A Study on Denoising Autoencoder Noise Selection for Improving the Fault Diagnosis Rate of Vibration Time Series Data
This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 15; H. 12; S. 6523 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2025
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such noise does not fully reflect the complex noise patterns observed in real-world industrial environments. Therefore, this study proposes a novel approach that uses high-frequency noise components extracted from actual vibration data as training noise for the DAE. Both Gaussian and high-frequency noise were used to train separate DAE models, and statistical features (mean, RMS, standard deviation, kurtosis, skewness) were extracted from the denoised signals. The fault diagnosis rates were calculated using One-Class Support Vector Machines (OC-SVM) for performance comparison. As a result, the model trained with high-frequency noise achieved a 0.0293 higher average F1-score than the Gaussian-based model. Notably, the fault detection accuracy using the kurtosis feature improved significantly from 26.22% to 99.5%. Furthermore, the proposed method outperformed the conventional denoising technique based on the Wavelet Transform, demonstrating superior noise reduction capability. These findings demonstrate that incorporating real high-frequency components from vibration data into the DAE training process is effective in enhancing both noise removal and fault diagnosis performance. |
|---|---|
| AbstractList | This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such noise does not fully reflect the complex noise patterns observed in real-world industrial environments. Therefore, this study proposes a novel approach that uses high-frequency noise components extracted from actual vibration data as training noise for the DAE. Both Gaussian and high-frequency noise were used to train separate DAE models, and statistical features (mean, RMS, standard deviation, kurtosis, skewness) were extracted from the denoised signals. The fault diagnosis rates were calculated using One-Class Support Vector Machines (OC-SVM) for performance comparison. As a result, the model trained with high-frequency noise achieved a 0.0293 higher average F1-score than the Gaussian-based model. Notably, the fault detection accuracy using the kurtosis feature improved significantly from 26.22% to 99.5%. Furthermore, the proposed method outperformed the conventional denoising technique based on the Wavelet Transform, demonstrating superior noise reduction capability. These findings demonstrate that incorporating real high-frequency components from vibration data into the DAE training process is effective in enhancing both noise removal and fault diagnosis performance. |
| Audience | Academic |
| Author | Hwang, Se-Yun Lee, Jae-chul Lee, Soon-sup Jang, Jun-gyo |
| Author_xml | – sequence: 1 givenname: Jun-gyo surname: Jang fullname: Jang, Jun-gyo – sequence: 2 givenname: Soon-sup surname: Lee fullname: Lee, Soon-sup – sequence: 3 givenname: Se-Yun orcidid: 0000-0002-1715-5864 surname: Hwang fullname: Hwang, Se-Yun – sequence: 4 givenname: Jae-chul orcidid: 0000-0002-1699-7568 surname: Lee fullname: Lee, Jae-chul |
| BookMark | eNpNkc1qGzEUhYeSQtM0q76AoMviVFd_M7M0cdMaQgpN2u1wR7pyZeyRK2kCefvKcQmRFhKHcz5dcd43Z1OcqGk-Ar-Ssudf8HAADcJoId8054K3ZiEVtGev7u-ay5y3vK4eZAf8vJmX7L7M7onFia1oiiGHacOWc4k02egosbuqEbunHdkSqsvHxNb7Q4qPR2f5Q-wG511hq4CbKeaQ2U8sxKJnv8OY8DnzEPZHRAqU2QoLfmjeetxluvx_XjS_br4-XH9f3P74tr5e3i6sNLIsRqVAa3Te-BHQG-V9r0VnjQLgynUolXASlTPGUDd2vbAj5yicNaAEgbxo1ieui7gdDinsMT0NEcPwLMS0GTCVYHc0yJZGJK-V852qL_UC2lYTQO-lH_2R9enEql__O1MuwzbOaarjD1II2bWaQ1tdVyfXBis0TD6WhLZuR_tga2E-VH3ZKa1bAC1r4PMpYFPMOZF_GRP4cOx1eNWr_AfLzpZE |
| Cites_doi | 10.1016/j.ymssp.2006.12.007 10.1109/ICASSP.2019.8683061 10.1109/SAS58821.2023.10254150 10.24963/ijcai.2024/624 10.1038/nature14539 10.1016/j.ymssp.2010.07.017 10.1016/j.ymssp.2015.10.025 10.1021/acscentsci.3c00178 10.3390/e25101467 10.1038/s41598-023-28404-7 10.1023/B:MACH.0000008084.60811.49 10.1016/j.ymssp.2018.02.016 10.1016/j.ipm.2009.03.002 10.1162/089976601750264965 10.1016/j.ymssp.2005.09.012 10.3390/s23125544 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15126523 |
| DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_37ebaef54df8464f921775e119f3fbf1 A845571153 10_3390_app15126523 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-b44155adf6fb1af64ff9528c641104d8a342d3a4d666e8b892cb00a2dc6142e13 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515205500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:43:09 EDT 2025 Mon Jun 30 07:18:07 EDT 2025 Tue Nov 04 18:14:56 EST 2025 Sat Nov 29 07:16:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-b44155adf6fb1af64ff9528c641104d8a342d3a4d666e8b892cb00a2dc6142e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1699-7568 0000-0002-1715-5864 |
| OpenAccessLink | https://www.proquest.com/docview/3223875017?pq-origsite=%requestingapplication% |
| PQID | 3223875017 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_37ebaef54df8464f921775e119f3fbf1 proquest_journals_3223875017 gale_infotracacademiconefile_A845571153 crossref_primary_10_3390_app15126523 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Alvarado (ref_7) 2023; 9 ref_11 Sokolova (ref_24) 2009; 45 ref_10 Liu (ref_16) 2018; 108 Tax (ref_20) 2004; 54 ref_21 Widodo (ref_22) 2007; 21 Jang (ref_23) 2023; 10 Jardine (ref_17) 2006; 20 ref_1 Scholkopf (ref_19) 2001; 13 ref_3 Erhan (ref_14) 2010; 11 ref_2 Vincent (ref_12) 2010; 11 LeCun (ref_13) 2015; 521 ref_9 ref_8 Randall (ref_18) 2011; 25 Jia (ref_15) 2016; 72–73 ref_5 ref_4 ref_6 |
| References_xml | – volume: 21 start-page: 2560 year: 2007 ident: ref_22 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.12.007 – ident: ref_9 doi: 10.1109/ICASSP.2019.8683061 – ident: ref_5 – ident: ref_3 – ident: ref_1 doi: 10.1109/SAS58821.2023.10254150 – ident: ref_4 doi: 10.24963/ijcai.2024/624 – ident: ref_10 – ident: ref_11 – volume: 521 start-page: 436 year: 2015 ident: ref_13 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 25 start-page: 485 year: 2011 ident: ref_18 article-title: Rolling element bearing diagnostics—A tutorial publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.07.017 – volume: 10 start-page: 204 year: 2023 ident: ref_23 article-title: Vibration data feature extraction and deep learning-based preprocessing method for highly accurate motor fault diagnosis publication-title: J. Comput. Des. Eng. – volume: 72–73 start-page: 303 year: 2016 ident: ref_15 article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 9 start-page: 1200 year: 2023 ident: ref_7 article-title: Denoising Autoencoder Trained on Simulation-Derived Structures for Noise Reduction in Chromatin Scanning Transmission Electron Microscopy publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.3c00178 – ident: ref_2 doi: 10.3390/e25101467 – ident: ref_8 doi: 10.1038/s41598-023-28404-7 – volume: 11 start-page: 625 year: 2010 ident: ref_14 article-title: Why does unsupervised pre-training help deep learning publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 45 year: 2004 ident: ref_20 article-title: Support vector data description publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000008084.60811.49 – volume: 11 start-page: 3371 year: 2010 ident: ref_12 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 108 start-page: 33 year: 2018 ident: ref_16 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016 – ident: ref_21 – volume: 45 start-page: 427 year: 2009 ident: ref_24 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – volume: 13 start-page: 1443 year: 2001 ident: ref_19 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 20 start-page: 1483 year: 2006 ident: ref_17 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.09.012 – ident: ref_6 doi: 10.3390/s23125544 |
| SSID | ssj0000913810 |
| Score | 2.3270888 |
| Snippet | This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 6523 |
| SubjectTerms | Accuracy Deep learning Denoising Autoencoder Fault diagnosis Gravitational waves Methods Microscopy Noise control noise filtering One-Class Support Vector Machine Signal processing Time series vibration signal Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA-L7GE9iJ84Oso7COqhaJu0aY-js8MelmHxC28hnzAgrcx0FvzvfS-tMh7Ei9eQkvC-f2nye4ydBLQDY12ZOJ7miQjWJVr7IrHcSRvQ_YSOPLN_5XRaPj5W_1ZafdGdsI4euBPcBZfeaB9y4QKmShEqrKFl7tO0CjyYEIHPpaxWwFSMwVVK1FXdgzyOuJ7-B1NyK_KMf0hBkan_s3gck8xkk2301SGMul1tsR--3mbrK5yB22yr98YFnPWU0ec7bDkCuhD4Ak0NY183MzoBgNGybYin0vk5THHMw23seoOqAKxV4f1AAbAKhIlePrUw7q7ezRZwg1UoNAEeCFDHb-i5CNBxGi4-1q3eZfeT33fXf5K-oQKKvuBtYgg85dqFIphUB5RmqPKstIXAIkC4UnOROa6FQ0zjS1NWmUWv1JmzmMQzn_I9tlY3td9nQE2rpbQITgTOxzBgCmOcvzSGGPsyOWAnbzJWzx1vhkK8QapQK6oYsCuS__sUIruOA2gCqjcB9ZUJDNgpaU-RS7ZzbXX_sgB3SuRWalSKPJdY-uJywzcFq95XFwpDGkfUhqHp4Dt2c8h-ZdQjOJ7UDNlaO1_6I_bT_m9ni_lxNNNXNZ3tVg priority: 102 providerName: Directory of Open Access Journals |
| Title | A Study on Denoising Autoencoder Noise Selection for Improving the Fault Diagnosis Rate of Vibration Time Series Data |
| URI | https://www.proquest.com/docview/3223875017 https://doaj.org/article/37ebaef54df8464f921775e119f3fbf1 |
| Volume | 15 |
| WOSCitedRecordID | wos001515205500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPhRaqbluqOVQCDhFN7Dz2VG3ZrkCC1ao8VE6Wn2gllLRJthL_nhmvdymH9sIxjiNH-mbsb8b2N4ydeLQDbWyVWJ7mifDGJkq5IjHclsaj-wkVdGY_ldNpdXU1nMWEWxePVa7mxDBR28ZQjvwdGh5Hbo0GdHZ9k1DVKNpdjSU0HrNNUipDO988v5jOLtdZFlK9rNLT5cU8jvE97QvTIlfkGf9nKQqK_ffNy2GxmTz73998zrYjzYTR0i522CNX77KtO-KDu2wnunUHb6L29NsXbDECOln4G5oaxq5u5pRKgNGib0jw0roWptjm4Eson4OYApJeWGcmAOkkTNTiVw_j5Rm-eQeXSGeh8fCdIvPwDd07AcrL4eBj1auX7Nvk4uv7D0mszIAYFrxPNEVhubK-8DpVvhDeD_OsMoVANiFspbjILFfCYnDkKl0NM4PurTJrkA1kLuV7bKNuarfPgKpfl6XBKEdgf5xPdKG1dadak_RfVg7YyQokeb0U4JAYuBCW8g6WA3ZOAK67kGp2aGjanzI6oeSl08r5XFiPtEv4IcZjZe7Qcjz32qcD9prgl-TbfauMilcU8E9JJUuOKpHnJXJoHO5oBb-MTt_Jv9gfPPz6kD3NqIxwSOYcsY2-XbhX7Im57eddexxt-DikB_Bp9vHz7McfxVf-tg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKwAFpABArMoghYWMSe8WuBUCBEjZpGERTUrsw8USRkF9sB9af4Ru71I5QF7Lpga4891vjMfc3MOQD7DnGgtEk8w_3QE04bT0obeZqbWDucfkI2PLPzeLFITk7S5Rb87M_C0LbK3iY2htoUmmrkLxF4HGNrBNDrs28eqUbR6movodHC4tCe_8CUrXo1m-D_fRoE03fHbw-8TlUA-4947SnKIEJpXOSUL10knEvDINGRQE8oTCK5CAyXwmBgbxOVpAGJ2MvAaPRkgfU5vvcKbAsC-wC2l7Oj5emmqkMsm4k_ag8Ccp6OaB2anGoUBvwP19coBPzNDzTObXrrfxuW23CzC6PZuMX9DmzZfBduXCBX3IWdzmxV7HnHrf3iDqzHjHZOnrMiZxObFysqlbDxui6I0NPYki3wmmUfGnkgxCzDoJ5tKi8Mw2U2leuvNZu0exRXFXuP4TorHPtElYfmGTpXw6juiJ1PZC3vwsdLGYx7MMiL3N4HRurecawxixPYHu2lipQydqQUURsG8RD2e1BkZy3BSIaJGWEnu4CdIbwhwGyaECt4c6Eov2Sdkcl4bJW0LhTGYVgpXIr5Zhxa308dd8r5Q3hGcMvIdtWl1LI7goFfSixg2TgRYRhjjoDd7fVwyzqjVmW_sfbg37efwLWD46N5Np8tDh_C9YAkk5vC1R4M6nJtH8FV_b1eVeXjbv4w-HzZ2PwFzL1Ytw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlALRQsVDAhyLgELGxndcBoYWwYtWyWvFSOQU7ttFKKClJFtS_xq9jJo-lHODWA1fHiS3n87w8_gbg0CEOdG5izwg_8KTLjaeUDb1cmCh3uP2kanlmj6PFIj45SZZb8HO4C0NplYNMbAW1KXOKkT9F4Am0rYnu2fVpEct09vz0m0cVpOikdSin0UHkyJ79QPetfjZP8V8_5Hz26v3L115fYQDnEorG0-RNBMq40GlfuVA6lwQ8zkOJWlGaWAnJjVDSoJFvYx0nnAraK25y1Grc-gK_ewm20SSXfATby_mb5adNhIcYN2N_0l0KFCKZ0Jk0Kdgw4OIPNdhWC_ibTmgV3ez6_7xEN-Bab16zabcfdmHLFntw9Rzp4h7s9uKsZo97zu0nN2E9ZZRRecbKgqW2KFcUQmHTdVMS0aexFVtgm2Xv2rJBiGWGxj7bRGQYmtFsptZfG5Z2uYurmr1FM56Vjn2kiET7Dt23YRSPxMFT1ahb8OFCFmMfRkVZ2NvAqOp3FOXo3Unsj3JUh1obO9GaKA95NIbDASDZaUc8kqHDRjjKzuFoDC8IPJsuxBbeNpTVl6wXPpmIrFbWBdI4NDelS9APjQLr-4kTTjt_DI8IehnJtKZSueqvZuBMiR0sm8YyCCL0HXC4gwF6WS_s6uw37u78-_EDuIKAzI7ni6O7sMOpknIbzzqAUVOt7T24nH9vVnV1v99KDD5fNDR_AXtmYXc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+Denoising+Autoencoder+Noise+Selection+for+Improving+the+Fault+Diagnosis+Rate+of+Vibration+Time+Series+Data&rft.jtitle=Applied+sciences&rft.au=Jang%2C+Jun-gyo&rft.au=Lee%2C+Soon-sup&rft.au=Hwang%2C+Se-Yun&rft.au=Lee%2C+Jae-chul&rft.date=2025-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=12&rft.spage=6523&rft_id=info:doi/10.3390%2Fapp15126523&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15126523 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |