Real-Time Hyperbola Recognition and Fitting in GPR Data

The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally suitable for real-time on-site application is proposed. After preprocessing of the input GPR images, a novel thresholding method is applied t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 55; číslo 1; s. 51 - 62
Hlavní autori: Qingxu Dou, Lijun Wei, Magee, Derek R., Cohn, Anthony G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally suitable for real-time on-site application is proposed. After preprocessing of the input GPR images, a novel thresholding method is applied to separate the regions of interest from background. A novel column-connection clustering (C3) algorithm is then applied to separate the regions of interest from each other. Subsequently, a machine learnt model is applied to identify hyperbolic signatures from outputs of the C3 algorithm, and a hyperbola is fitted to each such signature with an orthogonal-distance hyperbola fitting algorithm. The novel clustering algorithm C3 is a central component of the proposed system, which enables the identification of hyperbolic signatures and hyperbola fitting. Only two features are used in the machine learning algorithm, which is easy to train using a small set of training data. An orthogonal-distance hyperbola fitting algorithm for "south-opening" hyperbolae is introduced in this work, which is more robust and accurate than algebraic hyperbola fitting algorithms. The proposed method can successfully recognize and fit hyperbolic signatures with intersections with others, hyperbolic signatures with distortions, and incomplete hyperbolic signatures with one leg fully or largely missed. As an additional novel contribution, formulas to compute an initial "south-opening" hyperbola directly from a set of given points are derived, which make the system more efficient. The parameters obtained by fitting hyperbolae to hyperbolic signatures are very important features; they can be used to estimate the location and size of the related target objects and the average propagation velocity of the electromagnetic wave in the medium. The effectiveness of the proposed system is tested on both synthetic and real GPR data.
AbstractList The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally suitable for real-time on-site application is proposed. After preprocessing of the input GPR images, a novel thresholding method is applied to separate the regions of interest from background. A novel column-connection clustering (C3) algorithm is then applied to separate the regions of interest from each other. Subsequently, a machine learnt model is applied to identify hyperbolic signatures from outputs of the C3 algorithm, and a hyperbola is fitted to each such signature with an orthogonal-distance hyperbola fitting algorithm. The novel clustering algorithm C3 is a central component of the proposed system, which enables the identification of hyperbolic signatures and hyperbola fitting. Only two features are used in the machine learning algorithm, which is easy to train using a small set of training data. An orthogonal-distance hyperbola fitting algorithm for “south-opening” hyperbolae is introduced in this work, which is more robust and accurate than algebraic hyperbola fitting algorithms. The proposed method can successfully recognize and fit hyperbolic signatures with intersections with others, hyperbolic signatures with distortions, and incomplete hyperbolic signatures with one leg fully or largely missed. As an additional novel contribution, formulas to compute an initial “south-opening” hyperbola directly from a set of given points are derived, which make the system more efficient. The parameters obtained by fitting hyperbolae to hyperbolic signatures are very important features; they can be used to estimate the location and size of the related target objects and the average propagation velocity of the electromagnetic wave in the medium. The effectiveness of the proposed system is tested on both synthetic and real GPR data.
Author Magee, Derek R.
Lijun Wei
Cohn, Anthony G.
Qingxu Dou
Author_xml – sequence: 1
  surname: Qingxu Dou
  fullname: Qingxu Dou
  email: Q.Dou@leeds.ac.uk
  organization: Sch. of Comput., Univ. of Leeds, Leeds, UK
– sequence: 2
  surname: Lijun Wei
  fullname: Lijun Wei
  email: L.J.Wei@leeds.ac.uk
  organization: Sch. of Comput., Univ. of Leeds, Leeds, UK
– sequence: 3
  givenname: Derek R.
  surname: Magee
  fullname: Magee, Derek R.
  email: D.R.Magee@leeds.ac.uk
  organization: Sch. of Comput., Univ. of Leeds, Leeds, UK
– sequence: 4
  givenname: Anthony G.
  surname: Cohn
  fullname: Cohn, Anthony G.
  email: A.G.Cohn@leeds.ac.uk
  organization: Sch. of Comput., Univ. of Leeds, Leeds, UK
BookMark eNp9kE1PAjEQQBuDiYD-AONlE8-L_e72aFDAhESz4rmZ7XZJCXSxWw78e9lAPHjwNJf3ZiZvhAahDQ6he4InhGD9tJqXnxOKiZxQoalU-goNiRBFjiXnAzTERMucFpreoFHXbTAmXBA1RKp0sM1XfueyxXHvYtVuISudbdfBJ9-GDEKdzXxKPqwzH7L5R5m9QIJbdN3AtnN3lzlGX7PX1XSRL9_nb9PnZW6ZZCmvQDBJRG1pVYnGMesExaoGBZQ7UA1UVKlC8EYzy-tKVQ0pNK-BYSetsMDG6PG8dx_b74Prktm0hxhOJw0puGBEFlyeKHWmbGy7LrrGWJ-g_z9F8FtDsOkrmb6S6SuZS6WTSf6Y--h3EI__Og9nxzvnfnklFNVasB8YCXPs
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2018_2846763
crossref_primary_10_1038_s41598_024_65996_0
crossref_primary_10_1016_j_procs_2024_05_051
crossref_primary_10_1016_j_jappgeo_2018_09_038
crossref_primary_10_1002_nsg_12227
crossref_primary_10_1109_TIM_2024_3385811
crossref_primary_10_1109_TIM_2022_3181240
crossref_primary_10_1016_j_conbuildmat_2020_120371
crossref_primary_10_1109_TGRS_2020_2984951
crossref_primary_10_1016_j_trgeo_2024_101385
crossref_primary_10_1080_10298436_2019_1645846
crossref_primary_10_1016_j_autcon_2018_03_002
crossref_primary_10_1109_LGRS_2024_3365470
crossref_primary_10_1109_TGRS_2018_2799586
crossref_primary_10_1016_j_conbuildmat_2021_125658
crossref_primary_10_1109_TGRS_2021_3131913
crossref_primary_10_1109_TPAMI_2023_3347739
crossref_primary_10_3390_s25030947
crossref_primary_10_3390_math12071086
crossref_primary_10_1061__ASCE_CF_1943_5509_0001502
crossref_primary_10_1190_INT_2024_0164_1
crossref_primary_10_1002_jqs_3302
crossref_primary_10_1109_TGRS_2024_3406154
crossref_primary_10_1109_TGRS_2020_2993719
crossref_primary_10_3390_rs17162791
crossref_primary_10_1016_j_compeleceng_2018_03_033
crossref_primary_10_1016_j_tust_2023_105568
crossref_primary_10_1016_j_autcon_2024_105394
crossref_primary_10_3390_s20143954
crossref_primary_10_3390_f12081019
crossref_primary_10_1080_10298436_2022_2037591
crossref_primary_10_1109_LGRS_2021_3072028
crossref_primary_10_1109_TGRS_2023_3294518
crossref_primary_10_4000_archeosciences_9989
crossref_primary_10_1016_j_autcon_2021_103593
crossref_primary_10_1016_j_autcon_2021_104044
crossref_primary_10_1109_TGRS_2024_3425890
crossref_primary_10_1016_j_autcon_2025_106100
crossref_primary_10_1109_JSTARS_2022_3151869
crossref_primary_10_1186_s13640_018_0296_4
crossref_primary_10_3390_coatings15070836
crossref_primary_10_1109_JSEN_2024_3368749
crossref_primary_10_1016_j_cscm_2023_e02779
crossref_primary_10_1016_j_conbuildmat_2019_117352
crossref_primary_10_1080_10298436_2022_2092617
crossref_primary_10_1109_TGRS_2022_3181380
crossref_primary_10_1109_ACCESS_2021_3115981
crossref_primary_10_3390_app14114689
crossref_primary_10_1016_j_measurement_2024_115379
crossref_primary_10_1007_s00521_022_07819_9
crossref_primary_10_1109_TGRS_2021_3138974
crossref_primary_10_1016_j_geoderma_2020_114431
crossref_primary_10_1016_j_autcon_2025_106453
crossref_primary_10_1109_JSTARS_2020_2977303
crossref_primary_10_1002_stc_2354
crossref_primary_10_1061_JPCFEV_CFENG_4591
crossref_primary_10_1016_j_autcon_2020_103414
crossref_primary_10_1016_j_conbuildmat_2023_134483
crossref_primary_10_1016_j_measurement_2018_05_083
crossref_primary_10_3390_rs15082114
crossref_primary_10_3390_s16111827
crossref_primary_10_1190_geo2021_0602_1
crossref_primary_10_3390_heritage8050161
crossref_primary_10_1109_TGRS_2022_3200153
crossref_primary_10_1016_j_icarus_2020_114280
crossref_primary_10_3390_rs14051131
crossref_primary_10_1016_j_jappgeo_2022_104620
crossref_primary_10_1109_JSTARS_2019_2953505
crossref_primary_10_3390_s23094367
crossref_primary_10_3390_rs14153665
crossref_primary_10_1038_s41598_023_32925_6
crossref_primary_10_1109_TGRS_2023_3268761
crossref_primary_10_1016_j_autcon_2020_103393
crossref_primary_10_1109_LGRS_2023_3319712
crossref_primary_10_1080_10298436_2018_1559317
crossref_primary_10_1109_TASE_2019_2941848
crossref_primary_10_1109_TGRS_2021_3131496
crossref_primary_10_1016_j_autcon_2020_103279
crossref_primary_10_1007_s00521_023_08655_1
crossref_primary_10_1002_hyp_13646
crossref_primary_10_3390_s20226476
crossref_primary_10_1109_LGRS_2022_3195947
crossref_primary_10_1109_TGRS_2019_2920224
crossref_primary_10_1109_ACCESS_2023_3243132
crossref_primary_10_1109_JSEN_2024_3395640
crossref_primary_10_1088_1361_6501_ae0062
crossref_primary_10_1109_ACCESS_2024_3416465
crossref_primary_10_1016_j_autcon_2023_105185
crossref_primary_10_1016_j_eswa_2018_12_057
crossref_primary_10_1016_j_pce_2022_103294
crossref_primary_10_1190_geo2019_0101_1
crossref_primary_10_1016_j_undsp_2025_07_001
crossref_primary_10_3390_rs16214080
crossref_primary_10_1109_JSTARS_2022_3205889
crossref_primary_10_1109_MGRS_2022_3205764
crossref_primary_10_1111_mice_12798
crossref_primary_10_1016_j_procs_2019_01_215
crossref_primary_10_1109_TMM_2024_3521837
crossref_primary_10_1088_1755_1315_1274_1_012013
crossref_primary_10_5802_crgeos_298
crossref_primary_10_1007_s11709_025_1177_4
crossref_primary_10_1109_TIM_2022_3214294
crossref_primary_10_3390_electronics12112447
crossref_primary_10_1061__ASCE_CO_1943_7862_0002141
crossref_primary_10_3390_rs13214401
crossref_primary_10_1007_s13157_021_01495_6
crossref_primary_10_1016_j_aci_2018_10_001
crossref_primary_10_1109_TGRS_2023_3272743
crossref_primary_10_1016_j_autcon_2019_04_025
crossref_primary_10_3390_rs13214250
crossref_primary_10_1002_nsg_12039
crossref_primary_10_3390_f16030475
crossref_primary_10_1109_TGRS_2024_3443412
crossref_primary_10_1016_j_autcon_2018_12_022
crossref_primary_10_1016_j_measurement_2023_113903
crossref_primary_10_3390_rs13132610
crossref_primary_10_1016_j_autcon_2019_102839
crossref_primary_10_1002_nsg_12278
crossref_primary_10_3390_rs13122375
crossref_primary_10_3390_electronics9111804
crossref_primary_10_1061_JPCFEV_CFENG_5008
crossref_primary_10_1016_j_measurement_2024_116268
crossref_primary_10_3390_rs14235972
crossref_primary_10_1016_j_autcon_2022_104633
crossref_primary_10_1109_JOE_2021_3107609
crossref_primary_10_1109_JSEN_2021_3050262
crossref_primary_10_1109_TGRS_2021_3111445
crossref_primary_10_1109_TGRS_2020_3046454
crossref_primary_10_1109_JSEN_2023_3280177
crossref_primary_10_1145_3344721
crossref_primary_10_1016_j_ndteint_2024_103179
crossref_primary_10_3390_s20102836
crossref_primary_10_1016_j_conbuildmat_2024_138240
crossref_primary_10_1109_LRA_2021_3062599
crossref_primary_10_1109_TGRS_2018_2889248
crossref_primary_10_1016_j_measurement_2025_117647
crossref_primary_10_1088_1742_6596_1878_1_012022
crossref_primary_10_1088_1742_6596_2107_1_012056
crossref_primary_10_3390_ma18184400
crossref_primary_10_3390_agronomy13020344
crossref_primary_10_3390_electronics12163520
crossref_primary_10_3390_rs13224590
crossref_primary_10_3390_app11135893
crossref_primary_10_1016_j_autcon_2020_103229
crossref_primary_10_1190_geo2017_0617_1
crossref_primary_10_1109_TGRS_2024_3412286
crossref_primary_10_1109_TGRS_2024_3509497
crossref_primary_10_1111_mice_13070
crossref_primary_10_1061__ASCE_PS_1949_1204_0000632
crossref_primary_10_3390_rs14112547
crossref_primary_10_1016_j_jappgeo_2021_104477
crossref_primary_10_1061__ASCE_CF_1943_5509_0001313
crossref_primary_10_1061__ASCE_CF_1943_5509_0001712
crossref_primary_10_26833_ijeg_1053213
Cites_doi 10.1049/cp.2012.1589
10.1016/S0734-189X(88)80033-1
10.1016/S0031-3203(00)00136-9
10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q
10.1109/34.765658
10.1109/TGRS.2015.2462727
10.1109/TSMC.1979.4310076
10.1109/LGRS.2013.2248119
10.1109/IGARSS.1999.771581
10.1016/S0926-9851(97)00038-4
10.1016/S0031-3203(00)00152-7
10.1109/TGRS.2009.2012701
10.1007/978-3-642-33409-2_36
10.1137/1.9781611972733.5
10.1007/s11220-005-0004-1
10.1016/0146-664X(79)90082-0
10.1109/ICIP.1996.560566
10.1016/0734-189X(85)90125-2
10.1049/PBRA015E
10.1109/36.842008
10.1016/j.conbuildmat.2005.06.007
10.1023/B:VISI.0000013087.49260.fb
10.1109/IGARSS.1998.702923
10.1007/s10462-013-9410-2
10.1109/TPAMI.2002.1017616
10.1117/12.211306
10.1007/BF01934268
10.1109/IJCNN.2010.5596298
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2016.2592679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 62
ExternalDocumentID 10_1109_TGRS_2016_2592679
7572995
Genre orig-research
GrantInformation_xml – fundername: EPSRC
  grantid: EP/F06585X/1; EP/K021699/1
  funderid: 10.13039/501100000266
– fundername: EU
  grantid: 280712
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c363t-ba53615dc2bb5fe3ce5207da7a24ea7fab277854f93c4db7bf1894da30e6c5ca3
IEDL.DBID RIE
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391527900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:14:26 EDT 2025
Sat Nov 29 02:49:49 EST 2025
Tue Nov 18 21:15:20 EST 2025
Tue Aug 26 16:43:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ba53615dc2bb5fe3ce5207da7a24ea7fab277854f93c4db7bf1894da30e6c5ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4989-1273
OpenAccessLink https://ieeexplore.ieee.org/document/7572995
PQID 1845316846
PQPubID 85465
PageCount 12
ParticipantIDs ieee_primary_7572995
proquest_journals_1845316846
crossref_citationtrail_10_1109_TGRS_2016_2592679
crossref_primary_10_1109_TGRS_2016_2592679
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref14
ref30
ref33
ref11
ref32
ref10
ref2
maas (ref9) 2013; 58
ref1
ref16
fritze (ref17) 0; 2496
ref19
alnuaimy (ref18) 2000; 43
ng (ref23) 0
ester (ref24) 0
ref26
ref25
ref20
ref22
ref21
zurada (ref35) 1992
ref28
ref27
falorni (ref15) 0; 1
ref29
ref8
ref7
ref4
ref3
ref6
chen (ref31) 0
ref5
References_xml – start-page: 1
  year: 0
  ident: ref31
  article-title: Probabilistic conic mixture model and its applications to mining spatial ground penetrating radar data
  publication-title: Proc SDM Workshop
– ident: ref8
  doi: 10.1049/cp.2012.1589
– start-page: 144
  year: 0
  ident: ref23
  article-title: Efficient and effective clustering methods for spatial data mining
  publication-title: Proc 20th Int Conf Very Large Data Bases
– ident: ref13
  doi: 10.1016/S0734-189X(88)80033-1
– ident: ref34
  doi: 10.1016/S0031-3203(00)00136-9
– year: 1992
  ident: ref35
  publication-title: Introduction to Artificial Neural Systems
– ident: ref14
  doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q
– ident: ref28
  doi: 10.1109/34.765658
– ident: ref10
  doi: 10.1109/TGRS.2015.2462727
– ident: ref32
  doi: 10.1109/TSMC.1979.4310076
– start-page: 226
  year: 0
  ident: ref24
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc 2nd Int Conf KDD
– ident: ref16
  doi: 10.1109/LGRS.2013.2248119
– ident: ref3
  doi: 10.1109/IGARSS.1999.771581
– ident: ref2
  doi: 10.1016/S0926-9851(97)00038-4
– volume: 1
  start-page: 403
  year: 0
  ident: ref15
  article-title: 3-D radar imaging of buried utilities by features estimation of hyperbolic diffraction patterns in radar scans
  publication-title: Proc 10th Int Conf GPR
– ident: ref26
  doi: 10.1016/S0031-3203(00)00152-7
– ident: ref11
  doi: 10.1109/TGRS.2009.2012701
– ident: ref6
  doi: 10.1007/978-3-642-33409-2_36
– ident: ref25
  doi: 10.1137/1.9781611972733.5
– ident: ref12
  doi: 10.1007/s11220-005-0004-1
– ident: ref27
  doi: 10.1016/0146-664X(79)90082-0
– ident: ref30
  doi: 10.1109/ICIP.1996.560566
– volume: 58
  start-page: 116
  year: 2013
  ident: ref9
  publication-title: Using Pattern Recognition to Automatically Localize Reflection Hyperbolas in Data From Ground Penetrating Radar
– volume: 43
  start-page: 157
  year: 2000
  ident: ref18
  article-title: Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition
  publication-title: Appl Geogr
– ident: ref33
  doi: 10.1016/0734-189X(85)90125-2
– ident: ref1
  doi: 10.1049/PBRA015E
– ident: ref5
  doi: 10.1109/36.842008
– ident: ref20
  doi: 10.1016/j.conbuildmat.2005.06.007
– ident: ref19
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref4
  doi: 10.1109/IGARSS.1998.702923
– ident: ref7
  doi: 10.1007/s10462-013-9410-2
– ident: ref22
  doi: 10.1109/TPAMI.2002.1017616
– volume: 2496
  start-page: 100
  year: 0
  ident: ref17
  article-title: Detection of buried landmines using ground penetrating radar
  publication-title: Proc SPIE
  doi: 10.1117/12.211306
– ident: ref29
  doi: 10.1007/BF01934268
– ident: ref21
  doi: 10.1109/IJCNN.2010.5596298
SSID ssj0014517
Score 2.612455
Snippet The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Algorithms
Buried asset detection
Clustering
Clustering algorithms
column-connection clustering (C3) algorithm
Data analysis
Electromagnetic radiation
Graphs
Ground penetrating radar
ground-penetrating radar (GPR)
hyperbola recognition
Hyperbolas
Image edge detection
Learning algorithms
Machine learning
Machine learning algorithms
Object recognition
orthogonal-distance fitting
Partitioning algorithms
Patchiness
Propagation velocity
Radar
Radar imaging
Real time
Real-time systems
Regions
Signatures
Transforms
Wave propagation
Title Real-Time Hyperbola Recognition and Fitting in GPR Data
URI https://ieeexplore.ieee.org/document/7572995
https://www.proquest.com/docview/1845316846
Volume 55
WOSCitedRecordID wos000391527900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mUNAHf2yK0yl58Ens1iZNszyKuu1BxpgT9laSNIWBdLIf_v1esm4MFMG3UnJQ7tre9yXf3QHcZVoYSRUNENoqJCiGBUoja2XUZlFCLUJuH-lXMRh0JhM5rMDDthbGWuvFZ7blLv1ZfjYzK7dV1hYcoaDke7AnhFjXam1PDGIelaXRSYAkgpYnmFEo2-Pe6M2JuJIWYn2aONXWTg7yQ1V-_Il9eume_O_BTuG4hJHkcR33M6jYogZHO80Fa3DgxZ1mUQcxQjQYuGIP0kfaOddIZ8looxyaFUQVGelOvQKaTAvSG47Is1qqc3jvvoyf-kE5MCEwLGHLQCvOEKFkhmrNc8uM5TQUmRKKxlaJXGkqRIfHuWQmxijpPOrIOFMstInhRrELqBazwl4CyXQHDZjOuUTKpdGaWaO4xJvSWBk1INy4MDVlN3E31OIj9awilKnzeuq8npZeb8D91uRz3Urjr8V15-btwtLDDWhu4pSWH9siRZLK3fytOLn63eoaDqnLxn7npAnV5Xxlb2DffC2ni_mtf4--AQvyxGU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED78ifrgrylOp-bBJ7FbmzTN8ijqNnEOmRN8K0mawkA62aZ_v5esG4Ii-FZKDspd2_u-5Ls7gItMCyOpogFCW4UExbBAaWStjNosSqhFyO0j3RW9XvP1VT4twdWiFsZa68Vntu4u_Vl-NjIfbqusIThCQcmXYZXHMY1m1VqLM4OYR2VxdBIgjaDlGWYUysag3X92Mq6kjmifJk639S0L-bEqP_7FPsG0dv73aLuwXQJJcj2L_B4s2WIftr61F9yHdS_vNJMKiD7iwcCVe5AOEs-xRkJL-nPt0KggqshIa-g10GRYkPZTn9yqqTqAl9bd4KYTlCMTAsMSNg204gwxSmao1jy3zFhOQ5EpoWhslciVpkI0eZxLZmKMk86jpowzxUKbGG4UO4SVYlTYIyCZbqIB0zmXSLo0WjNrFJd4UxoroyqEcxempuwn7sZavKWeV4QydV5PndfT0utVuFyYvM-aafy1uOLcvFhYergKtXmc0vJzm6RIU7mbwBUnx79bncNGZ_DYTbv3vYcT2KQuN_t9lBqsTMcf9hTWzOd0OBmf-XfqC29Cx6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Hyperbola+Recognition+and+Fitting+in+GPR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Dou%2C+Qingxu&rft.au=Wei%2C+Lijun&rft.au=Magee%2C+Derek+R&rft.au=Cohn%2C+Anthony+G&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=55&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1109%2FTGRS.2016.2592679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon