Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free‐surface fluid flows
This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly compressible SPH (Smoothed Particle Hydrodynamics) simulations of incompressible free-surface fluid flows. In the explicit weakly compressib...
Gespeichert in:
| Veröffentlicht in: | Applied mathematical modelling Jg. 116; S. 84 - 121 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.04.2023
|
| Schlagworte: | |
| ISSN: | 0307-904X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly compressible SPH (Smoothed Particle Hydrodynamics) simulations of incompressible free-surface fluid flows. In the explicit weakly compressible SPH methods, including δ-SPH with a widely adopted particle shifting scheme (or the so-called δ-plus-SPH), two incompressibility conditions corresponding to the invariant density condition and divergence-free velocity condition are not well resolved. To achieve enhanced resolution of the continuity equation as well as satisfaction of both incompressibility conditions, this paper presents two novel schemes, namely, Velocity-divergence Error Mitigating (VEM) and Volume Conservation Shifting (VCS) schemes. The VEM scheme corresponds to an additional term in the momentum equation that mitigates the velocity divergence error at every computational time step. The VEM term is derived by linking the instantaneous velocity divergence error to the undesired density time variations and accordingly to an error mitigating pressure pVEM obtained through an Equation of State (EOS). The corresponding pressure gradient term or acceleration leads to attenuation of numerical noise in the velocity divergence field. The VCS acts as a distinct particle shifting scheme to enforce local and thus global volume conservation. This distinct shifting is obtained through calculation of the gradient of a corresponding pressure, namely, pVCS, obtained through efficient solution of a Poisson Pressure Equation (PPE) derived from the concept of projection-based particle methods. By adopting both proposed schemes, the explicit SPH method is shown to provide enhanced satisfaction of both incompressibility conditions, i.e., divergence-free velocity and invariant density conditions, in simulation of incompressible free-surface fluid flows.
[Display omitted] |
|---|---|
| AbstractList | This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly compressible SPH (Smoothed Particle Hydrodynamics) simulations of incompressible free-surface fluid flows. In the explicit weakly compressible SPH methods, including δ-SPH with a widely adopted particle shifting scheme (or the so-called δ-plus-SPH), two incompressibility conditions corresponding to the invariant density condition and divergence-free velocity condition are not well resolved. To achieve enhanced resolution of the continuity equation as well as satisfaction of both incompressibility conditions, this paper presents two novel schemes, namely, Velocity-divergence Error Mitigating (VEM) and Volume Conservation Shifting (VCS) schemes. The VEM scheme corresponds to an additional term in the momentum equation that mitigates the velocity divergence error at every computational time step. The VEM term is derived by linking the instantaneous velocity divergence error to the undesired density time variations and accordingly to an error mitigating pressure pVEM obtained through an Equation of State (EOS). The corresponding pressure gradient term or acceleration leads to attenuation of numerical noise in the velocity divergence field. The VCS acts as a distinct particle shifting scheme to enforce local and thus global volume conservation. This distinct shifting is obtained through calculation of the gradient of a corresponding pressure, namely, pVCS, obtained through efficient solution of a Poisson Pressure Equation (PPE) derived from the concept of projection-based particle methods. By adopting both proposed schemes, the explicit SPH method is shown to provide enhanced satisfaction of both incompressibility conditions, i.e., divergence-free velocity and invariant density conditions, in simulation of incompressible free-surface fluid flows.
[Display omitted] |
| Author | Gotoh, Hitoshi Shimizu, Yuma Gotoh, Takafumi Khayyer, Abbas |
| Author_xml | – sequence: 1 givenname: Abbas surname: Khayyer fullname: Khayyer, Abbas email: khayyer@particle.kuciv.kyoto-u.ac.jp – sequence: 2 givenname: Yuma surname: Shimizu fullname: Shimizu, Yuma – sequence: 3 givenname: Takafumi surname: Gotoh fullname: Gotoh, Takafumi – sequence: 4 givenname: Hitoshi surname: Gotoh fullname: Gotoh, Hitoshi |
| BookMark | eNp9kL9OwzAQxj0UibbwAGx-gQQ7_ysmVBWKVAkkQGKzHPuiuiROsB1KN3YWnpEnwWlZYGCx9d19v9PdN0Ej3WpA6IySkBKanW9C3jVhRKLI65DE-QiNSUzyYEaSp2M0sXZDCEm9GqOPhV5zLUBiA7ate6dajdsKuzVg0WqndK_cDsNLz_ctpTG8dbUSyuEt8Od6521N52Gryhrw_d0SW9X09d5uh1FK_3JUBuDr_dP2puLCy7pX0r_t1p6go4rXFk5__il6vFo8zJfB6vb6Zn65CkScxS4oZZzEScVpASQVeZKXZVnNpKxEDEUqi0RSIrg3lbSYcSHSnJfEV6IsowmhJJ6i_DBXmNZaAxXz1-z3dYarmlHChhzZhvkc2ZDjUPI5epL-ITujGm52_zIXBwb8Sa8KDLNCwRC5MiAck636h_4GlxuVlA |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0289276 crossref_primary_10_1016_j_apm_2025_116104 crossref_primary_10_1016_j_coastaleng_2023_104315 crossref_primary_10_1016_j_compfluid_2023_106048 crossref_primary_10_1002_pen_26983 crossref_primary_10_1016_j_est_2024_110496 crossref_primary_10_1007_s00707_023_03763_4 crossref_primary_10_1016_j_apor_2024_103885 crossref_primary_10_1016_j_cpc_2024_109389 crossref_primary_10_1016_j_enganabound_2023_08_004 crossref_primary_10_1007_s40571_024_00892_y crossref_primary_10_1016_j_oceaneng_2023_115938 crossref_primary_10_1016_j_enganabound_2023_10_018 crossref_primary_10_1108_HFF_01_2024_0045 crossref_primary_10_1016_j_cma_2024_117255 crossref_primary_10_1016_j_jfluidstructs_2023_104049 crossref_primary_10_1016_j_oceaneng_2024_117037 crossref_primary_10_1016_j_coastaleng_2024_104521 crossref_primary_10_1016_j_coastaleng_2024_104565 crossref_primary_10_1108_EC_06_2022_0394 crossref_primary_10_1016_j_oceaneng_2025_120601 crossref_primary_10_1016_j_cma_2023_116460 crossref_primary_10_1016_j_compfluid_2025_106638 crossref_primary_10_1016_j_oceaneng_2025_122868 crossref_primary_10_1007_s42452_025_06651_9 crossref_primary_10_1016_j_compfluid_2024_106266 crossref_primary_10_1016_j_coastaleng_2025_104811 crossref_primary_10_1016_j_jfluidstructs_2025_104295 crossref_primary_10_1016_j_jcp_2024_113039 crossref_primary_10_1016_j_cma_2025_118339 crossref_primary_10_1016_j_jcp_2025_113951 crossref_primary_10_1007_s11804_024_00511_5 crossref_primary_10_1002_nme_7657 crossref_primary_10_1016_j_coastaleng_2024_104658 crossref_primary_10_1038_s41598_025_09592_w crossref_primary_10_1016_j_apor_2025_104760 crossref_primary_10_1080_21664250_2025_2531704 crossref_primary_10_1016_j_apor_2024_104244 crossref_primary_10_1016_j_coastaleng_2023_104379 crossref_primary_10_1016_j_cma_2024_117484 crossref_primary_10_1016_j_coastaleng_2023_104333 crossref_primary_10_1016_j_compgeo_2025_107338 crossref_primary_10_1080_21664250_2024_2345233 crossref_primary_10_1016_j_oceaneng_2024_119772 crossref_primary_10_1016_j_enganabound_2024_105848 crossref_primary_10_1016_j_compfluid_2025_106753 crossref_primary_10_1016_j_geomorph_2025_109735 crossref_primary_10_1007_s40571_024_00856_2 crossref_primary_10_1016_j_cma_2023_116700 crossref_primary_10_1016_j_compstruc_2025_107862 crossref_primary_10_1016_j_cma_2023_116640 crossref_primary_10_1080_21664250_2024_2442201 crossref_primary_10_1007_s11071_023_08940_7 crossref_primary_10_1007_s11802_025_5853_8 crossref_primary_10_1007_s00366_023_01857_0 crossref_primary_10_1016_j_csite_2025_105991 crossref_primary_10_3390_fluids8050137 crossref_primary_10_1016_j_oceaneng_2023_116623 crossref_primary_10_1002_nme_70116 crossref_primary_10_1016_j_cma_2025_118142 crossref_primary_10_1016_j_coastaleng_2024_104663 crossref_primary_10_1063_5_0216702 crossref_primary_10_1016_j_apor_2023_103712 crossref_primary_10_1016_j_oceaneng_2024_119460 crossref_primary_10_1016_j_apor_2023_103559 crossref_primary_10_1016_j_apor_2023_103757 crossref_primary_10_1016_j_coastaleng_2023_104362 crossref_primary_10_1016_j_oceaneng_2024_118571 crossref_primary_10_1016_j_apor_2023_103832 crossref_primary_10_1016_j_oceaneng_2025_121203 crossref_primary_10_1016_j_oceaneng_2025_122413 crossref_primary_10_1002_ese3_1638 crossref_primary_10_1016_j_oceaneng_2024_118532 crossref_primary_10_1016_j_enganabound_2025_106405 crossref_primary_10_1007_s40571_023_00673_z crossref_primary_10_1016_j_jcp_2025_114203 crossref_primary_10_1016_j_cma_2023_115989 |
| Cites_doi | 10.1016/j.cma.2019.112580 10.1016/j.euromechflu.2022.04.002 10.1016/j.apm.2019.11.046 10.1016/j.advwatres.2016.08.010 10.1016/j.camwa.2018.06.002 10.1016/j.advwatres.2017.07.011 10.1016/j.apor.2020.102508 10.1016/j.apor.2021.102822 10.1016/j.compgeo.2021.104356 10.1016/j.cpc.2017.11.016 10.1016/j.apm.2021.08.014 10.1016/j.jcp.2012.05.005 10.1006/jcph.1999.6246 10.1016/j.apm.2021.01.005 10.1016/j.cpc.2018.06.006 10.1007/s40571-020-00354-1 10.1016/j.cma.2013.05.017 10.1080/21664250.2018.1554203 10.1006/jcph.1994.1034 10.1016/j.compfluid.2018.11.022 10.1016/j.oceaneng.2020.108552 10.1016/j.cma.2019.01.045 10.1080/21664250.2018.1560683 10.1016/0141-1187(94)00029-8 10.1016/j.cma.2010.12.016 10.1016/j.jcp.2021.110563 10.1016/j.cma.2016.10.028 10.1007/s00773-006-0216-7 10.1006/jcph.2000.6439 10.1016/j.jfluidstructs.2017.01.005 10.1016/0021-9991(89)90032-6 10.1016/j.compgeo.2021.104315 10.1016/j.cpc.2008.12.004 10.1007/s00371-018-1488-8 10.1016/j.euromechflu.2017.01.014 10.1093/mnras/181.3.375 10.1016/j.apm.2021.01.011 10.1016/j.advwatres.2016.09.008 10.1006/jcph.2002.7053 10.1002/fld.3671 10.13182/NSE96-A24205 10.1080/21664250.2020.1815362 10.3390/w12113189 10.1016/j.cma.2009.04.001 10.1016/j.enganabound.2019.06.010 10.1016/j.apor.2020.102414 10.1016/j.jcp.2010.02.011 10.1016/S0029-5493(98)00270-2 10.1016/j.jcp.2009.05.032 10.1016/j.jcp.2011.01.009 10.1016/j.coastaleng.2008.10.004 10.1016/j.cma.2006.12.006 10.1007/s42241-022-0042-3 10.1063/1.5068697 10.1016/j.jcp.2021.110202 10.1016/0021-9991(83)90036-0 10.1016/S0898-1221(01)00290-5 10.1002/fld.4737 10.1016/j.jcp.2022.110999 10.1016/j.jcp.2016.12.005 10.1016/j.cma.2021.114416 10.1016/j.jfluidstructs.2014.03.009 10.1007/s40571-021-00404-2 10.1016/j.apor.2021.102957 10.1016/j.jhydrol.2019.06.048 10.1016/j.coastaleng.2022.104146 10.1016/S0309-1708(03)00030-7 10.1007/s42241-022-0052-1 10.1016/j.cma.2015.02.004 10.1016/j.compfluid.2018.10.018 10.1016/j.oceaneng.2019.05.034 10.1016/S0021-9991(03)00324-3 10.1016/j.jcp.2011.10.027 10.1002/fld.2207 10.1016/j.jcp.2019.109135 10.1016/j.enganabound.2021.10.023 10.1016/j.cma.2022.114716 10.1016/j.jcp.2010.01.019 10.1016/j.euromechflu.2022.03.007 10.1016/j.apor.2021.102734 10.1007/BF02123482 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apm.2022.10.037 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 121 |
| ExternalDocumentID | 10_1016_j_apm_2022_10_037 S0307904X22005091 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c363t-bd3434fa18e05c747bbbf9ddfc3e85d84d10cad34b189acc57ab00ca266140103 |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891775000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Tue Nov 18 22:35:12 EST 2025 Sat Nov 29 07:21:20 EST 2025 Fri Feb 23 02:39:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Continuity equation resolution Smoothed Particle Hydrodynamics Incompressible fluid Incompressibility conditions Volume conservation Divergence-free velocity |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-bd3434fa18e05c747bbbf9ddfc3e85d84d10cad34b189acc57ab00ca266140103 |
| PageCount | 38 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apm_2022_10_037 crossref_primary_10_1016_j_apm_2022_10_037 elsevier_sciencedirect_doi_10_1016_j_apm_2022_10_037 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Wang, Meng, Zhang, Ming, Sun (bib0056) 2019; 357 Kishev, Hu, Kashiwagi (bib0036) 2006; 11 Molteni, Colagrossi (bib0014) 2009; 180 Huang, Long, Li, Liu (bib0049) 2019; 106 Gingold, Monaghan (bib0010) 1977; 181 English, Domínguez, Vacondio, Crespo, Stansby, Lind, Chiapponi, Gómez-Gesteira (bib0021) 2021; 9 Gotoh, Khayyer, Shimizu (bib0004) 2021; 115 Tanaka, Masunaga (bib0065) 2010; 229 Wendland (bib0039) 1995; 4 Krimi, Jandaghian, Shakibaeinia (bib0026) 2020; 12 Jandaghian, Krimi, Zarrati, Shakibaeinia (bib0051) 2021; 434 Suzuki, Koshizuka, Oka (bib0034) 2007; 196 Koshizuka, Ikeda, Oka (bib0068) 1999; 189 [physics.comp-ph]. You, Khayyer, Zheng, Gotoh, Ma (bib0043) 2021; 110 Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (bib0015) 2011; 200 Lyu, Sun (bib0025) 2022; 101 Basser, Rudman, Daly (bib0030) 2017; 108 Koshizuka, Oka (bib0062) 1996; 123 Pahar, Dhar (bib0066) 2016; 96 Zhang, Rezavand, Hu (bib0044) 2020; 404 Belytschko, Xiao (bib0016) 2002; 43 Serroukh, Mabssout, Herreros (bib0084) 2020; 80 Chow, Rogers, Lind, Stansby (bib0089) 2019; 179 Luo, Khayyer, Lin (bib0005) 2021; 114 Nasar, Fourtakas, Lind, King, Rogers, Stansby (bib0085) 2021; 444 He, Gao, Xu, Ren, Wang (bib0041) 2019; 185 Khayyer, Gotoh (bib0064) 2011; 230 Lind, Xu, Stansby, Rogers (bib0017) 2012; 231 Khayyer, Gotoh, Shimizu (bib0050) 2019; 179 Violeau (bib0002) 2012 Lobovský, Botia-Vera, Castellana, Mas-Soler (bib0035) 2014; 48 Sun, Colagrossi, Marrone, Antuono, Zhang (bib0038) 2018; 224 Sun, Colagrossi, Marrone, Zhang (bib0047) 2017; 315 Matsunaga, Koshizuka (bib0052) 2022; 389 Rastelli, Vacondio, Marongiu, Fourtakas (bib0053) 2022; 393 Szymczak, Blake, Boulton-Stone, Thomas (bib0075) 1994; 23 Harada, Ikari, Khayyer, Gotoh (bib0082) 2019; 61 Shimizu, Khayyer, Gotoh, Nagashima (bib0077) 2020; 62 Shimizu, Khayyer, Gotoh (bib0080) 2022; 137 Lyu, Sun, Xiao, Huang, Zhang (bib0057) 2021; 114 Vyas, Cummins, Rudman, Cleary, Delaney, Khakhar (bib0086) 2021; 94 Khayyer, Gotoh, Shimizu (bib0032) 2017; 332 Bui, Nguyen (bib0008) 2021; 138 Tsuruta, Gotoh, Suzuki, Ikari, Shimosako (bib0074) 2019; 61 O'Connor, Rogers (bib0020) 2021; 104 Rafiee, Thiagarajan (bib0028) 2009; 198 Kondo, Koshizuka (bib0063) 2011; 65 Akbari (bib0048) 2019; 90 Colagrossi, Landrini (bib0012) 2003; 191 Khayyer, Shimizu, Gotoh, Nagashima (bib0079) 2021; 94 Vacondio, Altomare, De Leffe, Hu, Le Touzé, Lind, Marongiu, Marrone, Rogers, Souto-Iglesias (bib0006) 2021; 8 Basser, Rudman, Daly (bib0031) 2019; 576 Cornelis, Bender, Gissler, Ihmsen, Teschner (bib0067) 2019; 35 Ye, Pan, Huang, Liu (bib0007) 2019; 31 Skillen, Lind, Stansby, Rogers (bib0055) 2013; 265 Sun, Colagrossi, Marrone, Antuono, Zhang (bib0024) 2019; 348 Khayyer, Gotoh (bib0069) 2009; 56 Feng, Fourtakas, Rogers, Lombardi (bib0087) 2021; 138 Xu, Stansby, Laurence (bib0046) 2009; 228 He, Khayyer, Gao, Xu, Liu (bib0023) 2021; 106 Bonet Avalos, Antuono, Colagrossi, Souto-Iglesias (bib0090) 2020; 101 Monaghan (bib0042) 1989; 82 Khayyer, Gotoh, Shimizu (bib0001) 2022; 34 Jandaghian, Siaben, Shakibaenia (bib0027) 2022; 94 Gotoh (bib0003) 2018 Fang, Ming, Wang, Sun, Zhang (bib0019) 2022; 244 Domínguez, Fourtakas, Altomare, Canelas, Tafuni, García-Feal, Martínez-Estévez, Mokos, Vacondio, Crespo, Rogers, Stansby, Gómez-Gesteira (bib0022) 2021; 9 Shimizu, Gotoh, Khayyer (bib0072) 2018; 76 Sun, Le Touzé, Oger, Zhang (bib0018) 2021; 221 Adami, Hu, Adams (bib0040) 2012; 231 Inutsuka (bib0013) 2002; 179 Michel, Vergnaud, Oger, Hermange, Le Touzé (bib0054) 2022; 459 Tazaki, Harada, Gotoh (bib0081) 2022; 175 Shao, Lo (bib0061) 2003; 26 Nomeritae, Daly, Grimaldi, Bui (bib0029) 2016; 97 Monaghan (bib0045) 1994; 110 Marrone, Colagrossi, Le Touzé, Graziani (bib0059) 2010; 229 Sun, Pilloton, Antuono, Colagrossi (bib0076) 2022 Antuono, Marrone, Colagrossi, Bouscasse (bib0037) 2015; 289 Cummins, Rudman (bib0060) 1999; 152 Guo, Rogers, Lind, Stansby (bib0088) 2018; 233 Zhang C., Zhu Y., Wu D., Hu X. 2022. Review on smoothed particle hydrodynamics: Methodology development and recent achievement, arXiv preprint, arXiv Monaghan, Rafiee (bib0033) 2013; 71 Tsurudome, Liang, Shimizu, Khayyer, Gotoh (bib0083) 2021; 117 Monaghan (bib0058) 2000; 159 Khayyer, Gotoh, Shimizu, Gotoh (bib0071) 2017; 66 Monaghan, Gingold (bib0011) 1983; 52 Wu, Taylor (bib0070) 1994; 16 Meringolo, Colagrossi, Marrone, Aristodemo (bib0073) 2017; 70 Wen, Zhao, Wan (bib0078) 2022; 95 Zhang (10.1016/j.apm.2022.10.037_bib0044) 2020; 404 Khayyer (10.1016/j.apm.2022.10.037_bib0001) 2022; 34 Khayyer (10.1016/j.apm.2022.10.037_bib0069) 2009; 56 Lind (10.1016/j.apm.2022.10.037_bib0017) 2012; 231 Tazaki (10.1016/j.apm.2022.10.037_bib0081) 2022; 175 Adami (10.1016/j.apm.2022.10.037_bib0040) 2012; 231 Marrone (10.1016/j.apm.2022.10.037_bib0059) 2010; 229 Antuono (10.1016/j.apm.2022.10.037_bib0037) 2015; 289 Guo (10.1016/j.apm.2022.10.037_bib0088) 2018; 233 Meringolo (10.1016/j.apm.2022.10.037_bib0073) 2017; 70 Sun (10.1016/j.apm.2022.10.037_bib0024) 2019; 348 Vyas (10.1016/j.apm.2022.10.037_bib0086) 2021; 94 Jandaghian (10.1016/j.apm.2022.10.037_bib0051) 2021; 434 Khayyer (10.1016/j.apm.2022.10.037_bib0071) 2017; 66 Colagrossi (10.1016/j.apm.2022.10.037_bib0012) 2003; 191 Domínguez (10.1016/j.apm.2022.10.037_bib0022) 2021; 9 Basser (10.1016/j.apm.2022.10.037_bib0030) 2017; 108 Wen (10.1016/j.apm.2022.10.037_bib0078) 2022; 95 Monaghan (10.1016/j.apm.2022.10.037_bib0011) 1983; 52 Shimizu (10.1016/j.apm.2022.10.037_bib0077) 2020; 62 Sun (10.1016/j.apm.2022.10.037_bib0076) 2022 Khayyer (10.1016/j.apm.2022.10.037_bib0079) 2021; 94 Luo (10.1016/j.apm.2022.10.037_bib0005) 2021; 114 Belytschko (10.1016/j.apm.2022.10.037_bib0016) 2002; 43 Basser (10.1016/j.apm.2022.10.037_bib0031) 2019; 576 Gotoh (10.1016/j.apm.2022.10.037_bib0003) 2018 Bonet Avalos (10.1016/j.apm.2022.10.037_bib0090) 2020; 101 Shimizu (10.1016/j.apm.2022.10.037_bib0072) 2018; 76 Monaghan (10.1016/j.apm.2022.10.037_bib0042) 1989; 82 Michel (10.1016/j.apm.2022.10.037_bib0054) 2022; 459 Wu (10.1016/j.apm.2022.10.037_bib0070) 1994; 16 He (10.1016/j.apm.2022.10.037_bib0023) 2021; 106 Tsuruta (10.1016/j.apm.2022.10.037_bib0074) 2019; 61 10.1016/j.apm.2022.10.037_bib0009 Jandaghian (10.1016/j.apm.2022.10.037_bib0027) 2022; 94 Serroukh (10.1016/j.apm.2022.10.037_bib0084) 2020; 80 Koshizuka (10.1016/j.apm.2022.10.037_bib0068) 1999; 189 Matsunaga (10.1016/j.apm.2022.10.037_bib0052) 2022; 389 Sun (10.1016/j.apm.2022.10.037_bib0047) 2017; 315 Krimi (10.1016/j.apm.2022.10.037_bib0026) 2020; 12 Khayyer (10.1016/j.apm.2022.10.037_bib0064) 2011; 230 Gotoh (10.1016/j.apm.2022.10.037_bib0004) 2021; 115 Khayyer (10.1016/j.apm.2022.10.037_bib0050) 2019; 179 Rastelli (10.1016/j.apm.2022.10.037_bib0053) 2022; 393 Pahar (10.1016/j.apm.2022.10.037_bib0066) 2016; 96 Szymczak (10.1016/j.apm.2022.10.037_bib0075) 1994; 23 Ye (10.1016/j.apm.2022.10.037_bib0007) 2019; 31 Sun (10.1016/j.apm.2022.10.037_bib0018) 2021; 221 Cornelis (10.1016/j.apm.2022.10.037_bib0067) 2019; 35 Nasar (10.1016/j.apm.2022.10.037_bib0085) 2021; 444 Gingold (10.1016/j.apm.2022.10.037_bib0010) 1977; 181 Khayyer (10.1016/j.apm.2022.10.037_bib0032) 2017; 332 English (10.1016/j.apm.2022.10.037_bib0021) 2021; 9 Chow (10.1016/j.apm.2022.10.037_bib0089) 2019; 179 Akbari (10.1016/j.apm.2022.10.037_bib0048) 2019; 90 O'Connor (10.1016/j.apm.2022.10.037_bib0020) 2021; 104 Vacondio (10.1016/j.apm.2022.10.037_bib0006) 2021; 8 Fang (10.1016/j.apm.2022.10.037_bib0019) 2022; 244 Bui (10.1016/j.apm.2022.10.037_bib0008) 2021; 138 Monaghan (10.1016/j.apm.2022.10.037_bib0045) 1994; 110 Huang (10.1016/j.apm.2022.10.037_bib0049) 2019; 106 Suzuki (10.1016/j.apm.2022.10.037_bib0034) 2007; 196 Harada (10.1016/j.apm.2022.10.037_bib0082) 2019; 61 Violeau (10.1016/j.apm.2022.10.037_bib0002) 2012 Rafiee (10.1016/j.apm.2022.10.037_bib0028) 2009; 198 Wang (10.1016/j.apm.2022.10.037_bib0056) 2019; 357 Molteni (10.1016/j.apm.2022.10.037_bib0014) 2009; 180 Feng (10.1016/j.apm.2022.10.037_bib0087) 2021; 138 Koshizuka (10.1016/j.apm.2022.10.037_bib0062) 1996; 123 Xu (10.1016/j.apm.2022.10.037_bib0046) 2009; 228 He (10.1016/j.apm.2022.10.037_bib0041) 2019; 185 Skillen (10.1016/j.apm.2022.10.037_bib0055) 2013; 265 Kondo (10.1016/j.apm.2022.10.037_bib0063) 2011; 65 Lyu (10.1016/j.apm.2022.10.037_bib0025) 2022; 101 Inutsuka (10.1016/j.apm.2022.10.037_bib0013) 2002; 179 Marrone (10.1016/j.apm.2022.10.037_bib0015) 2011; 200 Monaghan (10.1016/j.apm.2022.10.037_bib0058) 2000; 159 Lyu (10.1016/j.apm.2022.10.037_bib0057) 2021; 114 Shimizu (10.1016/j.apm.2022.10.037_bib0080) 2022; 137 You (10.1016/j.apm.2022.10.037_bib0043) 2021; 110 Wendland (10.1016/j.apm.2022.10.037_bib0039) 1995; 4 Shao (10.1016/j.apm.2022.10.037_bib0061) 2003; 26 Cummins (10.1016/j.apm.2022.10.037_bib0060) 1999; 152 Nomeritae (10.1016/j.apm.2022.10.037_bib0029) 2016; 97 Monaghan (10.1016/j.apm.2022.10.037_bib0033) 2013; 71 Lobovský (10.1016/j.apm.2022.10.037_bib0035) 2014; 48 Tsurudome (10.1016/j.apm.2022.10.037_bib0083) 2021; 117 Tanaka (10.1016/j.apm.2022.10.037_bib0065) 2010; 229 Kishev (10.1016/j.apm.2022.10.037_bib0036) 2006; 11 Sun (10.1016/j.apm.2022.10.037_bib0038) 2018; 224 |
| References_xml | – volume: 244 year: 2022 ident: bib0019 article-title: Application of SPH method in the study of ship capsizing induced by large-scale rising bubble publication-title: Ocean Eng. – volume: 229 start-page: 3652 year: 2010 end-page: 3663 ident: bib0059 article-title: Fast free-surface detection and level-set function definition in SPH solvers publication-title: J. Comput. Phys. – volume: 175 year: 2022 ident: bib0081 article-title: Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme publication-title: Coast. Eng. – volume: 180 start-page: 861 year: 2009 end-page: 872 ident: bib0014 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Commun. – volume: 159 start-page: 290 year: 2000 end-page: 311 ident: bib0058 article-title: SPH without a tensile instability publication-title: J. Comput. Phys. – volume: 228 start-page: 6703 year: 2009 end-page: 6725 ident: bib0046 article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach publication-title: J. Comput. Phys. – volume: 26 start-page: 787 year: 2003 end-page: 800 ident: bib0061 article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface publication-title: Adv. Water Res. – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: bib0012 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 576 start-page: 370 year: 2019 end-page: 380 ident: bib0031 article-title: Smoothed Particle Hydrodynamics modelling of fresh and salt water dynamics in porous media publication-title: J. Hydrol. – volume: 76 start-page: 1108 year: 2018 end-page: 1129 ident: bib0072 article-title: An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept publication-title: Comput. Math. Appl. – volume: 137 start-page: 160 year: 2022 end-page: 181 ident: bib0080 article-title: An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms publication-title: Eng. Anal. Bound. Elem. – volume: 94 start-page: 314 year: 2022 end-page: 333 ident: bib0027 article-title: Stability and accuracy of the weakly compressible SPH with particle regularization techniques publication-title: Eur. J. Mech. B Fluids – reference: [physics.comp-ph]. – volume: 179 start-page: 238 year: 2002 end-page: 267 ident: bib0013 article-title: Reformulation of smoothed particle hydrodynamics with Riemann Solver publication-title: J. Comput. Phys. – volume: 434 year: 2021 ident: bib0051 article-title: Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques publication-title: J. Comput. Phys. – volume: 16 start-page: 363 year: 1994 end-page: 372 ident: bib0070 article-title: Finite element analysis of two-dimensional non-linear transient water waves publication-title: Appl. Ocean Res. – volume: 198 start-page: 2785 year: 2009 end-page: 2795 ident: bib0028 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Eng. – volume: 11 start-page: 111 year: 2006 end-page: 122 ident: bib0036 article-title: Numerical simulation of violent sloshing by a CIP-based method publication-title: J. Mar. Sci. Technol. – volume: 70 start-page: 1 year: 2017 end-page: 23 ident: bib0073 article-title: On the filtering of acoustic components in weakly-compressible SPH simulations publication-title: J. Fluids Struct. – volume: 94 start-page: 242 year: 2021 end-page: 271 ident: bib0079 article-title: A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures publication-title: Appl. Math. Model. – start-page: 200 year: 2022 end-page: 207 ident: bib0076 article-title: Weakly-compressible SPH schemes with an acoustic-damper term publication-title: Proceedings of the 16th SPHERIC International Workshop – volume: 114 year: 2021 ident: bib0005 article-title: Particle methods in ocean and coastal engineering publication-title: Appl. Ocean Res. – volume: 71 start-page: 537 year: 2013 end-page: 561 ident: bib0033 article-title: A simple SPH algorithm for multi-fluid flow with high density ratios publication-title: Int. J. Numer. Methods Fluids – volume: 56 start-page: 419 year: 2009 end-page: 440 ident: bib0069 article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure publication-title: Coast. Eng. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: bib0045 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – volume: 35 start-page: 579 year: 2019 end-page: 590 ident: bib0067 article-title: An optimized source term formulation for incompressible SPH publication-title: Vis. Comput. – volume: 138 year: 2021 ident: bib0087 article-title: Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH) publication-title: Comput. Geotech. – volume: 123 start-page: 421 year: 1996 end-page: 434 ident: bib0062 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. – volume: 90 start-page: 603 year: 2019 end-page: 631 ident: bib0048 article-title: An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods publication-title: Int. J. Numer. Methods Fluids – volume: 265 start-page: 163 year: 2013 end-page: 173 ident: bib0055 article-title: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body–water slam and efficient wave–body interaction publication-title: Comput. Methods Appl. Mech. Eng. – volume: 152 start-page: 584 year: 1999 end-page: 607 ident: bib0060 article-title: An SPH projection method publication-title: J. Comput. Phys. – volume: 12 start-page: 3189 year: 2020 ident: bib0026 article-title: A WCSPH particle shifting strategy for simulating violent free surface flows publication-title: Water – volume: 62 start-page: 625 year: 2020 end-page: 646 ident: bib0077 article-title: An enhanced multiphase ISPH-based method for accurate modeling of oil spill publication-title: Coast. Eng. J. – volume: 43 start-page: 329 year: 2002 end-page: 350 ident: bib0016 article-title: Stability analysis of particle methods with corrected derivatives publication-title: Comput. Math. Appl. – volume: 94 start-page: 13 year: 2021 end-page: 35 ident: bib0086 article-title: Collisional SPH: a method to model frictional collisions with SPH publication-title: Appl. Math. Model. – volume: 224 start-page: 63 year: 2018 end-page: 80 ident: bib0038 article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows publication-title: Comput. Phys. Commun. – volume: 185 start-page: 27 year: 2019 end-page: 46 ident: bib0041 article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method publication-title: Ocean Eng. – volume: 117 year: 2021 ident: bib0083 article-title: Study of beach permeability's influence on solitary wave runup with ISPH method publication-title: Appl. Ocean Res. – volume: 393 year: 2022 ident: bib0053 article-title: Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions publication-title: Comput. Methods Appl. Mech. Eng. – volume: 23 start-page: 413 year: 1994 end-page: 420 ident: bib0075 article-title: Energy losses in non-classical free surface flows publication-title: Bubble Dynamics and Interface Phenomena, Ser. Fluid Mechanics and its Applications – volume: 104 year: 2021 ident: bib0020 article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU publication-title: J. Fluids Struct. – volume: 196 start-page: 2876 year: 2007 end-page: 2894 ident: bib0034 article-title: Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flow publication-title: Comput. Methods Appl. Mech. Eng. – volume: 114 year: 2021 ident: bib0057 article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering publication-title: Appl. Ocean Res. – volume: 82 start-page: 1 year: 1989 end-page: 15 ident: bib0042 article-title: On the problem of penetration in particle methods publication-title: J. Comput. Phys. – volume: 65 start-page: 638 year: 2011 end-page: 654 ident: bib0063 article-title: Improvement of stability in moving particle semi-implicit method publication-title: Int. J. Numer. Methods Fluids – volume: 106 start-page: 30 year: 2021 ident: bib0023 article-title: Theoretical method for generating solitary waves using plunger-type wavemakers and its smoothed particle hydrodynamics validation publication-title: Appl. Ocean. Res. – volume: 315 start-page: 25 year: 2017 end-page: 49 ident: bib0047 article-title: The plus-SPH model: Simple procedures for a further improvement of the SPH scheme publication-title: Comput. Methods Appl. Mech. Eng. – volume: 96 start-page: 423 year: 2016 end-page: 437 ident: bib0066 article-title: A robust volume conservative divergence-free ISPH framework for free-surface flow problems publication-title: Adv. Water Resour. – reference: Zhang C., Zhu Y., Wu D., Hu X. 2022. Review on smoothed particle hydrodynamics: Methodology development and recent achievement, arXiv preprint, arXiv: – volume: 97 start-page: 156 year: 2016 end-page: 167 ident: bib0029 article-title: Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes publication-title: Adv. Water Resour. – volume: 61 start-page: 41 year: 2019 end-page: 62 ident: bib0074 article-title: Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems publication-title: Coast. Eng. J. – volume: 289 start-page: 209 year: 2015 end-page: 226 ident: bib0037 article-title: Energy balance in the -SPH schemes publication-title: Comput. Methods Appl. Mech. Eng. – volume: 231 start-page: 7057 year: 2012 end-page: 7075 ident: bib0040 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 95 start-page: 1 year: 2022 end-page: 22 ident: bib0078 article-title: Multi-phase moving particle semi-implicit method for violent sloshing flows publication-title: Eur. J. Mech. B Fluids – volume: 348 start-page: 912 year: 2019 end-page: 934 ident: bib0024 article-title: A consistent approach to particle shifting in the δ-Plus-SPH model publication-title: Comput. Methods Appl. Mech. Eng. – volume: 48 start-page: 407 year: 2014 end-page: 434 ident: bib0035 article-title: A. Souto-Iglesias, Experimental investigation of dynamic pressure loads during dam break publication-title: J. Fluids Struct. – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib0039 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 61 start-page: 2 year: 2019 end-page: 14 ident: bib0082 article-title: Numerical simulation for swash morphodynamics by DEM–MPS coupling model publication-title: Coast. Eng. J. – volume: 230 start-page: 3093 year: 2011 end-page: 3118 ident: bib0064 article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method publication-title: J. Comput. Phys. – volume: 138 year: 2021 ident: bib0008 article-title: Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media publication-title: Comput. Geotech. – start-page: 289 year: 2018 ident: bib0003 article-title: Ryushiho – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: bib0010 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. – volume: 179 start-page: 356 year: 2019 end-page: 371 ident: bib0050 article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields publication-title: Comput. Fluids – volume: 229 start-page: 4279 year: 2010 end-page: 4290 ident: bib0065 article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility publication-title: J. Comput. Phys. – volume: 66 start-page: 20 year: 2017 end-page: 37 ident: bib0071 article-title: On enhancement of energy conservation properties of projection-based particle methods publication-title: Eur. J. Mech. B/Fluids – volume: 444 year: 2021 ident: bib0085 article-title: High-order consistent SPH with the pressure projection method in 2-D and 3-D publication-title: J. Comput. Phys. – volume: 233 start-page: 16 year: 2018 end-page: 28 ident: bib0088 article-title: New massively parallel scheme for incompressible smoothed particle hydrodynamics (ISPH) for highly nonlinear and distorted flow publication-title: Comput. Phys. Commun. – volume: 357 year: 2019 ident: bib0056 article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 459 year: 2022 ident: bib0054 article-title: On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law publication-title: J. Comput. Phys. – volume: 106 start-page: 571 year: 2019 end-page: 587 ident: bib0049 article-title: A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils publication-title: Eng. Anal. Bound. Elem. – volume: 34 start-page: 395 year: 2022 end-page: 407 ident: bib0001 article-title: On systematic development of FSI solvers in the context of particle methods publication-title: J. Hydrodyn. – volume: 9 start-page: 867 year: 2021 end-page: 895 ident: bib0022 article-title: DualSPHysics: from fluid dynamics to multiphysics problems publication-title: Comput. Part. Mech. – volume: 80 start-page: 238 year: 2020 end-page: 256 ident: bib0084 article-title: Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems publication-title: Appl. Math. Model. – volume: 8 start-page: 575 year: 2021 end-page: 588 ident: bib0006 article-title: Grand challenges for smoothed particle hydrodynamics numerical schemes publication-title: Comput. Part. Mech. – volume: 9 start-page: 1 year: 2021 end-page: 15 ident: bib0021 article-title: Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems publication-title: Comput. Part. Mech. – volume: 101 year: 2020 ident: bib0090 article-title: Shear-viscosity-independent bulk-viscosity term in smoothed particle hydrodynamics publication-title: Phys. Rev. E. – volume: 110 year: 2021 ident: bib0043 article-title: Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme publication-title: Appl. Ocean Res. – volume: 108 start-page: 15 year: 2017 end-page: 28 ident: bib0030 article-title: SPH modelling of multi-fluid lock-exchange over and within porous media publication-title: Adv. Water Resour. – volume: 389 year: 2022 ident: bib0052 article-title: Stabilized LSMPS method for complex free-surface flow simulation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 404 year: 2020 ident: bib0044 article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 31 year: 2019 ident: bib0007 article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications publication-title: Phys. Fluids – volume: 189 start-page: 423 year: 1999 end-page: 433 ident: bib0068 article-title: Numerical analysis of fragmentation mechanisms in vapor explosions publication-title: Nucl. Eng. Des. – volume: 231 start-page: 1499 year: 2012 end-page: 1523 ident: bib0017 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. – volume: 221 year: 2021 ident: bib0018 article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. – volume: 200 start-page: 1526 year: 2011 end-page: 1542 ident: bib0015 article-title: -SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 101 start-page: 214 year: 2022 end-page: 238 ident: bib0025 article-title: Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in sph simulations of violent free-surface flows publication-title: Appl. Math. Model. – volume: 332 start-page: 236 year: 2017 end-page: 256 ident: bib0032 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. – year: 2012 ident: bib0002 article-title: Fluid Mechanics and the SPH Method: Theory and Applications, 0199655529 – volume: 115 year: 2021 ident: bib0004 article-title: Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering - Reliability, adaptivity and generality publication-title: Appl. Ocean Res. – volume: 52 start-page: 374 year: 1983 end-page: 389 ident: bib0011 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. – volume: 179 start-page: 543 year: 2019 end-page: 562 ident: bib0089 article-title: Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases publication-title: Comput. Fluids – volume: 357 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0056 article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112580 – volume: 95 start-page: 1 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0078 article-title: Multi-phase moving particle semi-implicit method for violent sloshing flows publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2022.04.002 – volume: 80 start-page: 238 year: 2020 ident: 10.1016/j.apm.2022.10.037_bib0084 article-title: Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.11.046 – volume: 96 start-page: 423 year: 2016 ident: 10.1016/j.apm.2022.10.037_bib0066 article-title: A robust volume conservative divergence-free ISPH framework for free-surface flow problems publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.08.010 – volume: 76 start-page: 1108 year: 2018 ident: 10.1016/j.apm.2022.10.037_bib0072 article-title: An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.06.002 – volume: 108 start-page: 15 year: 2017 ident: 10.1016/j.apm.2022.10.037_bib0030 article-title: SPH modelling of multi-fluid lock-exchange over and within porous media publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.07.011 – volume: 110 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0043 article-title: Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102508 – volume: 115 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0004 article-title: Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering - Reliability, adaptivity and generality publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102822 – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0021 article-title: Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems publication-title: Comput. Part. Mech. – volume: 138 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0087 article-title: Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH) publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104356 – volume: 224 start-page: 63 year: 2018 ident: 10.1016/j.apm.2022.10.037_bib0038 article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.11.016 – volume: 101 start-page: 214 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0025 article-title: Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in sph simulations of violent free-surface flows publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.08.014 – volume: 231 start-page: 7057 issue: 21 year: 2012 ident: 10.1016/j.apm.2022.10.037_bib0040 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.005 – volume: 152 start-page: 584 issue: 2 year: 1999 ident: 10.1016/j.apm.2022.10.037_bib0060 article-title: An SPH projection method publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6246 – volume: 94 start-page: 13 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0086 article-title: Collisional SPH: a method to model frictional collisions with SPH publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.01.005 – volume: 233 start-page: 16 year: 2018 ident: 10.1016/j.apm.2022.10.037_bib0088 article-title: New massively parallel scheme for incompressible smoothed particle hydrodynamics (ISPH) for highly nonlinear and distorted flow publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.06.006 – volume: 8 start-page: 575 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0006 article-title: Grand challenges for smoothed particle hydrodynamics numerical schemes publication-title: Comput. Part. Mech. doi: 10.1007/s40571-020-00354-1 – volume: 265 start-page: 163 year: 2013 ident: 10.1016/j.apm.2022.10.037_bib0055 article-title: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body–water slam and efficient wave–body interaction publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.05.017 – volume: 61 start-page: 2 issue: 1 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0082 article-title: Numerical simulation for swash morphodynamics by DEM–MPS coupling model publication-title: Coast. Eng. J. doi: 10.1080/21664250.2018.1554203 – volume: 110 start-page: 399 issue: 2 year: 1994 ident: 10.1016/j.apm.2022.10.037_bib0045 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – volume: 179 start-page: 543 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0089 article-title: Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.11.022 – volume: 221 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0018 article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108552 – volume: 348 start-page: 912 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0024 article-title: A consistent approach to particle shifting in the δ-Plus-SPH model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.01.045 – volume: 23 start-page: 413 year: 1994 ident: 10.1016/j.apm.2022.10.037_bib0075 article-title: Energy losses in non-classical free surface flows – volume: 61 start-page: 41 issue: 1 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0074 article-title: Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems publication-title: Coast. Eng. J. doi: 10.1080/21664250.2018.1560683 – volume: 16 start-page: 363 year: 1994 ident: 10.1016/j.apm.2022.10.037_bib0070 article-title: Finite element analysis of two-dimensional non-linear transient water waves publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(94)00029-8 – volume: 200 start-page: 1526 issue: 13-16 year: 2011 ident: 10.1016/j.apm.2022.10.037_bib0015 article-title: δ-SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.12.016 – volume: 444 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0085 article-title: High-order consistent SPH with the pressure projection method in 2-D and 3-D publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110563 – volume: 315 start-page: 25 year: 2017 ident: 10.1016/j.apm.2022.10.037_bib0047 article-title: The plus-SPH model: Simple procedures for a further improvement of the SPH scheme publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.10.028 – start-page: 200 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0076 article-title: Weakly-compressible SPH schemes with an acoustic-damper term – volume: 11 start-page: 111 year: 2006 ident: 10.1016/j.apm.2022.10.037_bib0036 article-title: Numerical simulation of violent sloshing by a CIP-based method publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-006-0216-7 – volume: 159 start-page: 290 issue: 2 year: 2000 ident: 10.1016/j.apm.2022.10.037_bib0058 article-title: SPH without a tensile instability publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6439 – volume: 70 start-page: 1 year: 2017 ident: 10.1016/j.apm.2022.10.037_bib0073 article-title: On the filtering of acoustic components in weakly-compressible SPH simulations publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.01.005 – volume: 82 start-page: 1 issue: 1 year: 1989 ident: 10.1016/j.apm.2022.10.037_bib0042 article-title: On the problem of penetration in particle methods publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90032-6 – volume: 138 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0008 article-title: Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104315 – volume: 180 start-page: 861 issue: 6 year: 2009 ident: 10.1016/j.apm.2022.10.037_bib0014 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.12.004 – volume: 35 start-page: 579 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0067 article-title: An optimized source term formulation for incompressible SPH publication-title: Vis. Comput. doi: 10.1007/s00371-018-1488-8 – volume: 66 start-page: 20 year: 2017 ident: 10.1016/j.apm.2022.10.037_bib0071 article-title: On enhancement of energy conservation properties of projection-based particle methods publication-title: Eur. J. Mech. B/Fluids doi: 10.1016/j.euromechflu.2017.01.014 – volume: 181 start-page: 375 year: 1977 ident: 10.1016/j.apm.2022.10.037_bib0010 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 94 start-page: 242 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0079 article-title: A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.01.011 – volume: 97 start-page: 156 year: 2016 ident: 10.1016/j.apm.2022.10.037_bib0029 article-title: Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.09.008 – start-page: 289 year: 2018 ident: 10.1016/j.apm.2022.10.037_bib0003 – volume: 179 start-page: 238 year: 2002 ident: 10.1016/j.apm.2022.10.037_bib0013 article-title: Reformulation of smoothed particle hydrodynamics with Riemann Solver publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7053 – volume: 71 start-page: 537 year: 2013 ident: 10.1016/j.apm.2022.10.037_bib0033 article-title: A simple SPH algorithm for multi-fluid flow with high density ratios publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3671 – volume: 123 start-page: 421 year: 1996 ident: 10.1016/j.apm.2022.10.037_bib0062 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE96-A24205 – volume: 62 start-page: 625 issue: 4 year: 2020 ident: 10.1016/j.apm.2022.10.037_bib0077 article-title: An enhanced multiphase ISPH-based method for accurate modeling of oil spill publication-title: Coast. Eng. J. doi: 10.1080/21664250.2020.1815362 – volume: 12 start-page: 3189 issue: 11 year: 2020 ident: 10.1016/j.apm.2022.10.037_bib0026 article-title: A WCSPH particle shifting strategy for simulating violent free surface flows publication-title: Water doi: 10.3390/w12113189 – volume: 198 start-page: 2785 year: 2009 ident: 10.1016/j.apm.2022.10.037_bib0028 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2009.04.001 – volume: 106 start-page: 571 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0049 article-title: A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.06.010 – volume: 106 start-page: 30 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0023 article-title: Theoretical method for generating solitary waves using plunger-type wavemakers and its smoothed particle hydrodynamics validation publication-title: Appl. Ocean. Res. doi: 10.1016/j.apor.2020.102414 – volume: 229 start-page: 4279 issue: 11 year: 2010 ident: 10.1016/j.apm.2022.10.037_bib0065 article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.02.011 – volume: 189 start-page: 423 year: 1999 ident: 10.1016/j.apm.2022.10.037_bib0068 article-title: Numerical analysis of fragmentation mechanisms in vapor explosions publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(98)00270-2 – volume: 228 start-page: 6703 issue: 18 year: 2009 ident: 10.1016/j.apm.2022.10.037_bib0046 article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.05.032 – volume: 230 start-page: 3093 year: 2011 ident: 10.1016/j.apm.2022.10.037_bib0064 article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.009 – volume: 56 start-page: 419 issue: 4 year: 2009 ident: 10.1016/j.apm.2022.10.037_bib0069 article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.10.004 – volume: 196 start-page: 2876 year: 2007 ident: 10.1016/j.apm.2022.10.037_bib0034 article-title: Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flow publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.12.006 – volume: 104 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0020 article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU publication-title: J. Fluids Struct. – volume: 34 start-page: 395 issue: 3 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0001 article-title: On systematic development of FSI solvers in the context of particle methods publication-title: J. Hydrodyn. doi: 10.1007/s42241-022-0042-3 – volume: 31 issue: 1 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0007 article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications publication-title: Phys. Fluids doi: 10.1063/1.5068697 – volume: 434 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0051 article-title: Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110202 – volume: 52 start-page: 374 issue: 2 year: 1983 ident: 10.1016/j.apm.2022.10.037_bib0011 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90036-0 – volume: 43 start-page: 329 year: 2002 ident: 10.1016/j.apm.2022.10.037_bib0016 article-title: Stability analysis of particle methods with corrected derivatives publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00290-5 – volume: 244 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0019 article-title: Application of SPH method in the study of ship capsizing induced by large-scale rising bubble publication-title: Ocean Eng. – volume: 101 year: 2020 ident: 10.1016/j.apm.2022.10.037_bib0090 article-title: Shear-viscosity-independent bulk-viscosity term in smoothed particle hydrodynamics publication-title: Phys. Rev. E. – volume: 90 start-page: 603 issue: 12 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0048 article-title: An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4737 – volume: 459 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0054 article-title: On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.110999 – volume: 332 start-page: 236 year: 2017 ident: 10.1016/j.apm.2022.10.037_bib0032 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.005 – volume: 389 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0052 article-title: Stabilized LSMPS method for complex free-surface flow simulation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114416 – volume: 48 start-page: 407 year: 2014 ident: 10.1016/j.apm.2022.10.037_bib0035 article-title: A. Souto-Iglesias, Experimental investigation of dynamic pressure loads during dam break publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.03.009 – volume: 9 start-page: 867 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0022 article-title: DualSPHysics: from fluid dynamics to multiphysics problems publication-title: Comput. Part. Mech. doi: 10.1007/s40571-021-00404-2 – volume: 117 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0083 article-title: Study of beach permeability's influence on solitary wave runup with ISPH method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102957 – volume: 576 start-page: 370 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0031 article-title: Smoothed Particle Hydrodynamics modelling of fresh and salt water dynamics in porous media publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.048 – volume: 175 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0081 article-title: Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2022.104146 – volume: 26 start-page: 787 year: 2003 ident: 10.1016/j.apm.2022.10.037_bib0061 article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface publication-title: Adv. Water Res. doi: 10.1016/S0309-1708(03)00030-7 – ident: 10.1016/j.apm.2022.10.037_bib0009 doi: 10.1007/s42241-022-0052-1 – volume: 289 start-page: 209 year: 2015 ident: 10.1016/j.apm.2022.10.037_bib0037 article-title: Energy balance in the -SPH schemes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.02.004 – volume: 114 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0057 article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering publication-title: Appl. Ocean Res. – volume: 179 start-page: 356 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0050 article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.10.018 – volume: 185 start-page: 27 year: 2019 ident: 10.1016/j.apm.2022.10.037_bib0041 article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.05.034 – year: 2012 ident: 10.1016/j.apm.2022.10.037_bib0002 – volume: 191 start-page: 448 issue: 2 year: 2003 ident: 10.1016/j.apm.2022.10.037_bib0012 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00324-3 – volume: 231 start-page: 1499 year: 2012 ident: 10.1016/j.apm.2022.10.037_bib0017 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.027 – volume: 65 start-page: 638 issue: 6 year: 2011 ident: 10.1016/j.apm.2022.10.037_bib0063 article-title: Improvement of stability in moving particle semi-implicit method publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2207 – volume: 404 year: 2020 ident: 10.1016/j.apm.2022.10.037_bib0044 article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109135 – volume: 137 start-page: 160 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0080 article-title: An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2021.10.023 – volume: 393 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0053 article-title: Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114716 – volume: 229 start-page: 3652 issue: 10 year: 2010 ident: 10.1016/j.apm.2022.10.037_bib0059 article-title: Fast free-surface detection and level-set function definition in SPH solvers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.01.019 – volume: 94 start-page: 314 year: 2022 ident: 10.1016/j.apm.2022.10.037_bib0027 article-title: Stability and accuracy of the weakly compressible SPH with particle regularization techniques publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2022.03.007 – volume: 114 year: 2021 ident: 10.1016/j.apm.2022.10.037_bib0005 article-title: Particle methods in ocean and coastal engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102734 – volume: 4 start-page: 389 year: 1995 ident: 10.1016/j.apm.2022.10.037_bib0039 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 |
| SSID | ssj0005904 |
| Score | 2.617291 |
| Snippet | This paper is dedicated to improved resolution of the continuity equation and thus more precise satisfaction of incompressibility conditions in explicit weakly... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 84 |
| SubjectTerms | Continuity equation resolution Divergence-free velocity Incompressibility conditions Incompressible fluid Smoothed Particle Hydrodynamics Volume conservation |
| Title | Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free‐surface fluid flows |
| URI | https://dx.doi.org/10.1016/j.apm.2022.10.037 |
| Volume | 116 |
| WOSCitedRecordID | wos000891775000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0307-904X databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWilgUsEE9RCsgLVlSp5uF5LSsUCEhUlRKk7Ea2x6NMm0zSJNMmrNiz4Wf4Ib6Ee-3xZNoCAiQ2VuTYY2nuGfvaPvdcQl6GcawyzvBcQ8kuC5Kwy6UfwXelPJEwEQXS0ckmouPjeDRKTjqdbzYW5mISlWW8Xifz_2pqqANjY-jsX5i7eShUwG8wOpRgdij_yPC9cmxu9WEjXQ9kiQDISy_KCh1vdW40vrVkyBovsYvVwaXiZ5ONpplreixGVQ1O-gfLYlq1OHMo6NBqkS-UajgTy2qRc5gr8klVZFDOaqfdCt3WTu-0UYvF6BXMxjOxayjO_mO-2dRptoXgjds_GBfT4lOll41qu6C8na1m-nRoyM94Xk2LG3_0Yd5ajov2EYfnt5gx-tzNxt5coYZqecvEMfzOZi5327OxST5Xr-uuicS-sWSY04vTQz5HYQLPO0SynxGiuabEPcAhcUTP07I5sOne9aIggcl09-hdb_R-yy1KHGYVOLGDvU7XxMJrA_3cIWo5OcN75G69O6FHBlX3SUeVD8idD42xlg_JF4svusUXneUUmtAtvqjFFy1KavFFDb5oGz0U8EVb-MJHXcUXRXx9__y1RhbVyKIaWY_Ixze94et-t87o0ZV-6K-6IvOZz3LuxsoJJOxkhRB5kmW59FUcZDHLXEdyaCTcOOFSBhGHZUFy7UViRpLHZKecleoJob6bcdgs5CoRPpOCxbkKYwwIjhgToQj3iGNfaypruXvMujJJLa_xNAVLpGgJrAJL7JFXTZe50Xr5XWNmbZXWzqpxQlMA1q-7Pf23bvvk9vbDeEZ2VotKPSe35MWqWC5e1PD7AZ2Twmw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+resolution+of+the+continuity+equation+in+explicit+weakly+compressible+SPH+simulations+of+incompressible+free%E2%80%90surface+fluid+flows&rft.jtitle=Applied+mathematical+modelling&rft.au=Khayyer%2C+Abbas&rft.au=Shimizu%2C+Yuma&rft.au=Gotoh%2C+Takafumi&rft.au=Gotoh%2C+Hitoshi&rft.date=2023-04-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=116&rft.spage=84&rft.epage=121&rft_id=info:doi/10.1016%2Fj.apm.2022.10.037&rft.externalDocID=S0307904X22005091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |