Recurrent and convolutional neural networks in structural dynamics: a modified attention steered encoder–decoder architecture versus LSTM versus GRU versus TCN topologies to predict the response of shock wave-loaded plates

The aim of the present study is to analyse and predict the structural deformations occurring during shock tube experiments with a series of recurrent and temporal convolutional neural networks. The goal is to determine the architecture that can best learn and predict physically and geometrically non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics Jg. 72; H. 4; S. 765 - 786
Hauptverfasser: Tandale, Saurabh Balkrishna, Stoffel, Marcus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2023
Springer Nature B.V
Schlagworte:
ISSN:0178-7675, 1432-0924
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!