A Study on Denoising Autoencoder Noise Selection for Improving the Fault Diagnosis Rate of Vibration Time Series Data

This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 15; H. 12; S. 6523
Hauptverfasser: Jang, Jun-gyo, Lee, Soon-sup, Hwang, Se-Yun, Lee, Jae-chul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2025
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such noise does not fully reflect the complex noise patterns observed in real-world industrial environments. Therefore, this study proposes a novel approach that uses high-frequency noise components extracted from actual vibration data as training noise for the DAE. Both Gaussian and high-frequency noise were used to train separate DAE models, and statistical features (mean, RMS, standard deviation, kurtosis, skewness) were extracted from the denoised signals. The fault diagnosis rates were calculated using One-Class Support Vector Machines (OC-SVM) for performance comparison. As a result, the model trained with high-frequency noise achieved a 0.0293 higher average F1-score than the Gaussian-based model. Notably, the fault detection accuracy using the kurtosis feature improved significantly from 26.22% to 99.5%. Furthermore, the proposed method outperformed the conventional denoising technique based on the Wavelet Transform, demonstrating superior noise reduction capability. These findings demonstrate that incorporating real high-frequency components from vibration data into the DAE training process is effective in enhancing both noise removal and fault diagnosis performance.
AbstractList This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim of improving noise removal for vibration time series data. While conventional studies typically train DAEs using Gaussian random noise, such noise does not fully reflect the complex noise patterns observed in real-world industrial environments. Therefore, this study proposes a novel approach that uses high-frequency noise components extracted from actual vibration data as training noise for the DAE. Both Gaussian and high-frequency noise were used to train separate DAE models, and statistical features (mean, RMS, standard deviation, kurtosis, skewness) were extracted from the denoised signals. The fault diagnosis rates were calculated using One-Class Support Vector Machines (OC-SVM) for performance comparison. As a result, the model trained with high-frequency noise achieved a 0.0293 higher average F1-score than the Gaussian-based model. Notably, the fault detection accuracy using the kurtosis feature improved significantly from 26.22% to 99.5%. Furthermore, the proposed method outperformed the conventional denoising technique based on the Wavelet Transform, demonstrating superior noise reduction capability. These findings demonstrate that incorporating real high-frequency components from vibration data into the DAE training process is effective in enhancing both noise removal and fault diagnosis performance.
Audience Academic
Author Hwang, Se-Yun
Lee, Jae-chul
Lee, Soon-sup
Jang, Jun-gyo
Author_xml – sequence: 1
  givenname: Jun-gyo
  surname: Jang
  fullname: Jang, Jun-gyo
– sequence: 2
  givenname: Soon-sup
  surname: Lee
  fullname: Lee, Soon-sup
– sequence: 3
  givenname: Se-Yun
  orcidid: 0000-0002-1715-5864
  surname: Hwang
  fullname: Hwang, Se-Yun
– sequence: 4
  givenname: Jae-chul
  orcidid: 0000-0002-1699-7568
  surname: Lee
  fullname: Lee, Jae-chul
BookMark eNpNkc1qGzEUhYeSQtM0q76AoMviVFd_M7M0cdMaQgpN2u1wR7pyZeyRK2kCefvKcQmRFhKHcz5dcd43Z1OcqGk-Ar-Ssudf8HAADcJoId8054K3ZiEVtGev7u-ay5y3vK4eZAf8vJmX7L7M7onFia1oiiGHacOWc4k02egosbuqEbunHdkSqsvHxNb7Q4qPR2f5Q-wG511hq4CbKeaQ2U8sxKJnv8OY8DnzEPZHRAqU2QoLfmjeetxluvx_XjS_br4-XH9f3P74tr5e3i6sNLIsRqVAa3Te-BHQG-V9r0VnjQLgynUolXASlTPGUDd2vbAj5yicNaAEgbxo1ieui7gdDinsMT0NEcPwLMS0GTCVYHc0yJZGJK-V852qL_UC2lYTQO-lH_2R9enEql__O1MuwzbOaarjD1II2bWaQ1tdVyfXBis0TD6WhLZuR_tga2E-VH3ZKa1bAC1r4PMpYFPMOZF_GRP4cOx1eNWr_AfLzpZE
Cites_doi 10.1016/j.ymssp.2006.12.007
10.1109/ICASSP.2019.8683061
10.1109/SAS58821.2023.10254150
10.24963/ijcai.2024/624
10.1038/nature14539
10.1016/j.ymssp.2010.07.017
10.1016/j.ymssp.2015.10.025
10.1021/acscentsci.3c00178
10.3390/e25101467
10.1038/s41598-023-28404-7
10.1023/B:MACH.0000008084.60811.49
10.1016/j.ymssp.2018.02.016
10.1016/j.ipm.2009.03.002
10.1162/089976601750264965
10.1016/j.ymssp.2005.09.012
10.3390/s23125544
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15126523
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_37ebaef54df8464f921775e119f3fbf1
A845571153
10_3390_app15126523
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-b44155adf6fb1af64ff9528c641104d8a342d3a4d666e8b892cb00a2dc6142e13
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515205500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:43:09 EDT 2025
Mon Jun 30 07:18:07 EDT 2025
Tue Nov 04 18:14:56 EST 2025
Sat Nov 29 07:16:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b44155adf6fb1af64ff9528c641104d8a342d3a4d666e8b892cb00a2dc6142e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1699-7568
0000-0002-1715-5864
OpenAccessLink https://www.proquest.com/docview/3223875017?pq-origsite=%requestingapplication%
PQID 3223875017
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_37ebaef54df8464f921775e119f3fbf1
proquest_journals_3223875017
gale_infotracacademiconefile_A845571153
crossref_primary_10_3390_app15126523
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Alvarado (ref_7) 2023; 9
ref_11
Sokolova (ref_24) 2009; 45
ref_10
Liu (ref_16) 2018; 108
Tax (ref_20) 2004; 54
ref_21
Widodo (ref_22) 2007; 21
Jang (ref_23) 2023; 10
Jardine (ref_17) 2006; 20
ref_1
Scholkopf (ref_19) 2001; 13
ref_3
Erhan (ref_14) 2010; 11
ref_2
Vincent (ref_12) 2010; 11
LeCun (ref_13) 2015; 521
ref_9
ref_8
Randall (ref_18) 2011; 25
Jia (ref_15) 2016; 72–73
ref_5
ref_4
ref_6
References_xml – volume: 21
  start-page: 2560
  year: 2007
  ident: ref_22
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.007
– ident: ref_9
  doi: 10.1109/ICASSP.2019.8683061
– ident: ref_5
– ident: ref_3
– ident: ref_1
  doi: 10.1109/SAS58821.2023.10254150
– ident: ref_4
  doi: 10.24963/ijcai.2024/624
– ident: ref_10
– ident: ref_11
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 25
  start-page: 485
  year: 2011
  ident: ref_18
  article-title: Rolling element bearing diagnostics—A tutorial
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.07.017
– volume: 10
  start-page: 204
  year: 2023
  ident: ref_23
  article-title: Vibration data feature extraction and deep learning-based preprocessing method for highly accurate motor fault diagnosis
  publication-title: J. Comput. Des. Eng.
– volume: 72–73
  start-page: 303
  year: 2016
  ident: ref_15
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 9
  start-page: 1200
  year: 2023
  ident: ref_7
  article-title: Denoising Autoencoder Trained on Simulation-Derived Structures for Noise Reduction in Chromatin Scanning Transmission Electron Microscopy
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.3c00178
– ident: ref_2
  doi: 10.3390/e25101467
– ident: ref_8
  doi: 10.1038/s41598-023-28404-7
– volume: 11
  start-page: 625
  year: 2010
  ident: ref_14
  article-title: Why does unsupervised pre-training help deep learning
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 45
  year: 2004
  ident: ref_20
  article-title: Support vector data description
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000008084.60811.49
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_12
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 108
  start-page: 33
  year: 2018
  ident: ref_16
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– ident: ref_21
– volume: 45
  start-page: 427
  year: 2009
  ident: ref_24
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 13
  start-page: 1443
  year: 2001
  ident: ref_19
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 20
  start-page: 1483
  year: 2006
  ident: ref_17
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.012
– ident: ref_6
  doi: 10.3390/s23125544
SSID ssj0000913810
Score 2.3270888
Snippet This study analyzes the impact of different types of random noise applied in Denoising Autoencoder (DAE) training on fault diagnosis performance, with the aim...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6523
SubjectTerms Accuracy
Deep learning
Denoising Autoencoder
Fault diagnosis
Gravitational waves
Methods
Microscopy
Noise control
noise filtering
One-Class Support Vector Machine
Signal processing
Time series
vibration signal
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA-L7GE9iJ84Oso7COqhaJu0aY-js8MelmHxC28hnzAgrcx0FvzvfS-tMh7Ei9eQkvC-f2nye4ydBLQDY12ZOJ7miQjWJVr7IrHcSRvQ_YSOPLN_5XRaPj5W_1ZafdGdsI4euBPcBZfeaB9y4QKmShEqrKFl7tO0CjyYEIHPpaxWwFSMwVVK1FXdgzyOuJ7-B1NyK_KMf0hBkan_s3gck8xkk2301SGMul1tsR--3mbrK5yB22yr98YFnPWU0ec7bDkCuhD4Ak0NY183MzoBgNGybYin0vk5THHMw23seoOqAKxV4f1AAbAKhIlePrUw7q7ezRZwg1UoNAEeCFDHb-i5CNBxGi4-1q3eZfeT33fXf5K-oQKKvuBtYgg85dqFIphUB5RmqPKstIXAIkC4UnOROa6FQ0zjS1NWmUWv1JmzmMQzn_I9tlY3td9nQE2rpbQITgTOxzBgCmOcvzSGGPsyOWAnbzJWzx1vhkK8QapQK6oYsCuS__sUIruOA2gCqjcB9ZUJDNgpaU-RS7ZzbXX_sgB3SuRWalSKPJdY-uJywzcFq95XFwpDGkfUhqHp4Dt2c8h-ZdQjOJ7UDNlaO1_6I_bT_m9ni_lxNNNXNZ3tVg
  priority: 102
  providerName: Directory of Open Access Journals
Title A Study on Denoising Autoencoder Noise Selection for Improving the Fault Diagnosis Rate of Vibration Time Series Data
URI https://www.proquest.com/docview/3223875017
https://doaj.org/article/37ebaef54df8464f921775e119f3fbf1
Volume 15
WOSCitedRecordID wos001515205500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPhRaqbluqOVQCDhFN7Dz2VG3ZrkCC1ao8VE6Wn2gllLRJthL_nhmvdymH9sIxjiNH-mbsb8b2N4ydeLQDbWyVWJ7mifDGJkq5IjHclsaj-wkVdGY_ldNpdXU1nMWEWxePVa7mxDBR28ZQjvwdGh5Hbo0GdHZ9k1DVKNpdjSU0HrNNUipDO988v5jOLtdZFlK9rNLT5cU8jvE97QvTIlfkGf9nKQqK_ffNy2GxmTz73998zrYjzYTR0i522CNX77KtO-KDu2wnunUHb6L29NsXbDECOln4G5oaxq5u5pRKgNGib0jw0roWptjm4Eson4OYApJeWGcmAOkkTNTiVw_j5Rm-eQeXSGeh8fCdIvPwDd07AcrL4eBj1auX7Nvk4uv7D0mszIAYFrxPNEVhubK-8DpVvhDeD_OsMoVANiFspbjILFfCYnDkKl0NM4PurTJrkA1kLuV7bKNuarfPgKpfl6XBKEdgf5xPdKG1dadak_RfVg7YyQokeb0U4JAYuBCW8g6WA3ZOAK67kGp2aGjanzI6oeSl08r5XFiPtEv4IcZjZe7Qcjz32qcD9prgl-TbfauMilcU8E9JJUuOKpHnJXJoHO5oBb-MTt_Jv9gfPPz6kD3NqIxwSOYcsY2-XbhX7Im57eddexxt-DikB_Bp9vHz7McfxVf-tg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKwAFpABArMoghYWMSe8WuBUCBEjZpGERTUrsw8USRkF9sB9af4Ru71I5QF7Lpga4891vjMfc3MOQD7DnGgtEk8w_3QE04bT0obeZqbWDucfkI2PLPzeLFITk7S5Rb87M_C0LbK3iY2htoUmmrkLxF4HGNrBNDrs28eqUbR6movodHC4tCe_8CUrXo1m-D_fRoE03fHbw-8TlUA-4947SnKIEJpXOSUL10knEvDINGRQE8oTCK5CAyXwmBgbxOVpAGJ2MvAaPRkgfU5vvcKbAsC-wC2l7Oj5emmqkMsm4k_ag8Ccp6OaB2anGoUBvwP19coBPzNDzTObXrrfxuW23CzC6PZuMX9DmzZfBduXCBX3IWdzmxV7HnHrf3iDqzHjHZOnrMiZxObFysqlbDxui6I0NPYki3wmmUfGnkgxCzDoJ5tKi8Mw2U2leuvNZu0exRXFXuP4TorHPtElYfmGTpXw6juiJ1PZC3vwsdLGYx7MMiL3N4HRurecawxixPYHu2lipQydqQUURsG8RD2e1BkZy3BSIaJGWEnu4CdIbwhwGyaECt4c6Eov2Sdkcl4bJW0LhTGYVgpXIr5Zhxa308dd8r5Q3hGcMvIdtWl1LI7goFfSixg2TgRYRhjjoDd7fVwyzqjVmW_sfbg37efwLWD46N5Np8tDh_C9YAkk5vC1R4M6nJtH8FV_b1eVeXjbv4w-HzZ2PwFzL1Ytw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlALRQsVDAhyLgELGxndcBoYWwYtWyWvFSOQU7ttFKKClJFtS_xq9jJo-lHODWA1fHiS3n87w8_gbg0CEOdG5izwg_8KTLjaeUDb1cmCh3uP2kanlmj6PFIj45SZZb8HO4C0NplYNMbAW1KXOKkT9F4Am0rYnu2fVpEct09vz0m0cVpOikdSin0UHkyJ79QPetfjZP8V8_5Hz26v3L115fYQDnEorG0-RNBMq40GlfuVA6lwQ8zkOJWlGaWAnJjVDSoJFvYx0nnAraK25y1Grc-gK_ewm20SSXfATby_mb5adNhIcYN2N_0l0KFCKZ0Jk0Kdgw4OIPNdhWC_ibTmgV3ez6_7xEN-Bab16zabcfdmHLFntw9Rzp4h7s9uKsZo97zu0nN2E9ZZRRecbKgqW2KFcUQmHTdVMS0aexFVtgm2Xv2rJBiGWGxj7bRGQYmtFsptZfG5Z2uYurmr1FM56Vjn2kiET7Dt23YRSPxMFT1ahb8OFCFmMfRkVZ2NvAqOp3FOXo3Unsj3JUh1obO9GaKA95NIbDASDZaUc8kqHDRjjKzuFoDC8IPJsuxBbeNpTVl6wXPpmIrFbWBdI4NDelS9APjQLr-4kTTjt_DI8IehnJtKZSueqvZuBMiR0sm8YyCCL0HXC4gwF6WS_s6uw37u78-_EDuIKAzI7ni6O7sMOpknIbzzqAUVOt7T24nH9vVnV1v99KDD5fNDR_AXtmYXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+Denoising+Autoencoder+Noise+Selection+for+Improving+the+Fault+Diagnosis+Rate+of+Vibration+Time+Series+Data&rft.jtitle=Applied+sciences&rft.au=Jang%2C+Jun-gyo&rft.au=Lee%2C+Soon-sup&rft.au=Hwang%2C+Se-Yun&rft.au=Lee%2C+Jae-chul&rft.date=2025-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=12&rft.spage=6523&rft_id=info:doi/10.3390%2Fapp15126523&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15126523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon