
  publication-title: Coast. Eng.
– volume: 180
  start-page: 861
  year: 2009
  end-page: 872
  ident: bib0014
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput. Phys. Commun.
– volume: 159
  start-page: 290
  year: 2000
  end-page: 311
  ident: bib0058
  article-title: SPH without a tensile instability
  publication-title: J. Comput. Phys.
– volume: 228
  start-page: 6703
  year: 2009
  end-page: 6725
  ident: bib0046
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 787
  year: 2003
  end-page: 800
  ident: bib0061
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface
  publication-title: Adv. Water Res.
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: bib0012
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 576
  start-page: 370
  year: 2019
  end-page: 380
  ident: bib0031
  article-title: Smoothed Particle Hydrodynamics modelling of fresh and salt water dynamics in porous media
  publication-title: J. Hydrol.
– volume: 76
  start-page: 1108
  year: 2018
  end-page: 1129
  ident: bib0072
  article-title: An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept
  publication-title: Comput. Math. Appl.
– volume: 137
  start-page: 160
  year: 2022
  end-page: 181
  ident: bib0080
  article-title: An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms
  publication-title: Eng. Anal. Bound. Elem.
– volume: 94
  start-page: 314
  year: 2022
  end-page: 333
  ident: bib0027
  article-title: Stability and accuracy of the weakly compressible SPH with particle regularization techniques
  publication-title: Eur. J. Mech. B Fluids
– reference: [physics.comp-ph].
– volume: 179
  start-page: 238
  year: 2002
  end-page: 267
  ident: bib0013
  article-title: Reformulation of smoothed particle hydrodynamics with Riemann Solver
  publication-title: J. Comput. Phys.
– volume: 434
  year: 2021
  ident: bib0051
  article-title: Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques
  publication-title: J. Comput. Phys.
– volume: 16
  start-page: 363
  year: 1994
  end-page: 372
  ident: bib0070
  article-title: Finite element analysis of two-dimensional non-linear transient water waves
  publication-title: Appl. Ocean Res.
– volume: 198
  start-page: 2785
  year: 2009
  end-page: 2795
  ident: bib0028
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 11
  start-page: 111
  year: 2006
  end-page: 122
  ident: bib0036
  article-title: Numerical simulation of violent sloshing by a CIP-based method
  publication-title: J. Mar. Sci. Technol.
– volume: 70
  start-page: 1
  year: 2017
  end-page: 23
  ident: bib0073
  article-title: On the filtering of acoustic components in weakly-compressible SPH simulations
  publication-title: J. Fluids Struct.
– volume: 94
  start-page: 242
  year: 2021
  end-page: 271
  ident: bib0079
  article-title: A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures
  publication-title: Appl. Math. Model.
– start-page: 200
  year: 2022
  end-page: 207
  ident: bib0076
  article-title: Weakly-compressible SPH schemes with an acoustic-damper term
  publication-title: Proceedings of the 16th SPHERIC International Workshop
– volume: 114
  year: 2021
  ident: bib0005
  article-title: Particle methods in ocean and coastal engineering
  publication-title: Appl. Ocean Res.
– volume: 71
  start-page: 537
  year: 2013
  end-page: 561
  ident: bib0033
  article-title: A simple SPH algorithm for multi-fluid flow with high density ratios
  publication-title: Int. J. Numer. Methods Fluids
– volume: 56
  start-page: 419
  year: 2009
  end-page: 440
  ident: bib0069
  article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure
  publication-title: Coast. Eng.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: bib0045
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– volume: 35
  start-page: 579
  year: 2019
  end-page: 590
  ident: bib0067
  article-title: An optimized source term formulation for incompressible SPH
  publication-title: Vis. Comput.
– volume: 138
  year: 2021
  ident: bib0087
  article-title: Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH)
  publication-title: Comput. Geotech.
– volume: 123
  start-page: 421
  year: 1996
  end-page: 434
  ident: bib0062
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
– volume: 90
  start-page: 603
  year: 2019
  end-page: 631
  ident: bib0048
  article-title: An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods
  publication-title: Int. J. Numer. Methods Fluids
– volume: 265
  start-page: 163
  year: 2013
  end-page: 173
  ident: bib0055
  article-title: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body–water slam and efficient wave–body interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 152
  start-page: 584
  year: 1999
  end-page: 607
  ident: bib0060
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 3189
  year: 2020
  ident: bib0026
  article-title: A WCSPH particle shifting strategy for simulating violent free surface flows
  publication-title: Water
– volume: 62
  start-page: 625
  year: 2020
  end-page: 646
  ident: bib0077
  article-title: An enhanced multiphase ISPH-based method for accurate modeling of oil spill
  publication-title: Coast. Eng. J.
– volume: 43
  start-page: 329
  year: 2002
  end-page: 350
  ident: bib0016
  article-title: Stability analysis of particle methods with corrected derivatives
  publication-title: Comput. Math. Appl.
– volume: 94
  start-page: 13
  year: 2021
  end-page: 35
  ident: bib0086
  article-title: Collisional SPH: a method to model frictional collisions with SPH
  publication-title: Appl. Math. Model.
– volume: 224
  start-page: 63
  year: 2018
  end-page: 80
  ident: bib0038
  article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows
  publication-title: Comput. Phys. Commun.
– volume: 185
  start-page: 27
  year: 2019
  end-page: 46
  ident: bib0041
  article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method
  publication-title: Ocean Eng.
– volume: 117
  year: 2021
  ident: bib0083
  article-title: Study of beach permeability's influence on solitary wave runup with ISPH method
  publication-title: Appl. Ocean Res.
– volume: 393
  year: 2022
  ident: bib0053
  article-title: Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 23
  start-page: 413
  year: 1994
  end-page: 420
  ident: bib0075
  article-title: Energy losses in non-classical free surface flows
  publication-title: Bubble Dynamics and Interface Phenomena, Ser. Fluid Mechanics and its Applications
– volume: 104
  year: 2021
  ident: bib0020
  article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU
  publication-title: J. Fluids Struct.
– volume: 196
  start-page: 2876
  year: 2007
  end-page: 2894
  ident: bib0034
  article-title: Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flow
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 114
  year: 2021
  ident: bib0057
  article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 82
  start-page: 1
  year: 1989
  end-page: 15
  ident: bib0042
  article-title: On the problem of penetration in particle methods
  publication-title: J. Comput. Phys.
– volume: 65
  start-page: 638
  year: 2011
  end-page: 654
  ident: bib0063
  article-title: Improvement of stability in moving particle semi-implicit method
  publication-title: Int. J. Numer. Methods Fluids
– volume: 106
  start-page: 30
  year: 2021
  ident: bib0023
  article-title: Theoretical method for generating solitary waves using plunger-type wavemakers and its smoothed particle hydrodynamics validation
  publication-title: Appl. Ocean. Res.
– volume: 315
  start-page: 25
  year: 2017
  end-page: 49
  ident: bib0047
  article-title: The plus-SPH model: Simple procedures for a further improvement of the SPH scheme
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 96
  start-page: 423
  year: 2016
  end-page: 437
  ident: bib0066
  article-title: A robust volume conservative divergence-free ISPH framework for free-surface flow problems
  publication-title: Adv. Water Resour.
– reference: Zhang C., Zhu Y., Wu D., Hu X. 2022. Review on smoothed particle hydrodynamics: Methodology development and recent achievement, arXiv preprint, arXiv:
– volume: 97
  start-page: 156
  year: 2016
  end-page: 167
  ident: bib0029
  article-title: Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes
  publication-title: Adv. Water Resour.
– volume: 61
  start-page: 41
  year: 2019
  end-page: 62
  ident: bib0074
  article-title: Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems
  publication-title: Coast. Eng. J.
– volume: 289
  start-page: 209
  year: 2015
  end-page: 226
  ident: bib0037
  article-title: Energy balance in the -SPH schemes
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: bib0040
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 95
  start-page: 1
  year: 2022
  end-page: 22
  ident: bib0078
  article-title: Multi-phase moving particle semi-implicit method for violent sloshing flows
  publication-title: Eur. J. Mech. B Fluids
– volume: 348
  start-page: 912
  year: 2019
  end-page: 934
  ident: bib0024
  article-title: A consistent approach to particle shifting in the δ-Plus-SPH model
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 48
  start-page: 407
  year: 2014
  end-page: 434
  ident: bib0035
  article-title: A. Souto-Iglesias, Experimental investigation of dynamic pressure loads during dam break
  publication-title: J. Fluids Struct.
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: bib0039
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
– volume: 61
  start-page: 2
  year: 2019
  end-page: 14
  ident: bib0082
  article-title: Numerical simulation for swash morphodynamics by DEM–MPS coupling model
  publication-title: Coast. Eng. J.
– volume: 230
  start-page: 3093
  year: 2011
  end-page: 3118
  ident: bib0064
  article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method
  publication-title: J. Comput. Phys.
– volume: 138
  year: 2021
  ident: bib0008
  article-title: Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media
  publication-title: Comput. Geotech.
– start-page: 289
  year: 2018
  ident: bib0003
  article-title: Ryushiho
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib0010
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 179
  start-page: 356
  year: 2019
  end-page: 371
  ident: bib0050
  article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields
  publication-title: Comput. Fluids
– volume: 229
  start-page: 4279
  year: 2010
  end-page: 4290
  ident: bib0065
  article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility
  publication-title: J. Comput. Phys.
– volume: 66
  start-page: 20
  year: 2017
  end-page: 37
  ident: bib0071
  article-title: On enhancement of energy conservation properties of projection-based particle methods
  publication-title: Eur. J. Mech. B/Fluids
– volume: 444
  year: 2021
  ident: bib0085
  article-title: High-order consistent SPH with the pressure projection method in 2-D and 3-D
  publication-title: J. Comput. Phys.
– volume: 233
  start-page: 16
  year: 2018
  end-page: 28
  ident: bib0088
  article-title: New massively parallel scheme for incompressible smoothed particle hydrodynamics (ISPH) for highly nonlinear and distorted flow
  publication-title: Comput. Phys. Commun.
– volume: 357
  year: 2019
  ident: bib0056
  article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 459
  year: 2022
  ident: bib0054
  article-title: On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law
  publication-title: J. Comput. Phys.
– volume: 106
  start-page: 571
  year: 2019
  end-page: 587
  ident: bib0049
  article-title: A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils
  publication-title: Eng. Anal. Bound. Elem.
– volume: 34
  start-page: 395
  year: 2022
  end-page: 407
  ident: bib0001
  article-title: On systematic development of FSI solvers in the context of particle methods
  publication-title: J. Hydrodyn.
– volume: 9
  start-page: 867
  year: 2021
  end-page: 895
  ident: bib0022
  article-title: DualSPHysics: from fluid dynamics to multiphysics problems
  publication-title: Comput. Part. Mech.
– volume: 80
  start-page: 238
  year: 2020
  end-page: 256
  ident: bib0084
  article-title: Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems
  publication-title: Appl. Math. Model.
– volume: 8
  start-page: 575
  year: 2021
  end-page: 588
  ident: bib0006
  article-title: Grand challenges for smoothed particle hydrodynamics numerical schemes
  publication-title: Comput. Part. Mech.
– volume: 9
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib0021
  article-title: Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems
  publication-title: Comput. Part. Mech.
– volume: 101
  year: 2020
  ident: bib0090
  article-title: Shear-viscosity-independent bulk-viscosity term in smoothed particle hydrodynamics
  publication-title: Phys. Rev. E.
– volume: 110
  year: 2021
  ident: bib0043
  article-title: Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme
  publication-title: Appl. Ocean Res.
– volume: 108
  start-page: 15
  year: 2017
  end-page: 28
  ident: bib0030
  article-title: SPH modelling of multi-fluid lock-exchange over and within porous media
  publication-title: Adv. Water Resour.
– volume: 389
  year: 2022
  ident: bib0052
  article-title: Stabilized LSMPS method for complex free-surface flow simulation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 404
  year: 2020
  ident: bib0044
  article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 31
  year: 2019
  ident: bib0007
  article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications
  publication-title: Phys. Fluids
– volume: 189
  start-page: 423
  year: 1999
  end-page: 433
  ident: bib0068
  article-title: Numerical analysis of fragmentation mechanisms in vapor explosions
  publication-title: Nucl. Eng. Des.
– volume: 231
  start-page: 1499
  year: 2012
  end-page: 1523
  ident: bib0017
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
– volume: 221
  year: 2021
  ident: bib0018
  article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
– volume: 200
  start-page: 1526
  year: 2011
  end-page: 1542
  ident: bib0015
  article-title: -SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 101
  start-page: 214
  year: 2022
  end-page: 238
  ident: bib0025
  article-title: Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in sph simulations of violent free-surface flows
  publication-title: Appl. Math. Model.
– volume: 332
  start-page: 236
  year: 2017
  end-page: 256
  ident: bib0032
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J. Comput. Phys.
– year: 2012
  ident: bib0002
  article-title: Fluid Mechanics and the SPH Method: Theory and Applications, 0199655529
– volume: 115
  year: 2021
  ident: bib0004
  article-title: Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering - Reliability, adaptivity and generality
  publication-title: Appl. Ocean Res.
– volume: 52
  start-page: 374
  year: 1983
  end-page: 389
  ident: bib0011
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
– volume: 179
  start-page: 543
  year: 2019
  end-page: 562
  ident: bib0089
  article-title: Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases
  publication-title: Comput. Fluids
– volume: 357
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0056
  article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112580
– volume: 95
  start-page: 1
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0078
  article-title: Multi-phase moving particle semi-implicit method for violent sloshing flows
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2022.04.002
– volume: 80
  start-page: 238
  year: 2020
  ident: 10.1016/j.apm.2022.10.037_bib0084
  article-title: Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.11.046
– volume: 96
  start-page: 423
  year: 2016
  ident: 10.1016/j.apm.2022.10.037_bib0066
  article-title: A robust volume conservative divergence-free ISPH framework for free-surface flow problems
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.08.010
– volume: 76
  start-page: 1108
  year: 2018
  ident: 10.1016/j.apm.2022.10.037_bib0072
  article-title: An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.06.002
– volume: 108
  start-page: 15
  year: 2017
  ident: 10.1016/j.apm.2022.10.037_bib0030
  article-title: SPH modelling of multi-fluid lock-exchange over and within porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.07.011
– volume: 110
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0043
  article-title: Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102508
– volume: 115
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0004
  article-title: Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering - Reliability, adaptivity and generality
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102822
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0021
  article-title: Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems
  publication-title: Comput. Part. Mech.
– volume: 138
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0087
  article-title: Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH)
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104356
– volume: 224
  start-page: 63
  year: 2018
  ident: 10.1016/j.apm.2022.10.037_bib0038
  article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.11.016
– volume: 101
  start-page: 214
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0025
  article-title: Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in sph simulations of violent free-surface flows
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.08.014
– volume: 231
  start-page: 7057
  issue: 21
  year: 2012
  ident: 10.1016/j.apm.2022.10.037_bib0040
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 152
  start-page: 584
  issue: 2
  year: 1999
  ident: 10.1016/j.apm.2022.10.037_bib0060
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6246
– volume: 94
  start-page: 13
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0086
  article-title: Collisional SPH: a method to model frictional collisions with SPH
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.01.005
– volume: 233
  start-page: 16
  year: 2018
  ident: 10.1016/j.apm.2022.10.037_bib0088
  article-title: New massively parallel scheme for incompressible smoothed particle hydrodynamics (ISPH) for highly nonlinear and distorted flow
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.06.006
– volume: 8
  start-page: 575
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0006
  article-title: Grand challenges for smoothed particle hydrodynamics numerical schemes
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-020-00354-1
– volume: 265
  start-page: 163
  year: 2013
  ident: 10.1016/j.apm.2022.10.037_bib0055
  article-title: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body–water slam and efficient wave–body interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.05.017
– volume: 61
  start-page: 2
  issue: 1
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0082
  article-title: Numerical simulation for swash morphodynamics by DEM–MPS coupling model
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2018.1554203
– volume: 110
  start-page: 399
  issue: 2
  year: 1994
  ident: 10.1016/j.apm.2022.10.037_bib0045
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– volume: 179
  start-page: 543
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0089
  article-title: Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.11.022
– volume: 221
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0018
  article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108552
– volume: 348
  start-page: 912
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0024
  article-title: A consistent approach to particle shifting in the δ-Plus-SPH model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.01.045
– volume: 23
  start-page: 413
  year: 1994
  ident: 10.1016/j.apm.2022.10.037_bib0075
  article-title: Energy losses in non-classical free surface flows
– volume: 61
  start-page: 41
  issue: 1
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0074
  article-title: Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2018.1560683
– volume: 16
  start-page: 363
  year: 1994
  ident: 10.1016/j.apm.2022.10.037_bib0070
  article-title: Finite element analysis of two-dimensional non-linear transient water waves
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(94)00029-8
– volume: 200
  start-page: 1526
  issue: 13-16
  year: 2011
  ident: 10.1016/j.apm.2022.10.037_bib0015
  article-title: δ-SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.12.016
– volume: 444
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0085
  article-title: High-order consistent SPH with the pressure projection method in 2-D and 3-D
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110563
– volume: 315
  start-page: 25
  year: 2017
  ident: 10.1016/j.apm.2022.10.037_bib0047
  article-title: The plus-SPH model: Simple procedures for a further improvement of the SPH scheme
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.10.028
– start-page: 200
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0076
  article-title: Weakly-compressible SPH schemes with an acoustic-damper term
– volume: 11
  start-page: 111
  year: 2006
  ident: 10.1016/j.apm.2022.10.037_bib0036
  article-title: Numerical simulation of violent sloshing by a CIP-based method
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-006-0216-7
– volume: 159
  start-page: 290
  issue: 2
  year: 2000
  ident: 10.1016/j.apm.2022.10.037_bib0058
  article-title: SPH without a tensile instability
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6439
– volume: 70
  start-page: 1
  year: 2017
  ident: 10.1016/j.apm.2022.10.037_bib0073
  article-title: On the filtering of acoustic components in weakly-compressible SPH simulations
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.01.005
– volume: 82
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/j.apm.2022.10.037_bib0042
  article-title: On the problem of penetration in particle methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90032-6
– volume: 138
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0008
  article-title: Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104315
– volume: 180
  start-page: 861
  issue: 6
  year: 2009
  ident: 10.1016/j.apm.2022.10.037_bib0014
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.12.004
– volume: 35
  start-page: 579
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0067
  article-title: An optimized source term formulation for incompressible SPH
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1488-8
– volume: 66
  start-page: 20
  year: 2017
  ident: 10.1016/j.apm.2022.10.037_bib0071
  article-title: On enhancement of energy conservation properties of projection-based particle methods
  publication-title: Eur. J. Mech. B/Fluids
  doi: 10.1016/j.euromechflu.2017.01.014
– volume: 181
  start-page: 375
  year: 1977
  ident: 10.1016/j.apm.2022.10.037_bib0010
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 94
  start-page: 242
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0079
  article-title: A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.01.011
– volume: 97
  start-page: 156
  year: 2016
  ident: 10.1016/j.apm.2022.10.037_bib0029
  article-title: Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.09.008
– start-page: 289
  year: 2018
  ident: 10.1016/j.apm.2022.10.037_bib0003
– volume: 179
  start-page: 238
  year: 2002
  ident: 10.1016/j.apm.2022.10.037_bib0013
  article-title: Reformulation of smoothed particle hydrodynamics with Riemann Solver
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7053
– volume: 71
  start-page: 537
  year: 2013
  ident: 10.1016/j.apm.2022.10.037_bib0033
  article-title: A simple SPH algorithm for multi-fluid flow with high density ratios
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3671
– volume: 123
  start-page: 421
  year: 1996
  ident: 10.1016/j.apm.2022.10.037_bib0062
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE96-A24205
– volume: 62
  start-page: 625
  issue: 4
  year: 2020
  ident: 10.1016/j.apm.2022.10.037_bib0077
  article-title: An enhanced multiphase ISPH-based method for accurate modeling of oil spill
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2020.1815362
– volume: 12
  start-page: 3189
  issue: 11
  year: 2020
  ident: 10.1016/j.apm.2022.10.037_bib0026
  article-title: A WCSPH particle shifting strategy for simulating violent free surface flows
  publication-title: Water
  doi: 10.3390/w12113189
– volume: 198
  start-page: 2785
  year: 2009
  ident: 10.1016/j.apm.2022.10.037_bib0028
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2009.04.001
– volume: 106
  start-page: 571
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0049
  article-title: A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.06.010
– volume: 106
  start-page: 30
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0023
  article-title: Theoretical method for generating solitary waves using plunger-type wavemakers and its smoothed particle hydrodynamics validation
  publication-title: Appl. Ocean. Res.
  doi: 10.1016/j.apor.2020.102414
– volume: 229
  start-page: 4279
  issue: 11
  year: 2010
  ident: 10.1016/j.apm.2022.10.037_bib0065
  article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.02.011
– volume: 189
  start-page: 423
  year: 1999
  ident: 10.1016/j.apm.2022.10.037_bib0068
  article-title: Numerical analysis of fragmentation mechanisms in vapor explosions
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(98)00270-2
– volume: 228
  start-page: 6703
  issue: 18
  year: 2009
  ident: 10.1016/j.apm.2022.10.037_bib0046
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.032
– volume: 230
  start-page: 3093
  year: 2011
  ident: 10.1016/j.apm.2022.10.037_bib0064
  article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.009
– volume: 56
  start-page: 419
  issue: 4
  year: 2009
  ident: 10.1016/j.apm.2022.10.037_bib0069
  article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.10.004
– volume: 196
  start-page: 2876
  year: 2007
  ident: 10.1016/j.apm.2022.10.037_bib0034
  article-title: Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flow
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.12.006
– volume: 104
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0020
  article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU
  publication-title: J. Fluids Struct.
– volume: 34
  start-page: 395
  issue: 3
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0001
  article-title: On systematic development of FSI solvers in the context of particle methods
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-022-0042-3
– volume: 31
  issue: 1
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0007
  article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications
  publication-title: Phys. Fluids
  doi: 10.1063/1.5068697
– volume: 434
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0051
  article-title: Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110202
– volume: 52
  start-page: 374
  issue: 2
  year: 1983
  ident: 10.1016/j.apm.2022.10.037_bib0011
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90036-0
– volume: 43
  start-page: 329
  year: 2002
  ident: 10.1016/j.apm.2022.10.037_bib0016
  article-title: Stability analysis of particle methods with corrected derivatives
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00290-5
– volume: 244
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0019
  article-title: Application of SPH method in the study of ship capsizing induced by large-scale rising bubble
  publication-title: Ocean Eng.
– volume: 101
  year: 2020
  ident: 10.1016/j.apm.2022.10.037_bib0090
  article-title: Shear-viscosity-independent bulk-viscosity term in smoothed particle hydrodynamics
  publication-title: Phys. Rev. E.
– volume: 90
  start-page: 603
  issue: 12
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0048
  article-title: An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4737
– volume: 459
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0054
  article-title: On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.110999
– volume: 332
  start-page: 236
  year: 2017
  ident: 10.1016/j.apm.2022.10.037_bib0032
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.005
– volume: 389
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0052
  article-title: Stabilized LSMPS method for complex free-surface flow simulation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114416
– volume: 48
  start-page: 407
  year: 2014
  ident: 10.1016/j.apm.2022.10.037_bib0035
  article-title: A. Souto-Iglesias, Experimental investigation of dynamic pressure loads during dam break
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.03.009
– volume: 9
  start-page: 867
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0022
  article-title: DualSPHysics: from fluid dynamics to multiphysics problems
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-021-00404-2
– volume: 117
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0083
  article-title: Study of beach permeability's influence on solitary wave runup with ISPH method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102957
– volume: 576
  start-page: 370
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0031
  article-title: Smoothed Particle Hydrodynamics modelling of fresh and salt water dynamics in porous media
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.048
– volume: 175
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0081
  article-title: Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2022.104146
– volume: 26
  start-page: 787
  year: 2003
  ident: 10.1016/j.apm.2022.10.037_bib0061
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface
  publication-title: Adv. Water Res.
  doi: 10.1016/S0309-1708(03)00030-7
– ident: 10.1016/j.apm.2022.10.037_bib0009
  doi: 10.1007/s42241-022-0052-1
– volume: 289
  start-page: 209
  year: 2015
  ident: 10.1016/j.apm.2022.10.037_bib0037
  article-title: Energy balance in the -SPH schemes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.02.004
– volume: 114
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0057
  article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 179
  start-page: 356
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0050
  article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.10.018
– volume: 185
  start-page: 27
  year: 2019
  ident: 10.1016/j.apm.2022.10.037_bib0041
  article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.05.034
– year: 2012
  ident: 10.1016/j.apm.2022.10.037_bib0002
– volume: 191
  start-page: 448
  issue: 2
  year: 2003
  ident: 10.1016/j.apm.2022.10.037_bib0012
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 231
  start-page: 1499
  year: 2012
  ident: 10.1016/j.apm.2022.10.037_bib0017
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.027
– volume: 65
  start-page: 638
  issue: 6
  year: 2011
  ident: 10.1016/j.apm.2022.10.037_bib0063
  article-title: Improvement of stability in moving particle semi-implicit method
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2207
– volume: 404
  year: 2020
  ident: 10.1016/j.apm.2022.10.037_bib0044
  article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109135
– volume: 137
  start-page: 160
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0080
  article-title: An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2021.10.023
– volume: 393
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0053
  article-title: Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114716
– volume: 229
  start-page: 3652
  issue: 10
  year: 2010
  ident: 10.1016/j.apm.2022.10.037_bib0059
  article-title: Fast free-surface detection and level-set function definition in SPH solvers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.01.019
– volume: 94
  start-page: 314
  year: 2022
  ident: 10.1016/j.apm.2022.10.037_bib0027
  article-title: Stability and accuracy of the weakly compressible SPH with particle regularization techniques
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2022.03.007
– volume: 114
  year: 2021
  ident: 10.1016/j.apm.2022.10.037_bib0005
  article-title: Particle methods in ocean and coastal engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102734
– volume: 4
  start-page: 389
  year: 1995
  ident: 10.1016/j.apm.2022.10.037_bib0039
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
SSID ssj0005904
Score 2.617291
Snippet This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Continuity equation resolution
Divergence-free velocity
Incompressibility conditions
Incompressible fluid
Smoothed Particle Hydrodynamics
Volume conservation
Title Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free‐surface fluid flows
URI https://dx.doi.org/10.1016/j.apm.2022.10.037
Volume 116
WOSCitedRecordID wos000891775000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWilgUsEE9RCsgLVlSp5uF5LSsUCEhUlRKk7Ea2x6NMm0zSJNMmrNiz4Wf4Ib6Ee-3xZNoCAiQ2VuTYY2nuGfvaPvdcQl6GcawyzvBcQ8kuC5Kwy6UfwXelPJEwEQXS0ckmouPjeDRKTjqdbzYW5mISlWW8Xifz_2pqqANjY-jsX5i7eShUwG8wOpRgdij_yPC9cmxu9WEjXQ9kiQDISy_KCh1vdW40vrVkyBovsYvVwaXiZ5ONpplreixGVQ1O-gfLYlq1OHMo6NBqkS-UajgTy2qRc5gr8klVZFDOaqfdCt3WTu-0UYvF6BXMxjOxayjO_mO-2dRptoXgjds_GBfT4lOll41qu6C8na1m-nRoyM94Xk2LG3_0Yd5ajov2EYfnt5gx-tzNxt5coYZqecvEMfzOZi5327OxST5Xr-uuicS-sWSY04vTQz5HYQLPO0SynxGiuabEPcAhcUTP07I5sOne9aIggcl09-hdb_R-yy1KHGYVOLGDvU7XxMJrA_3cIWo5OcN75G69O6FHBlX3SUeVD8idD42xlg_JF4svusUXneUUmtAtvqjFFy1KavFFDb5oGz0U8EVb-MJHXcUXRXx9__y1RhbVyKIaWY_Ixze94et-t87o0ZV-6K-6IvOZz3LuxsoJJOxkhRB5kmW59FUcZDHLXEdyaCTcOOFSBhGHZUFy7UViRpLHZKecleoJob6bcdgs5CoRPpOCxbkKYwwIjhgToQj3iGNfaypruXvMujJJLa_xNAVLpGgJrAJL7JFXTZe50Xr5XWNmbZXWzqpxQlMA1q-7Pf23bvvk9vbDeEZ2VotKPSe35MWqWC5e1PD7AZ2Twmw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+resolution+of+the+continuity+equation+in+explicit+weakly+compressible+SPH+simulations+of+incompressible+free%E2%80%90surface+fluid+flows&rft.jtitle=Applied+mathematical+modelling&rft.au=Khayyer%2C+Abbas&rft.au=Shimizu%2C+Yuma&rft.au=Gotoh%2C+Takafumi&rft.au=Gotoh%2C+Hitoshi&rft.date=2023-04-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=116&rft.spage=84&rft.epage=121&rft_id=info:doi/10.1016%2Fj.apm.2022.10.037&rft.externalDocID=S0307904X22005091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon