A Study on Denoising Autoencoder Noise Selection for Improving the Fault Diagnosis Rate of Vibration Time Series Data
This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 15; H. 12; S. 6523 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2025
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!