Real-Time Hyperbola Recognition and Fitting in GPR Data
The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally suitable for real-time on-site application is proposed. After preprocessing of the input GPR images, a novel thresholding method is applied t...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 55; číslo 1; s. 51 - 62 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally suitable for real-time on-site application is proposed. After preprocessing of the input GPR images, a novel thresholding method is applied to separate the regions of interest from background. A novel column-connection clustering (C3) algorithm is then applied to separate the regions of interest from each other. Subsequently, a machine learnt model is applied to identify hyperbolic signatures from outputs of the C3 algorithm, and a hyperbola is fitted to each such signature with an orthogonal-distance hyperbola fitting algorithm. The novel clustering algorithm C3 is a central component of the proposed system, which enables the identification of hyperbolic signatures and hyperbola fitting. Only two features are used in the machine learning algorithm, which is easy to train using a small set of training data. An orthogonal-distance hyperbola fitting algorithm for "south-opening" hyperbolae is introduced in this work, which is more robust and accurate than algebraic hyperbola fitting algorithms. The proposed method can successfully recognize and fit hyperbolic signatures with intersections with others, hyperbolic signatures with distortions, and incomplete hyperbolic signatures with one leg fully or largely missed. As an additional novel contribution, formulas to compute an initial "south-opening" hyperbola directly from a set of given points are derived, which make the system more efficient. The parameters obtained by fitting hyperbolae to hyperbolic signatures are very important features; they can be used to estimate the location and size of the related target objects and the average propagation velocity of the electromagnetic wave in the medium. The effectiveness of the proposed system is tested on both synthetic and real GPR data. |
|---|---|
| AbstractList | The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally suitable for real-time on-site application is proposed. After preprocessing of the input GPR images, a novel thresholding method is applied to separate the regions of interest from background. A novel column-connection clustering (C3) algorithm is then applied to separate the regions of interest from each other. Subsequently, a machine learnt model is applied to identify hyperbolic signatures from outputs of the C3 algorithm, and a hyperbola is fitted to each such signature with an orthogonal-distance hyperbola fitting algorithm. The novel clustering algorithm C3 is a central component of the proposed system, which enables the identification of hyperbolic signatures and hyperbola fitting. Only two features are used in the machine learning algorithm, which is easy to train using a small set of training data. An orthogonal-distance hyperbola fitting algorithm for “south-opening” hyperbolae is introduced in this work, which is more robust and accurate than algebraic hyperbola fitting algorithms. The proposed method can successfully recognize and fit hyperbolic signatures with intersections with others, hyperbolic signatures with distortions, and incomplete hyperbolic signatures with one leg fully or largely missed. As an additional novel contribution, formulas to compute an initial “south-opening” hyperbola directly from a set of given points are derived, which make the system more efficient. The parameters obtained by fitting hyperbolae to hyperbolic signatures are very important features; they can be used to estimate the location and size of the related target objects and the average propagation velocity of the electromagnetic wave in the medium. The effectiveness of the proposed system is tested on both synthetic and real GPR data. |
| Author | Magee, Derek R. Lijun Wei Cohn, Anthony G. Qingxu Dou |
| Author_xml | – sequence: 1 surname: Qingxu Dou fullname: Qingxu Dou email: Q.Dou@leeds.ac.uk organization: Sch. of Comput., Univ. of Leeds, Leeds, UK – sequence: 2 surname: Lijun Wei fullname: Lijun Wei email: L.J.Wei@leeds.ac.uk organization: Sch. of Comput., Univ. of Leeds, Leeds, UK – sequence: 3 givenname: Derek R. surname: Magee fullname: Magee, Derek R. email: D.R.Magee@leeds.ac.uk organization: Sch. of Comput., Univ. of Leeds, Leeds, UK – sequence: 4 givenname: Anthony G. surname: Cohn fullname: Cohn, Anthony G. email: A.G.Cohn@leeds.ac.uk organization: Sch. of Comput., Univ. of Leeds, Leeds, UK |
| BookMark | eNp9kE1PAjEQQBuDiYD-AONlE8-L_e72aFDAhESz4rmZ7XZJCXSxWw78e9lAPHjwNJf3ZiZvhAahDQ6he4InhGD9tJqXnxOKiZxQoalU-goNiRBFjiXnAzTERMucFpreoFHXbTAmXBA1RKp0sM1XfueyxXHvYtVuISudbdfBJ9-GDEKdzXxKPqwzH7L5R5m9QIJbdN3AtnN3lzlGX7PX1XSRL9_nb9PnZW6ZZCmvQDBJRG1pVYnGMesExaoGBZQ7UA1UVKlC8EYzy-tKVQ0pNK-BYSetsMDG6PG8dx_b74Prktm0hxhOJw0puGBEFlyeKHWmbGy7LrrGWJ-g_z9F8FtDsOkrmb6S6SuZS6WTSf6Y--h3EI__Og9nxzvnfnklFNVasB8YCXPs |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_LGRS_2018_2846763 crossref_primary_10_1038_s41598_024_65996_0 crossref_primary_10_1016_j_procs_2024_05_051 crossref_primary_10_1016_j_jappgeo_2018_09_038 crossref_primary_10_1002_nsg_12227 crossref_primary_10_1109_TIM_2024_3385811 crossref_primary_10_1109_TIM_2022_3181240 crossref_primary_10_1016_j_conbuildmat_2020_120371 crossref_primary_10_1109_TGRS_2020_2984951 crossref_primary_10_1016_j_trgeo_2024_101385 crossref_primary_10_1080_10298436_2019_1645846 crossref_primary_10_1016_j_autcon_2018_03_002 crossref_primary_10_1109_LGRS_2024_3365470 crossref_primary_10_1109_TGRS_2018_2799586 crossref_primary_10_1016_j_conbuildmat_2021_125658 crossref_primary_10_1109_TGRS_2021_3131913 crossref_primary_10_1109_TPAMI_2023_3347739 crossref_primary_10_3390_s25030947 crossref_primary_10_3390_math12071086 crossref_primary_10_1061__ASCE_CF_1943_5509_0001502 crossref_primary_10_1190_INT_2024_0164_1 crossref_primary_10_1002_jqs_3302 crossref_primary_10_1109_TGRS_2024_3406154 crossref_primary_10_1109_TGRS_2020_2993719 crossref_primary_10_3390_rs17162791 crossref_primary_10_1016_j_compeleceng_2018_03_033 crossref_primary_10_1016_j_tust_2023_105568 crossref_primary_10_1016_j_autcon_2024_105394 crossref_primary_10_3390_s20143954 crossref_primary_10_3390_f12081019 crossref_primary_10_1080_10298436_2022_2037591 crossref_primary_10_1109_LGRS_2021_3072028 crossref_primary_10_1109_TGRS_2023_3294518 crossref_primary_10_4000_archeosciences_9989 crossref_primary_10_1016_j_autcon_2021_103593 crossref_primary_10_1016_j_autcon_2021_104044 crossref_primary_10_1109_TGRS_2024_3425890 crossref_primary_10_1016_j_autcon_2025_106100 crossref_primary_10_1109_JSTARS_2022_3151869 crossref_primary_10_1186_s13640_018_0296_4 crossref_primary_10_3390_coatings15070836 crossref_primary_10_1109_JSEN_2024_3368749 crossref_primary_10_1016_j_cscm_2023_e02779 crossref_primary_10_1016_j_conbuildmat_2019_117352 crossref_primary_10_1080_10298436_2022_2092617 crossref_primary_10_1109_TGRS_2022_3181380 crossref_primary_10_1109_ACCESS_2021_3115981 crossref_primary_10_3390_app14114689 crossref_primary_10_1016_j_measurement_2024_115379 crossref_primary_10_1007_s00521_022_07819_9 crossref_primary_10_1109_TGRS_2021_3138974 crossref_primary_10_1016_j_geoderma_2020_114431 crossref_primary_10_1016_j_autcon_2025_106453 crossref_primary_10_1109_JSTARS_2020_2977303 crossref_primary_10_1002_stc_2354 crossref_primary_10_1061_JPCFEV_CFENG_4591 crossref_primary_10_1016_j_autcon_2020_103414 crossref_primary_10_1016_j_conbuildmat_2023_134483 crossref_primary_10_1016_j_measurement_2018_05_083 crossref_primary_10_3390_rs15082114 crossref_primary_10_3390_s16111827 crossref_primary_10_1190_geo2021_0602_1 crossref_primary_10_3390_heritage8050161 crossref_primary_10_1109_TGRS_2022_3200153 crossref_primary_10_1016_j_icarus_2020_114280 crossref_primary_10_3390_rs14051131 crossref_primary_10_1016_j_jappgeo_2022_104620 crossref_primary_10_1109_JSTARS_2019_2953505 crossref_primary_10_3390_s23094367 crossref_primary_10_3390_rs14153665 crossref_primary_10_1038_s41598_023_32925_6 crossref_primary_10_1109_TGRS_2023_3268761 crossref_primary_10_1016_j_autcon_2020_103393 crossref_primary_10_1109_LGRS_2023_3319712 crossref_primary_10_1080_10298436_2018_1559317 crossref_primary_10_1109_TASE_2019_2941848 crossref_primary_10_1109_TGRS_2021_3131496 crossref_primary_10_1016_j_autcon_2020_103279 crossref_primary_10_1007_s00521_023_08655_1 crossref_primary_10_1002_hyp_13646 crossref_primary_10_3390_s20226476 crossref_primary_10_1109_LGRS_2022_3195947 crossref_primary_10_1109_TGRS_2019_2920224 crossref_primary_10_1109_ACCESS_2023_3243132 crossref_primary_10_1109_JSEN_2024_3395640 crossref_primary_10_1088_1361_6501_ae0062 crossref_primary_10_1109_ACCESS_2024_3416465 crossref_primary_10_1016_j_autcon_2023_105185 crossref_primary_10_1016_j_eswa_2018_12_057 crossref_primary_10_1016_j_pce_2022_103294 crossref_primary_10_1190_geo2019_0101_1 crossref_primary_10_1016_j_undsp_2025_07_001 crossref_primary_10_3390_rs16214080 crossref_primary_10_1109_JSTARS_2022_3205889 crossref_primary_10_1109_MGRS_2022_3205764 crossref_primary_10_1111_mice_12798 crossref_primary_10_1016_j_procs_2019_01_215 crossref_primary_10_1109_TMM_2024_3521837 crossref_primary_10_1088_1755_1315_1274_1_012013 crossref_primary_10_5802_crgeos_298 crossref_primary_10_1007_s11709_025_1177_4 crossref_primary_10_1109_TIM_2022_3214294 crossref_primary_10_3390_electronics12112447 crossref_primary_10_1061__ASCE_CO_1943_7862_0002141 crossref_primary_10_3390_rs13214401 crossref_primary_10_1007_s13157_021_01495_6 crossref_primary_10_1016_j_aci_2018_10_001 crossref_primary_10_1109_TGRS_2023_3272743 crossref_primary_10_1016_j_autcon_2019_04_025 crossref_primary_10_3390_rs13214250 crossref_primary_10_1002_nsg_12039 crossref_primary_10_3390_f16030475 crossref_primary_10_1109_TGRS_2024_3443412 crossref_primary_10_1016_j_autcon_2018_12_022 crossref_primary_10_1016_j_measurement_2023_113903 crossref_primary_10_3390_rs13132610 crossref_primary_10_1016_j_autcon_2019_102839 crossref_primary_10_1002_nsg_12278 crossref_primary_10_3390_rs13122375 crossref_primary_10_3390_electronics9111804 crossref_primary_10_1061_JPCFEV_CFENG_5008 crossref_primary_10_1016_j_measurement_2024_116268 crossref_primary_10_3390_rs14235972 crossref_primary_10_1016_j_autcon_2022_104633 crossref_primary_10_1109_JOE_2021_3107609 crossref_primary_10_1109_JSEN_2021_3050262 crossref_primary_10_1109_TGRS_2021_3111445 crossref_primary_10_1109_TGRS_2020_3046454 crossref_primary_10_1109_JSEN_2023_3280177 crossref_primary_10_1145_3344721 crossref_primary_10_1016_j_ndteint_2024_103179 crossref_primary_10_3390_s20102836 crossref_primary_10_1016_j_conbuildmat_2024_138240 crossref_primary_10_1109_LRA_2021_3062599 crossref_primary_10_1109_TGRS_2018_2889248 crossref_primary_10_1016_j_measurement_2025_117647 crossref_primary_10_1088_1742_6596_1878_1_012022 crossref_primary_10_1088_1742_6596_2107_1_012056 crossref_primary_10_3390_ma18184400 crossref_primary_10_3390_agronomy13020344 crossref_primary_10_3390_electronics12163520 crossref_primary_10_3390_rs13224590 crossref_primary_10_3390_app11135893 crossref_primary_10_1016_j_autcon_2020_103229 crossref_primary_10_1190_geo2017_0617_1 crossref_primary_10_1109_TGRS_2024_3412286 crossref_primary_10_1109_TGRS_2024_3509497 crossref_primary_10_1111_mice_13070 crossref_primary_10_1061__ASCE_PS_1949_1204_0000632 crossref_primary_10_3390_rs14112547 crossref_primary_10_1016_j_jappgeo_2021_104477 crossref_primary_10_1061__ASCE_CF_1943_5509_0001313 crossref_primary_10_1061__ASCE_CF_1943_5509_0001712 crossref_primary_10_26833_ijeg_1053213 |
| Cites_doi | 10.1049/cp.2012.1589 10.1016/S0734-189X(88)80033-1 10.1016/S0031-3203(00)00136-9 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q 10.1109/34.765658 10.1109/TGRS.2015.2462727 10.1109/TSMC.1979.4310076 10.1109/LGRS.2013.2248119 10.1109/IGARSS.1999.771581 10.1016/S0926-9851(97)00038-4 10.1016/S0031-3203(00)00152-7 10.1109/TGRS.2009.2012701 10.1007/978-3-642-33409-2_36 10.1137/1.9781611972733.5 10.1007/s11220-005-0004-1 10.1016/0146-664X(79)90082-0 10.1109/ICIP.1996.560566 10.1016/0734-189X(85)90125-2 10.1049/PBRA015E 10.1109/36.842008 10.1016/j.conbuildmat.2005.06.007 10.1023/B:VISI.0000013087.49260.fb 10.1109/IGARSS.1998.702923 10.1007/s10462-013-9410-2 10.1109/TPAMI.2002.1017616 10.1117/12.211306 10.1007/BF01934268 10.1109/IJCNN.2010.5596298 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2016.2592679 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 62 |
| ExternalDocumentID | 10_1109_TGRS_2016_2592679 7572995 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: EPSRC grantid: EP/F06585X/1; EP/K021699/1 funderid: 10.13039/501100000266 – fundername: EU grantid: 280712 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c363t-ba53615dc2bb5fe3ce5207da7a24ea7fab277854f93c4db7bf1894da30e6c5ca3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391527900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:14:26 EDT 2025 Sat Nov 29 02:49:49 EST 2025 Tue Nov 18 21:15:20 EST 2025 Tue Aug 26 16:43:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-ba53615dc2bb5fe3ce5207da7a24ea7fab277854f93c4db7bf1894da30e6c5ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4989-1273 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7572995 |
| PQID | 1845316846 |
| PQPubID | 85465 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_7572995 proquest_journals_1845316846 crossref_citationtrail_10_1109_TGRS_2016_2592679 crossref_primary_10_1109_TGRS_2016_2592679 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref14 ref30 ref33 ref11 ref32 ref10 ref2 maas (ref9) 2013; 58 ref1 ref16 fritze (ref17) 0; 2496 ref19 alnuaimy (ref18) 2000; 43 ng (ref23) 0 ester (ref24) 0 ref26 ref25 ref20 ref22 ref21 zurada (ref35) 1992 ref28 ref27 falorni (ref15) 0; 1 ref29 ref8 ref7 ref4 ref3 ref6 chen (ref31) 0 ref5 |
| References_xml | – start-page: 1 year: 0 ident: ref31 article-title: Probabilistic conic mixture model and its applications to mining spatial ground penetrating radar data publication-title: Proc SDM Workshop – ident: ref8 doi: 10.1049/cp.2012.1589 – start-page: 144 year: 0 ident: ref23 article-title: Efficient and effective clustering methods for spatial data mining publication-title: Proc 20th Int Conf Very Large Data Bases – ident: ref13 doi: 10.1016/S0734-189X(88)80033-1 – ident: ref34 doi: 10.1016/S0031-3203(00)00136-9 – year: 1992 ident: ref35 publication-title: Introduction to Artificial Neural Systems – ident: ref14 doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q – ident: ref28 doi: 10.1109/34.765658 – ident: ref10 doi: 10.1109/TGRS.2015.2462727 – ident: ref32 doi: 10.1109/TSMC.1979.4310076 – start-page: 226 year: 0 ident: ref24 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc 2nd Int Conf KDD – ident: ref16 doi: 10.1109/LGRS.2013.2248119 – ident: ref3 doi: 10.1109/IGARSS.1999.771581 – ident: ref2 doi: 10.1016/S0926-9851(97)00038-4 – volume: 1 start-page: 403 year: 0 ident: ref15 article-title: 3-D radar imaging of buried utilities by features estimation of hyperbolic diffraction patterns in radar scans publication-title: Proc 10th Int Conf GPR – ident: ref26 doi: 10.1016/S0031-3203(00)00152-7 – ident: ref11 doi: 10.1109/TGRS.2009.2012701 – ident: ref6 doi: 10.1007/978-3-642-33409-2_36 – ident: ref25 doi: 10.1137/1.9781611972733.5 – ident: ref12 doi: 10.1007/s11220-005-0004-1 – ident: ref27 doi: 10.1016/0146-664X(79)90082-0 – ident: ref30 doi: 10.1109/ICIP.1996.560566 – volume: 58 start-page: 116 year: 2013 ident: ref9 publication-title: Using Pattern Recognition to Automatically Localize Reflection Hyperbolas in Data From Ground Penetrating Radar – volume: 43 start-page: 157 year: 2000 ident: ref18 article-title: Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition publication-title: Appl Geogr – ident: ref33 doi: 10.1016/0734-189X(85)90125-2 – ident: ref1 doi: 10.1049/PBRA015E – ident: ref5 doi: 10.1109/36.842008 – ident: ref20 doi: 10.1016/j.conbuildmat.2005.06.007 – ident: ref19 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref4 doi: 10.1109/IGARSS.1998.702923 – ident: ref7 doi: 10.1007/s10462-013-9410-2 – ident: ref22 doi: 10.1109/TPAMI.2002.1017616 – volume: 2496 start-page: 100 year: 0 ident: ref17 article-title: Detection of buried landmines using ground penetrating radar publication-title: Proc SPIE doi: 10.1117/12.211306 – ident: ref29 doi: 10.1007/BF01934268 – ident: ref21 doi: 10.1109/IJCNN.2010.5596298 |
| SSID | ssj0014517 |
| Score | 2.612455 |
| Snippet | The problem of automatically recognizing and fitting hyperbolae from ground-penetrating radar (GPR) images is addressed, and a novel technique computationally... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Algorithms Buried asset detection Clustering Clustering algorithms column-connection clustering (C3) algorithm Data analysis Electromagnetic radiation Graphs Ground penetrating radar ground-penetrating radar (GPR) hyperbola recognition Hyperbolas Image edge detection Learning algorithms Machine learning Machine learning algorithms Object recognition orthogonal-distance fitting Partitioning algorithms Patchiness Propagation velocity Radar Radar imaging Real time Real-time systems Regions Signatures Transforms Wave propagation |
| Title | Real-Time Hyperbola Recognition and Fitting in GPR Data |
| URI | https://ieeexplore.ieee.org/document/7572995 https://www.proquest.com/docview/1845316846 |
| Volume | 55 |
| WOSCitedRecordID | wos000391527900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mUNAHf2yK0yl58Ens1iZNszyKuu1BxpgT9laSNIWBdLIf_v1esm4MFMG3UnJQ7tre9yXf3QHcZVoYSRUNENoqJCiGBUoja2XUZlFCLUJuH-lXMRh0JhM5rMDDthbGWuvFZ7blLv1ZfjYzK7dV1hYcoaDke7AnhFjXam1PDGIelaXRSYAkgpYnmFEo2-Pe6M2JuJIWYn2aONXWTg7yQ1V-_Il9eume_O_BTuG4hJHkcR33M6jYogZHO80Fa3DgxZ1mUQcxQjQYuGIP0kfaOddIZ8looxyaFUQVGelOvQKaTAvSG47Is1qqc3jvvoyf-kE5MCEwLGHLQCvOEKFkhmrNc8uM5TQUmRKKxlaJXGkqRIfHuWQmxijpPOrIOFMstInhRrELqBazwl4CyXQHDZjOuUTKpdGaWaO4xJvSWBk1INy4MDVlN3E31OIj9awilKnzeuq8npZeb8D91uRz3Urjr8V15-btwtLDDWhu4pSWH9siRZLK3fytOLn63eoaDqnLxn7npAnV5Xxlb2DffC2ni_mtf4--AQvyxGU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED78ifrgrylOp-bBJ7FbmzTN8ijqNnEOmRN8K0mawkA62aZ_v5esG4Ii-FZKDspd2_u-5Ls7gItMCyOpogFCW4UExbBAaWStjNosSqhFyO0j3RW9XvP1VT4twdWiFsZa68Vntu4u_Vl-NjIfbqusIThCQcmXYZXHMY1m1VqLM4OYR2VxdBIgjaDlGWYUysag3X92Mq6kjmifJk639S0L-bEqP_7FPsG0dv73aLuwXQJJcj2L_B4s2WIftr61F9yHdS_vNJMKiD7iwcCVe5AOEs-xRkJL-nPt0KggqshIa-g10GRYkPZTn9yqqTqAl9bd4KYTlCMTAsMSNg204gwxSmao1jy3zFhOQ5EpoWhslciVpkI0eZxLZmKMk86jpowzxUKbGG4UO4SVYlTYIyCZbqIB0zmXSLo0WjNrFJd4UxoroyqEcxempuwn7sZavKWeV4QydV5PndfT0utVuFyYvM-aafy1uOLcvFhYergKtXmc0vJzm6RIU7mbwBUnx79bncNGZ_DYTbv3vYcT2KQuN_t9lBqsTMcf9hTWzOd0OBmf-XfqC29Cx6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Hyperbola+Recognition+and+Fitting+in+GPR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Dou%2C+Qingxu&rft.au=Wei%2C+Lijun&rft.au=Magee%2C+Derek+R&rft.au=Cohn%2C+Anthony+G&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=55&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1109%2FTGRS.2016.2592679&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |