Application of evolutionary deep learning algorithm in construction engineering management system

The application of construction project management system is crucial for improving work efficiency and operational convenience. However, in order to further improve the application level and efficiency of the system, this study aims to optimize deep learning algorithms and apply them to the construc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Systems and soft computing Ročník 7; s. 200317
Hlavný autor: Yang, Zhe
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2025
Elsevier
Predmet:
ISSN:2772-9419, 2772-9419
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The application of construction project management system is crucial for improving work efficiency and operational convenience. However, in order to further improve the application level and efficiency of the system, this study aims to optimize deep learning algorithms and apply them to the construction project management system. The goal of this work is to develop a construction project management platform based on optimized evolutionary deep learning algorithms. Evolutionary computation strategy has been introduced in learning network models. Compared with other classic deep learning models, the optimized evolutionary deep learning algorithm model has significantly higher classification training accuracy and testing accuracy. The optimized evolutionary deep learning algorithm model can be applied to the field of construction project management. Based on this model, the development platform can be regarded as the "neurons" in the neural network structure, and through the collaboration of various components, a personalized management information system that meets user needs can be formed. Designed the structure, logical structure, and functional modules of the management system. The design process can provide experience for the design of similar management systems. This study optimized deep learning algorithms and introduced evolutionary computation strategies. By comparing with other classic deep learning models, we found that the optimized evolutionary deep learning algorithm model significantly improved the accuracy of classification training and testing. Through the collaboration of various components, a personalized management information system that meets user needs can be formed. We have designed the structure, logical structure, and functional modules of the management system, and verified its effectiveness through actual testing.
AbstractList The application of construction project management system is crucial for improving work efficiency and operational convenience. However, in order to further improve the application level and efficiency of the system, this study aims to optimize deep learning algorithms and apply them to the construction project management system. The goal of this work is to develop a construction project management platform based on optimized evolutionary deep learning algorithms. Evolutionary computation strategy has been introduced in learning network models. Compared with other classic deep learning models, the optimized evolutionary deep learning algorithm model has significantly higher classification training accuracy and testing accuracy. The optimized evolutionary deep learning algorithm model can be applied to the field of construction project management. Based on this model, the development platform can be regarded as the "neurons" in the neural network structure, and through the collaboration of various components, a personalized management information system that meets user needs can be formed. Designed the structure, logical structure, and functional modules of the management system. The design process can provide experience for the design of similar management systems. This study optimized deep learning algorithms and introduced evolutionary computation strategies. By comparing with other classic deep learning models, we found that the optimized evolutionary deep learning algorithm model significantly improved the accuracy of classification training and testing. Through the collaboration of various components, a personalized management information system that meets user needs can be formed. We have designed the structure, logical structure, and functional modules of the management system, and verified its effectiveness through actual testing.
ArticleNumber 200317
Author Yang, Zhe
Author_xml – sequence: 1
  givenname: Zhe
  surname: Yang
  fullname: Yang, Zhe
  email: Zhe123Yangyz@outlook.com
  organization: Five-year College Department, Zhoukou Vocational and Technical College, Zhoukou, Henan 466001, PR China
BookMark eNp9kMtqwzAQRUVJoWmaH-jKP5BUD9uSoZsQ-ggEumnXQhmPXRlbCpJTyN_Xjkvpqpt5Mfcyc27JzHmHhNwzumaU5Q_NOpoIa055NgQqmLwicy4lXxUpK2Z_6huyjLGhlHIlecHEnJjN8dhaML31LvFVgl--PY2NCeekRDwmLZrgrKsT09Y-2P6zS6xLwLvYhxNcdOhq6xDDuNUZZ2rs0PVJPMceuztyXZk24vInL8jH89P79nW1f3vZbTf7FYhc9KtDmrNUoMrzlKl0OE4pzgVnoqJSVqjAKCVNBsIow1Qp8gwUhYwiSKwKCmJBdpNv6U2jj8F2wwvaG6svAx9qbUJvoUVdpsWBM4klSJrSLD0UGRXACpYXdOCiBi8-eUHwMQasfv0Y1SNz3eiRuR6Z64n5IHqcRDh8-WUx6AgWHWBpA0I_nGH_k38Dnf6MUA
Cites_doi 10.1061/(ASCE)CO.1943-7862.0001906
10.1061/(ASCE)CO.1943-7862.0002045
10.1016/j.autcon.2020.103517
10.1061/(ASCE)CO.1943-7862.0001852
10.1109/JSTSP.2019.2908700
10.1016/j.ssci.2021.105402
10.1145/3603704
10.1007/s12205-018-1528-y
10.1061/(ASCE)CO.1943-7862.0001854
10.1016/j.ress.2020.106806
10.1007/s42107-023-00698-y
10.1007/s42524-019-0073-9
10.1016/j.compag.2018.02.016
10.1038/s41566-020-0685-y
10.1007/s13042-020-01096-5
10.1108/ECAM-08-2018-0350
10.1016/j.neucom.2021.03.091
10.3390/buildings12071063
10.1016/j.neunet.2020.07.025
10.1007/s11831-019-09344-w
10.1016/j.eswa.2024.123503
10.1007/s12525-021-00475-2
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.sasc.2025.200317
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2772-9419
ExternalDocumentID oai_doaj_org_article_d49b217edc704054b9503c1916907298
10_1016_j_sasc_2025_200317
S2772941925001358
GroupedDBID 0R~
6I.
AAFTH
AALRI
AAXUO
AAYWO
ABJNI
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c363t-b46143e866418429188223213f077fe8ca887a5c3a8a18d365c80c50ec7ef90c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523587100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2772-9419
IngestDate Fri Oct 03 12:41:01 EDT 2025
Thu Nov 27 00:45:39 EST 2025
Tue Jul 29 20:34:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Office Automation
Management System
Evolutionary
Construction engineering
Deep learning algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b46143e866418429188223213f077fe8ca887a5c3a8a18d365c80c50ec7ef90c3
OpenAccessLink https://doaj.org/article/d49b217edc704054b9503c1916907298
ParticipantIDs doaj_primary_oai_doaj_org_article_d49b217edc704054b9503c1916907298
crossref_primary_10_1016_j_sasc_2025_200317
elsevier_sciencedirect_doi_10_1016_j_sasc_2025_200317
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Systems and soft computing
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lu, Liu, Liu (bib0027) 2019; 6
Jin, Zou, Gidado (bib0002) 2019; 26
Niu, Zhong, Yu (bib0019) 2021; 452
Feng, Wu (bib0025) 2022
Khalid, Sagoo, Benachir (bib0026) 2021; 143
Xie, Yu, Lv (bib0014) 2021
Wang, Zhao, Pourpanah (bib0022) 2020; 11
Singh, Patro, Parhi (bib0018) 2023; 24
Yang, Yu, Zhu (bib0009) 2020; 146
Kamilaris, Prenafeta-Boldú (bib0023) 2018; 147
Sun, Li, Tian (bib0024) 2022
Chenya, Aminudin, Mohd (bib0010) 2022
Li, Ma, Yu, Xue, Zhang, Jin (bib0017) 2023; 56
Jang, Lee, Son (bib0007) 2022; 12
Pan, Zhang (bib0001) 2021; 122
Waqar (bib0016) 2024; 249
Dargan, Kumar, Ayyagari (bib0015) 2020; 27
Moon, Shin, Hwang (bib0028) 2018; 22
Fayek (bib0003) 2020; 146
Lin, Golparvar-Fard (bib0005) 2021; 147
Ma, Liu, Kudyshev (bib0021) 2021; 15
Purwins, Li, Virtanen (bib0020) 2019; 13
Janiesch, Zschech, Heinrich (bib0012) 2021; 31
Tian, Fei, Zheng (bib0011) 2020; 131
Kar, Jha (bib0006) 2020; 146
Chen, Wang, Xu (bib0004) 2020; 197
Chen, Wang, Xu (bib0008) 2020; 197
Zhang, Cui, Zhu (bib0013) 2020
Dargan (10.1016/j.sasc.2025.200317_bib0015) 2020; 27
Purwins (10.1016/j.sasc.2025.200317_bib0020) 2019; 13
Wang (10.1016/j.sasc.2025.200317_bib0022) 2020; 11
Janiesch (10.1016/j.sasc.2025.200317_bib0012) 2021; 31
Khalid (10.1016/j.sasc.2025.200317_bib0026) 2021; 143
Xie (10.1016/j.sasc.2025.200317_bib0014) 2021
Li (10.1016/j.sasc.2025.200317_bib0017) 2023; 56
Jin (10.1016/j.sasc.2025.200317_bib0002) 2019; 26
Singh (10.1016/j.sasc.2025.200317_bib0018) 2023; 24
Sun (10.1016/j.sasc.2025.200317_bib0024) 2022
Kar (10.1016/j.sasc.2025.200317_bib0006) 2020; 146
Pan (10.1016/j.sasc.2025.200317_bib0001) 2021; 122
Jang (10.1016/j.sasc.2025.200317_bib0007) 2022; 12
Lin (10.1016/j.sasc.2025.200317_bib0005) 2021; 147
Zhang (10.1016/j.sasc.2025.200317_bib0013) 2020
Niu (10.1016/j.sasc.2025.200317_bib0019) 2021; 452
Lu (10.1016/j.sasc.2025.200317_bib0027) 2019; 6
Yang (10.1016/j.sasc.2025.200317_bib0009) 2020; 146
Ma (10.1016/j.sasc.2025.200317_bib0021) 2021; 15
Fayek (10.1016/j.sasc.2025.200317_bib0003) 2020; 146
Chen (10.1016/j.sasc.2025.200317_bib0008) 2020; 197
Waqar (10.1016/j.sasc.2025.200317_bib0016) 2024; 249
Moon (10.1016/j.sasc.2025.200317_bib0028) 2018; 22
Chen (10.1016/j.sasc.2025.200317_bib0004) 2020; 197
Feng (10.1016/j.sasc.2025.200317_bib0025) 2022
Chenya (10.1016/j.sasc.2025.200317_bib0010) 2022
Kamilaris (10.1016/j.sasc.2025.200317_bib0023) 2018; 147
Tian (10.1016/j.sasc.2025.200317_bib0011) 2020; 131
References_xml – volume: 15
  start-page: 77
  year: 2021
  end-page: 90
  ident: bib0021
  article-title: Deep learning for the design of photonic structures [J]
  publication-title: Nat Photon.
– volume: 197
  year: 2020
  ident: bib0004
  article-title: Data-driven safety enhancing strategies for risk networks in construction engineering [J]
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 24
  start-page: 3121
  year: 2023
  end-page: 3143
  ident: bib0018
  article-title: Evolutionary optimization of machine learning algorithm hyperparameters for strength prediction of high-performance concrete
  publication-title: Asian J. Civ. Eng.
– volume: 146
  year: 2020
  ident: bib0009
  article-title: Impact of project planning on knowledge integration in construction projects [J]
  publication-title: J. Constr. Eng. Manag.
– volume: 143
  year: 2021
  ident: bib0026
  article-title: Safety Management System (SMS) framework development–Mitigating the critical safety factors affecting health and Safety performance in construction projects [J]
  publication-title: Saf. Sci.
– volume: 197
  year: 2020
  ident: bib0008
  article-title: Data-driven safety enhancing strategies for risk networks in construction engineering [J]
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 131
  start-page: 251
  year: 2020
  end-page: 275
  ident: bib0011
  article-title: Deep learning on image denoising: an overview [J]
  publication-title: Neural Netw.
– volume: 27
  start-page: 1071
  year: 2020
  end-page: 1092
  ident: bib0015
  article-title: A survey of deep learning and its applications: a new paradigm to machine learning [J]
  publication-title: Arch. Comput. Methods Eng.
– volume: 13
  start-page: 206
  year: 2019
  end-page: 219
  ident: bib0020
  article-title: Deep learning for audio signal processing [J]
  publication-title: IEEE J. Sel. Top Signal Process.
– volume: 147
  year: 2021
  ident: bib0005
  article-title: Visual and virtual production management system for proactive project controls [J]
  publication-title: J. Constr. Eng. Manag.
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: bib0019
  article-title: A review on the attention mechanism of deep learning [J]
  publication-title: Neurocomputing
– volume: 22
  start-page: 4791
  year: 2018
  end-page: 4798
  ident: bib0028
  article-title: Document management system using text mining for information acquisition of international construction [J]
  publication-title: KSCE J. Civ. Eng.
– year: 2020
  ident: bib0013
  article-title: Deep learning on graphs: a survey [J]
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 146
  year: 2020
  ident: bib0003
  article-title: Fuzzy logic and fuzzy hybrid techniques for construction engineering and management [J]
  publication-title: J. Constr Eng. Manag.
– volume: 6
  start-page: 503
  year: 2019
  end-page: 516
  ident: bib0027
  article-title: Intelligent construction technology of railway engineering in China [J]
  publication-title: Front. Eng. Manag.
– volume: 12
  start-page: 1063
  year: 2022
  ident: bib0007
  article-title: Development and application of an integrated management system for off-site construction projects [J]
  publication-title: Buildings
– volume: 56
  start-page: 1
  year: 2023
  end-page: 34
  ident: bib0017
  article-title: Survey on evolutionary deep learning: principles, algorithms, applications, and open issues
  publication-title: ACM Comput. Surv.
– start-page: 2022
  year: 2022
  ident: bib0025
  article-title: Digital teaching management system based on deep learning of internet of Things [J]
  publication-title: Mob. Inf. Syst.
– year: 2021
  ident: bib0014
  article-title: Multi-disease prediction based on deep learning: a survey [J]
  publication-title: CMES-Comput. Model. Eng. Sci.
– year: 2022
  ident: bib0010
  article-title: Intelligent Risk Management in Construction Projects: Systematic Literature Review [J]
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: bib0012
  article-title: Machine learning and deep learning [J]
  publication-title: Electron. Mark.
– volume: 11
  start-page: 747
  year: 2020
  end-page: 750
  ident: bib0022
  article-title: Recent advances in deep learning [J]
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 146
  year: 2020
  ident: bib0006
  article-title: Examining the effect of material management issues on the schedule and cost performance of construction projects based on a structural equation model: survey of Indian experiences [J]
  publication-title: J. Constr. Eng. Manag.
– volume: 249
  year: 2024
  ident: bib0016
  article-title: Intelligent decision support systems in construction engineering: an artificial intelligence and machine learning approaches
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 1750
  year: 2019
  end-page: 1776
  ident: bib0002
  article-title: Scientometric analysis of BIM-based research in construction engineering and management [J]
  publication-title: Eng. Constr. Archit. Manag.
– start-page: 2022
  year: 2022
  ident: bib0024
  article-title: Construction of a hybrid teaching model system based on promoting deep learning [J]
  publication-title: Comput. Intell. Neurosci.
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: bib0023
  article-title: Deep learning in agriculture: a survey [J]
  publication-title: Comput. Electron. Agric.
– volume: 122
  year: 2021
  ident: bib0001
  article-title: Roles of artificial intelligence in construction engineering and management: a critical review and future trends [J]
  publication-title: Autom. Constr.
– volume: 146
  issue: 9
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0006
  article-title: Examining the effect of material management issues on the schedule and cost performance of construction projects based on a structural equation model: survey of Indian experiences [J]
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001906
– volume: 147
  issue: 7
  year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0005
  article-title: Visual and virtual production management system for proactive project controls [J]
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0002045
– volume: 122
  year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0001
  article-title: Roles of artificial intelligence in construction engineering and management: a critical review and future trends [J]
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103517
– volume: 146
  issue: 7
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0009
  article-title: Impact of project planning on knowledge integration in construction projects [J]
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001852
– volume: 13
  start-page: 206
  issue: 2
  year: 2019
  ident: 10.1016/j.sasc.2025.200317_bib0020
  article-title: Deep learning for audio signal processing [J]
  publication-title: IEEE J. Sel. Top Signal Process.
  doi: 10.1109/JSTSP.2019.2908700
– volume: 143
  year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0026
  article-title: Safety Management System (SMS) framework development–Mitigating the critical safety factors affecting health and Safety performance in construction projects [J]
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105402
– start-page: 2022
  year: 2022
  ident: 10.1016/j.sasc.2025.200317_bib0025
  article-title: Digital teaching management system based on deep learning of internet of Things [J]
  publication-title: Mob. Inf. Syst.
– year: 2022
  ident: 10.1016/j.sasc.2025.200317_bib0010
– volume: 56
  start-page: 1
  issue: 2
  year: 2023
  ident: 10.1016/j.sasc.2025.200317_bib0017
  article-title: Survey on evolutionary deep learning: principles, algorithms, applications, and open issues
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3603704
– volume: 22
  start-page: 4791
  issue: 12
  year: 2018
  ident: 10.1016/j.sasc.2025.200317_bib0028
  article-title: Document management system using text mining for information acquisition of international construction [J]
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-018-1528-y
– volume: 146
  issue: 7
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0003
  article-title: Fuzzy logic and fuzzy hybrid techniques for construction engineering and management [J]
  publication-title: J. Constr Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001854
– volume: 197
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0008
  article-title: Data-driven safety enhancing strategies for risk networks in construction engineering [J]
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.106806
– year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0014
  article-title: Multi-disease prediction based on deep learning: a survey [J]
  publication-title: CMES-Comput. Model. Eng. Sci.
– volume: 24
  start-page: 3121
  issue: 8
  year: 2023
  ident: 10.1016/j.sasc.2025.200317_bib0018
  article-title: Evolutionary optimization of machine learning algorithm hyperparameters for strength prediction of high-performance concrete
  publication-title: Asian J. Civ. Eng.
  doi: 10.1007/s42107-023-00698-y
– volume: 6
  start-page: 503
  issue: 4
  year: 2019
  ident: 10.1016/j.sasc.2025.200317_bib0027
  article-title: Intelligent construction technology of railway engineering in China [J]
  publication-title: Front. Eng. Manag.
  doi: 10.1007/s42524-019-0073-9
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.sasc.2025.200317_bib0023
  article-title: Deep learning in agriculture: a survey [J]
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– volume: 15
  start-page: 77
  issue: 2
  year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0021
  article-title: Deep learning for the design of photonic structures [J]
  publication-title: Nat Photon.
  doi: 10.1038/s41566-020-0685-y
– volume: 11
  start-page: 747
  issue: 4
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0022
  article-title: Recent advances in deep learning [J]
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01096-5
– volume: 26
  start-page: 1750
  issue: 8
  year: 2019
  ident: 10.1016/j.sasc.2025.200317_bib0002
  article-title: Scientometric analysis of BIM-based research in construction engineering and management [J]
  publication-title: Eng. Constr. Archit. Manag.
  doi: 10.1108/ECAM-08-2018-0350
– volume: 197
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0004
  article-title: Data-driven safety enhancing strategies for risk networks in construction engineering [J]
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.106806
– volume: 452
  start-page: 48
  year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0019
  article-title: A review on the attention mechanism of deep learning [J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 12
  start-page: 1063
  issue: 7
  year: 2022
  ident: 10.1016/j.sasc.2025.200317_bib0007
  article-title: Development and application of an integrated management system for off-site construction projects [J]
  publication-title: Buildings
  doi: 10.3390/buildings12071063
– year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0013
  article-title: Deep learning on graphs: a survey [J]
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 131
  start-page: 251
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0011
  article-title: Deep learning on image denoising: an overview [J]
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.025
– volume: 27
  start-page: 1071
  issue: 4
  year: 2020
  ident: 10.1016/j.sasc.2025.200317_bib0015
  article-title: A survey of deep learning and its applications: a new paradigm to machine learning [J]
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09344-w
– start-page: 2022
  year: 2022
  ident: 10.1016/j.sasc.2025.200317_bib0024
  article-title: Construction of a hybrid teaching model system based on promoting deep learning [J]
  publication-title: Comput. Intell. Neurosci.
– volume: 249
  year: 2024
  ident: 10.1016/j.sasc.2025.200317_bib0016
  article-title: Intelligent decision support systems in construction engineering: an artificial intelligence and machine learning approaches
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123503
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: 10.1016/j.sasc.2025.200317_bib0012
  article-title: Machine learning and deep learning [J]
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
SSID ssj0002872913
Score 2.3105679
Snippet The application of construction project management system is crucial for improving work efficiency and operational convenience. However, in order to further...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 200317
SubjectTerms Construction engineering
Deep learning algorithm
Evolutionary
Management System
Office Automation
Title Application of evolutionary deep learning algorithm in construction engineering management system
URI https://dx.doi.org/10.1016/j.sasc.2025.200317
https://doaj.org/article/d49b217edc704054b9503c1916907298
Volume 7
WOSCitedRecordID wos001523587100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-9419
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872913
  issn: 2772-9419
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-9419
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872913
  issn: 2772-9419
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN6YxoMX38b6yh68GSKwD5ZjNTVebDxo0htZZpdKY2nTNk28-NvdBxROevHCAcgufDMwMzD7fQjd6jyMtSp4QCWHgOZKBJJGcaClIIUERSKinNhEMhqJ8Th97Uh92Z4wTw_sgbtXNM1N2qwVJMbfGM1TFhIwVYYt6-LULfMNk7RTTE3dJyNzLCL1Khnf0LWSK8tZGDPHAuoUytpI5Aj7OwGpE2SeDtF-nR3igb-qI7Sjq2N00Cgv4PpBPEFy0P53xvMC603tQXL5hZXWC1yrQUyw_JzMl-X6Y4bLCsO8JYzFuqUixLNtFwz23M6n6P1p-Pb4HNRiCQEQTtZBTk2gJVpwTk3RZm7epM4mW4pIESZJoQVI8zqRDIgUMhKKcAYiBBZqSHSRhkDOUK-aV_ocYamBKKlMZpUySgpTbgMRvGC5AskpsD66a4DLFp4TI2uaxaaZhTmzMGce5j56sNhuz7R81m6HsXJWWzn7y8p9xBrLZHVq4EO-Gar8ZfKL_5j8Eu3ZIX0TyxXqGTvpa7QLm3W5Wt44xzPbl-_hDwT73pk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+evolutionary+deep+learning+algorithm+in+construction+engineering+management+system&rft.jtitle=Systems+and+soft+computing&rft.au=Yang%2C+Zhe&rft.date=2025-12-01&rft.issn=2772-9419&rft.eissn=2772-9419&rft.volume=7&rft.spage=200317&rft_id=info:doi/10.1016%2Fj.sasc.2025.200317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sasc_2025_200317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-9419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-9419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-9419&client=summon