Recurrent and convolutional neural networks in structural dynamics: a modified attention steered encoder–decoder architecture versus LSTM versus GRU versus TCN topologies to predict the response of shock wave-loaded plates
The aim of the present study is to analyse and predict the structural deformations occurring during shock tube experiments with a series of recurrent and temporal convolutional neural networks. The goal is to determine the architecture that can best learn and predict physically and geometrically non...
Gespeichert in:
| Veröffentlicht in: | Computational mechanics Jg. 72; H. 4; S. 765 - 786 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-7675, 1432-0924 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!