Alternatives to the EM algorithm for ML estimation of location, scatter matrix, and degree of freedom of the Student t distribution

In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν , the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 87; H. 1; S. 77 - 118
Hauptverfasser: Hasannasab, Marzieh, Hertrich, Johannes, Laus, Friederike, Steidl, Gabriele
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2021
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν , the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of the corresponding probability density function and was rarely considered in detail in the literature so far. We prove that under certain assumptions a minimizer of the negative log-likelihood function exists, where we have to take special care of the case ν → ∞ , for which the Student t distribution approaches the Gaussian distribution. As alternatives to the classical EM algorithm we propose three other algorithms which cannot be interpreted as EM algorithm. For fixed ν , the first algorithm is an accelerated EM algorithm known from the literature. However, since we do not fix ν , we cannot apply standard convergence results for the EM algorithm. The other two algorithms differ from this algorithm in the iteration step for ν . We show how the objective function behaves for the different updates of ν and prove for all three algorithms that it decreases in each iteration step. We compare the algorithms as well as some accelerated versions by numerical simulation and apply one of them for estimating the degree of freedom parameter in images corrupted by Student t noise.
AbstractList In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν, the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of the corresponding probability density function and was rarely considered in detail in the literature so far. We prove that under certain assumptions a minimizer of the negative log-likelihood function exists, where we have to take special care of the case ν→∞, for which the Student t distribution approaches the Gaussian distribution. As alternatives to the classical EM algorithm we propose three other algorithms which cannot be interpreted as EM algorithm. For fixed ν, the first algorithm is an accelerated EM algorithm known from the literature. However, since we do not fix ν, we cannot apply standard convergence results for the EM algorithm. The other two algorithms differ from this algorithm in the iteration step for ν. We show how the objective function behaves for the different updates of ν and prove for all three algorithms that it decreases in each iteration step. We compare the algorithms as well as some accelerated versions by numerical simulation and apply one of them for estimating the degree of freedom parameter in images corrupted by Student t noise.
In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν , the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of the corresponding probability density function and was rarely considered in detail in the literature so far. We prove that under certain assumptions a minimizer of the negative log-likelihood function exists, where we have to take special care of the case ν → ∞ , for which the Student t distribution approaches the Gaussian distribution. As alternatives to the classical EM algorithm we propose three other algorithms which cannot be interpreted as EM algorithm. For fixed ν , the first algorithm is an accelerated EM algorithm known from the literature. However, since we do not fix ν , we cannot apply standard convergence results for the EM algorithm. The other two algorithms differ from this algorithm in the iteration step for ν . We show how the objective function behaves for the different updates of ν and prove for all three algorithms that it decreases in each iteration step. We compare the algorithms as well as some accelerated versions by numerical simulation and apply one of them for estimating the degree of freedom parameter in images corrupted by Student t noise.
In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν , the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of the corresponding probability density function and was rarely considered in detail in the literature so far. We prove that under certain assumptions a minimizer of the negative log-likelihood function exists, where we have to take special care of the case $\nu \rightarrow \infty $ ν → ∞ , for which the Student t distribution approaches the Gaussian distribution. As alternatives to the classical EM algorithm we propose three other algorithms which cannot be interpreted as EM algorithm. For fixed ν , the first algorithm is an accelerated EM algorithm known from the literature. However, since we do not fix ν , we cannot apply standard convergence results for the EM algorithm. The other two algorithms differ from this algorithm in the iteration step for ν . We show how the objective function behaves for the different updates of ν and prove for all three algorithms that it decreases in each iteration step. We compare the algorithms as well as some accelerated versions by numerical simulation and apply one of them for estimating the degree of freedom parameter in images corrupted by Student t noise.
Author Laus, Friederike
Hasannasab, Marzieh
Steidl, Gabriele
Hertrich, Johannes
Author_xml – sequence: 1
  givenname: Marzieh
  orcidid: 0000-0002-3975-5545
  surname: Hasannasab
  fullname: Hasannasab, Marzieh
  email: hasannas@math.tu-berlin.de
  organization: Institute of Mathematics, Technische Universität Berlin
– sequence: 2
  givenname: Johannes
  surname: Hertrich
  fullname: Hertrich, Johannes
  organization: Institute of Mathematics, Technische Universität Berlin
– sequence: 3
  givenname: Friederike
  surname: Laus
  fullname: Laus, Friederike
  organization: Technische Universität Kaiserslautern
– sequence: 4
  givenname: Gabriele
  surname: Steidl
  fullname: Steidl, Gabriele
  organization: Institute of Mathematics, Technische Universität Berlin
BookMark eNp9kM9LwzAcxYNMcJv-A54CXlf9pmmb5DjG_AEbHtRzaNN06-iamWROz_7jpqsgeNjp-yDv88h7IzRoTasRuiZwSwDYnSMEWBpBDBGASEV0OENDkrI4EnGWDoIGwiJCBb9AI-c2AAGL2RB9TxuvbZv7-kM77A32a43nS5w3K2Nrv97iyli8XGDtfL0NNtNiU-HGqKOeYBdESMDhzdafE5y3JS71ymrd-apwS7PtZBf84velbj32uKxd8Bf7LuQSnVd54_TV7x2jt_v56-wxWjw_PM2mi0jRjPqoSGiVKSg4VVnBIc_KkgqdZEBK0FQTzoMQSiQsZSxmhKdEpTlNYqEyUMDoGN30uTtr3vehkNyYfejeOBkLwjMCCUuCi_cuZY1zVldS1f5Y1tu8biQB2U0u-8llmFweJ5eHgMb_0J0No9mv0xDtIRfM7Urbv1-doH4A5WCW3Q
CitedBy_id crossref_primary_10_1007_s11222_023_10296_2
crossref_primary_10_1049_rsn2_12400
crossref_primary_10_1080_03610918_2025_2450706
crossref_primary_10_3934_ipi_2021053
crossref_primary_10_1007_s43670_022_00021_x
crossref_primary_10_1007_s10915_021_01461_8
crossref_primary_10_6339_22_JDS1051
crossref_primary_10_1002_gamm_202470002
crossref_primary_10_1088_1681_7575_ad7606
crossref_primary_10_1109_TCI_2022_3199600
crossref_primary_10_1016_j_softx_2025_102132
crossref_primary_10_1080_00949655_2022_2124992
crossref_primary_10_1109_JSEN_2023_3299076
Cites_doi 10.1145/321296.321305
10.1093/biomet/81.4.633
10.1007/s10851-018-0845-6
10.1371/journal.pone.0091381
10.1007/BFb0033290
10.1115/1.3625776
10.3390/s18041175
10.1137/19M1242203
10.1093/biomet/33.3.239
10.1080/03610919408813180
10.1007/s10851-017-0759-8
10.1007/s10851-018-0816-y
10.1080/10618600.2019.1594835
10.1137/15M1012682
10.1137/120874989
10.1137/140997816
10.1109/ICIP.2007.4378944
10.1016/j.imavis.2008.11.013
10.1016/j.amc.2018.08.014
10.1007/s10915-017-0460-5
10.1111/1467-9574.00211
10.2307/2332226
10.1111/1467-9868.00082
10.1023/A:1008981510081
10.1002/nla.617
10.1109/TMI.2011.2165342
ContentType Journal Article
Copyright The Author(s) 2020. corrected publication 2021
The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020. corrected publication 2021
– notice: The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-020-00959-w
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 118
ExternalDocumentID 10_1007_s11075_020_00959_w
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: STE 571/16-1
  funderid: https://doi.org/10.13039/501100001659
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-b43f6c0b83c6b80a6dd39e4601d0e3e1881d09c947577271851c5a3429c60c073
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Thu Nov 20 00:21:25 EST 2025
Tue Nov 18 22:43:05 EST 2025
Sat Nov 29 01:34:53 EST 2025
Fri Feb 21 02:48:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cauchy noise
Nonlocal myriad filters
Student
distribution
ML estimators
Accelerated EM Algorithm
Image denoising
Robust denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b43f6c0b83c6b80a6dd39e4601d0e3e1881d09c947577271851c5a3429c60c073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3975-5545
OpenAccessLink https://link.springer.com/10.1007/s11075-020-00959-w
PQID 2918610474
PQPubID 2043837
PageCount 42
ParticipantIDs proquest_journals_2918610474
crossref_citationtrail_10_1007_s11075_020_00959_w
crossref_primary_10_1007_s11075_020_00959_w
springer_journals_10_1007_s11075_020_00959_w
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiuCRubinDBML estimation of the t distribution using EM and its extensions, ECM and ECMEStat. Sin.199551193913292870824.62047
KendallMGA new measure of rank correlationBiometrika1938301/2819310.2307/2332226
MengX-LVan DykDThe EM algorithm - an old folk-song sung to a fast new tuneJ. Royal Statis. Soc. :, Series B (Statis. Methodol.)1997593511567145202510.1111/1467-9868.00082
VaradhanRRolandCSimple and globally convergent methods for accelerating the convergence of any EM algorithm. ScandinavianJ. Statis. Theory Appli20083523353531164.65006
McLachlan, G., Krishnan, T.: The EM algorithm and extensions. John wiley and sons inc (1997)
Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 239–251 (1945)
PetersenKBPedersenMSThe Matrix Cookbook2008Lecture NotesTechnical University of Denmark
LangeKLLittleRJTaylorJMRobust statistical modeling using the t distributionJ. Am. Stat. Assoc.1989844088818961134486
PeelDMcLachlanGJRobust mixture modelling using the t distributionStat. Comput.200010433934810.1023/A:1008981510081
GerogiannisDNikouCLikasAThe mixtures of Student’s t-distributions as a robust framework for rigid registrationImage Vis. Comput.20092791285129410.1016/j.imavis.2008.11.013
DingMHuangTWangSMeiJZhaoXTotal variation with overlapping group sparsity for deblurring images under Cauchy noiseAppl. Math. Comput.201934112814738617441428.94021
LebrunMBuadesAMorelJ-MA nonlocal Bayesian image denoising algorithmSIAM J. Imag. Sci.20136316651688309703110.1137/120874989
NguyenTMWuQJRobust Student’s-t mixture model with spatial constraints and its application in medical image segmentationIEEE Trans. Med. Imaging201231110311610.1109/TMI.2011.2165342
LausFSteidlGMultivariate myriad filters based on parameter estimation of student-t distributionsSIAM J Imaging Sci201912418641904402981110.1137/19M1242203
Van DykDAConstruction, Implementation, and Theory of Algorithms Based on Data Augmentation and Model Reduction1995PhD ThesisThe University of Chicago
SutourCDeledalleC-AAujolJ-FEstimation of the noise level function based on a nonparametric detection of homogeneous image regionsSIAM J. Imag. Sci.20158426222661342406710.1137/15M1012682
LausFStatistical Analysis and Optimal Transport for Euclidean and Manifold-Valued Data2020TU KaiserslauternPhD Thesis1433.62008
Byrne, C.L.: The EM algorithm: theory, applications and related methods. Lecture notes university of massachusetts (2017)
LiuCRubinDBThe ECME algorithm: a simple extension of EM and ECM with faster monotone convergenceBiometrika1994814633648132641410.1093/biomet/81.4.633
SciacchitanoFDongYZengTVariational approach for restoring blurred images with Cauchy noiseSIAM J. Imag. Sci.20158318941922339742710.1137/140997816
YangZYangZGuiGA convex constraint variational method for restoring blurred images in the presence of alpha-stable noisesSensors2018184117510.3390/s18041175
MeiJ-JDongYHuangT-ZYinWCauchy noise removal by nonconvex ADMM with convergence guaranteesJ. Sci. Comput.2018742743766376127510.1007/s10915-017-0460-5
LanzaAMorigiSSciacchitanoFSgallariFWhiteness constraints in a unified variational framework for image restorationJ. Mathe. Imag. Vision201860915031526386474510.1007/s10851-018-0845-6
McLachlan, G., Peel, D.: Robust cluster analysis via mixtures of multivariate t-distributions. volume 1451 of Lecture Notes in Computer Science. Springer, New York (1998)
AntoniadisALeporiniDPesquetJ-CWavelet thresholding for some classes of non-Gaussian noiseStatis. Neerlandica2002564434453202753510.1111/1467-9574.00211
Van Den OordASchrauwenBThe Student-t mixture as a natural image patch prior with application to image compressionJ. Mach. Learn. Res.20141512061208632316011319.62135
Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables, volume 55 Courier Corporation (1965)
HendersonNCVaradhanRDamped Anderson acceleration with restarts and monotonicity control for accelerating EM and EM-like algorithmsJ. Comput. Graph. Stat.2019284834846404585210.1080/10618600.2019.1594835
AndersonDGIterative procedures for nonlinear integral equationsJ. Assoc. Comput. Mach.19651254756018444710.1145/321296.321305
BanerjeeAMajiPSpatially constrained Student’s t-distribution based mixture model for robust image segmentationJ. Mathe. Imag. Vision2018603355381376931510.1007/s10851-017-0759-8
ZhouZZhengJDaiYZhouZChenSRobust non-rigid point set registration using Student’s-t mixture modelPloS one201493e9138110.1371/journal.pone.0091381
Sfikas, G., Nikou, C., Galatsanos, N.: Robust image segmentation with mixtures of Student’s t-distributions. In: 2007 IEEE International Conference on Image Processing, volume 1, pages I – 273–I –276 (2007)
LausFPierreFSteidlGNonlocal myriad filters for Cauchy noise removalJ. Math. Imag. Vision201860813241354385004210.1007/s10851-018-0816-y
FangH-RSaadYTwo classes of multisecant methods for nonlinear accelerationNumer. Linear Algebra Appli.2009163197221248920310.1002/nla.617
KentJTTylerDEVardYA curious likelihood identity for the multivariate t-distributionCommunications in Statistics-Simulation and Computation1994232441453127967510.1080/03610919408813180
KL Lange (959_CR13) 1989; 84
DA Van Dyk (959_CR32) 1995
D Gerogiannis (959_CR8) 2009; 27
F Laus (959_CR17) 2019; 12
959_CR1
F Sciacchitano (959_CR28) 2015; 8
KB Petersen (959_CR27) 2008
Z Yang (959_CR34) 2018; 18
959_CR5
DG Anderson (959_CR2) 1965; 12
TM Nguyen (959_CR25) 2012; 31
C Sutour (959_CR30) 2015; 8
R Varadhan (959_CR33) 2008; 35
A Antoniadis (959_CR3) 2002; 56
959_CR11
A Van Den Oord (959_CR31) 2014; 15
X-L Meng (959_CR24) 1997; 59
JT Kent (959_CR12) 1994; 23
C Liu (959_CR19) 1994; 81
MG Kendall (959_CR10) 1938; 30
A Lanza (959_CR14) 2018; 60
H-R Fang (959_CR7) 2009; 16
F Laus (959_CR15) 2020
959_CR29
M Ding (959_CR6) 2019; 341
M Lebrun (959_CR18) 2013; 6
C Liu (959_CR20) 1995; 5
A Banerjee (959_CR4) 2018; 60
J-J Mei (959_CR23) 2018; 74
D Peel (959_CR26) 2000; 10
NC Henderson (959_CR9) 2019; 28
959_CR22
959_CR21
F Laus (959_CR16) 2018; 60
Z Zhou (959_CR35) 2014; 9
References_xml – reference: McLachlan, G., Krishnan, T.: The EM algorithm and extensions. John wiley and sons inc (1997)
– reference: LanzaAMorigiSSciacchitanoFSgallariFWhiteness constraints in a unified variational framework for image restorationJ. Mathe. Imag. Vision201860915031526386474510.1007/s10851-018-0845-6
– reference: LangeKLLittleRJTaylorJMRobust statistical modeling using the t distributionJ. Am. Stat. Assoc.1989844088818961134486
– reference: HendersonNCVaradhanRDamped Anderson acceleration with restarts and monotonicity control for accelerating EM and EM-like algorithmsJ. Comput. Graph. Stat.2019284834846404585210.1080/10618600.2019.1594835
– reference: AndersonDGIterative procedures for nonlinear integral equationsJ. Assoc. Comput. Mach.19651254756018444710.1145/321296.321305
– reference: MeiJ-JDongYHuangT-ZYinWCauchy noise removal by nonconvex ADMM with convergence guaranteesJ. Sci. Comput.2018742743766376127510.1007/s10915-017-0460-5
– reference: MengX-LVan DykDThe EM algorithm - an old folk-song sung to a fast new tuneJ. Royal Statis. Soc. :, Series B (Statis. Methodol.)1997593511567145202510.1111/1467-9868.00082
– reference: PeelDMcLachlanGJRobust mixture modelling using the t distributionStat. Comput.200010433934810.1023/A:1008981510081
– reference: Van DykDAConstruction, Implementation, and Theory of Algorithms Based on Data Augmentation and Model Reduction1995PhD ThesisThe University of Chicago
– reference: VaradhanRRolandCSimple and globally convergent methods for accelerating the convergence of any EM algorithm. ScandinavianJ. Statis. Theory Appli20083523353531164.65006
– reference: LausFStatistical Analysis and Optimal Transport for Euclidean and Manifold-Valued Data2020TU KaiserslauternPhD Thesis1433.62008
– reference: Byrne, C.L.: The EM algorithm: theory, applications and related methods. Lecture notes university of massachusetts (2017)
– reference: SutourCDeledalleC-AAujolJ-FEstimation of the noise level function based on a nonparametric detection of homogeneous image regionsSIAM J. Imag. Sci.20158426222661342406710.1137/15M1012682
– reference: KendallMGA new measure of rank correlationBiometrika1938301/2819310.2307/2332226
– reference: Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 239–251 (1945)
– reference: KentJTTylerDEVardYA curious likelihood identity for the multivariate t-distributionCommunications in Statistics-Simulation and Computation1994232441453127967510.1080/03610919408813180
– reference: LebrunMBuadesAMorelJ-MA nonlocal Bayesian image denoising algorithmSIAM J. Imag. Sci.20136316651688309703110.1137/120874989
– reference: McLachlan, G., Peel, D.: Robust cluster analysis via mixtures of multivariate t-distributions. volume 1451 of Lecture Notes in Computer Science. Springer, New York (1998)
– reference: AntoniadisALeporiniDPesquetJ-CWavelet thresholding for some classes of non-Gaussian noiseStatis. Neerlandica2002564434453202753510.1111/1467-9574.00211
– reference: SciacchitanoFDongYZengTVariational approach for restoring blurred images with Cauchy noiseSIAM J. Imag. Sci.20158318941922339742710.1137/140997816
– reference: LiuCRubinDBML estimation of the t distribution using EM and its extensions, ECM and ECMEStat. Sin.199551193913292870824.62047
– reference: Sfikas, G., Nikou, C., Galatsanos, N.: Robust image segmentation with mixtures of Student’s t-distributions. In: 2007 IEEE International Conference on Image Processing, volume 1, pages I – 273–I –276 (2007)
– reference: DingMHuangTWangSMeiJZhaoXTotal variation with overlapping group sparsity for deblurring images under Cauchy noiseAppl. Math. Comput.201934112814738617441428.94021
– reference: FangH-RSaadYTwo classes of multisecant methods for nonlinear accelerationNumer. Linear Algebra Appli.2009163197221248920310.1002/nla.617
– reference: YangZYangZGuiGA convex constraint variational method for restoring blurred images in the presence of alpha-stable noisesSensors2018184117510.3390/s18041175
– reference: BanerjeeAMajiPSpatially constrained Student’s t-distribution based mixture model for robust image segmentationJ. Mathe. Imag. Vision2018603355381376931510.1007/s10851-017-0759-8
– reference: PetersenKBPedersenMSThe Matrix Cookbook2008Lecture NotesTechnical University of Denmark
– reference: GerogiannisDNikouCLikasAThe mixtures of Student’s t-distributions as a robust framework for rigid registrationImage Vis. Comput.20092791285129410.1016/j.imavis.2008.11.013
– reference: Van Den OordASchrauwenBThe Student-t mixture as a natural image patch prior with application to image compressionJ. Mach. Learn. Res.20141512061208632316011319.62135
– reference: LiuCRubinDBThe ECME algorithm: a simple extension of EM and ECM with faster monotone convergenceBiometrika1994814633648132641410.1093/biomet/81.4.633
– reference: ZhouZZhengJDaiYZhouZChenSRobust non-rigid point set registration using Student’s-t mixture modelPloS one201493e9138110.1371/journal.pone.0091381
– reference: Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables, volume 55 Courier Corporation (1965)
– reference: LausFPierreFSteidlGNonlocal myriad filters for Cauchy noise removalJ. Math. Imag. Vision201860813241354385004210.1007/s10851-018-0816-y
– reference: LausFSteidlGMultivariate myriad filters based on parameter estimation of student-t distributionsSIAM J Imaging Sci201912418641904402981110.1137/19M1242203
– reference: NguyenTMWuQJRobust Student’s-t mixture model with spatial constraints and its application in medical image segmentationIEEE Trans. Med. Imaging201231110311610.1109/TMI.2011.2165342
– volume: 12
  start-page: 547
  year: 1965
  ident: 959_CR2
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321296.321305
– volume: 84
  start-page: 881
  issue: 408
  year: 1989
  ident: 959_CR13
  publication-title: J. Am. Stat. Assoc.
– volume: 15
  start-page: 2061
  issue: 1
  year: 2014
  ident: 959_CR31
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 633
  issue: 4
  year: 1994
  ident: 959_CR19
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– volume-title: Construction, Implementation, and Theory of Algorithms Based on Data Augmentation and Model Reduction
  year: 1995
  ident: 959_CR32
– volume: 60
  start-page: 1503
  issue: 9
  year: 2018
  ident: 959_CR14
  publication-title: J. Mathe. Imag. Vision
  doi: 10.1007/s10851-018-0845-6
– volume: 9
  start-page: e91381
  issue: 3
  year: 2014
  ident: 959_CR35
  publication-title: PloS one
  doi: 10.1371/journal.pone.0091381
– ident: 959_CR22
  doi: 10.1007/BFb0033290
– ident: 959_CR1
  doi: 10.1115/1.3625776
– volume: 18
  start-page: 1175
  issue: 4
  year: 2018
  ident: 959_CR34
  publication-title: Sensors
  doi: 10.3390/s18041175
– volume: 12
  start-page: 1864
  issue: 4
  year: 2019
  ident: 959_CR17
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/19M1242203
– ident: 959_CR11
  doi: 10.1093/biomet/33.3.239
– volume: 23
  start-page: 441
  issue: 2
  year: 1994
  ident: 959_CR12
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610919408813180
– volume: 60
  start-page: 355
  issue: 3
  year: 2018
  ident: 959_CR4
  publication-title: J. Mathe. Imag. Vision
  doi: 10.1007/s10851-017-0759-8
– ident: 959_CR5
– ident: 959_CR21
– volume: 60
  start-page: 1324
  issue: 8
  year: 2018
  ident: 959_CR16
  publication-title: J. Math. Imag. Vision
  doi: 10.1007/s10851-018-0816-y
– volume: 5
  start-page: 19
  issue: 1
  year: 1995
  ident: 959_CR20
  publication-title: Stat. Sin.
– volume: 28
  start-page: 834
  issue: 4
  year: 2019
  ident: 959_CR9
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2019.1594835
– volume: 8
  start-page: 2622
  issue: 4
  year: 2015
  ident: 959_CR30
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/15M1012682
– volume: 6
  start-page: 1665
  issue: 3
  year: 2013
  ident: 959_CR18
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/120874989
– volume: 8
  start-page: 1894
  issue: 3
  year: 2015
  ident: 959_CR28
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/140997816
– ident: 959_CR29
  doi: 10.1109/ICIP.2007.4378944
– volume: 35
  start-page: 335
  issue: 2
  year: 2008
  ident: 959_CR33
  publication-title: J. Statis. Theory Appli
– volume-title: Statistical Analysis and Optimal Transport for Euclidean and Manifold-Valued Data
  year: 2020
  ident: 959_CR15
– volume: 27
  start-page: 1285
  issue: 9
  year: 2009
  ident: 959_CR8
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.11.013
– volume: 341
  start-page: 128
  year: 2019
  ident: 959_CR6
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.08.014
– volume: 74
  start-page: 743
  issue: 2
  year: 2018
  ident: 959_CR23
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0460-5
– volume: 56
  start-page: 434
  issue: 4
  year: 2002
  ident: 959_CR3
  publication-title: Statis. Neerlandica
  doi: 10.1111/1467-9574.00211
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  ident: 959_CR10
  publication-title: Biometrika
  doi: 10.2307/2332226
– volume: 59
  start-page: 511
  issue: 3
  year: 1997
  ident: 959_CR24
  publication-title: J. Royal Statis. Soc. :, Series B (Statis. Methodol.)
  doi: 10.1111/1467-9868.00082
– volume: 10
  start-page: 339
  issue: 4
  year: 2000
  ident: 959_CR26
  publication-title: Stat. Comput.
  doi: 10.1023/A:1008981510081
– volume: 16
  start-page: 197
  issue: 3
  year: 2009
  ident: 959_CR7
  publication-title: Numer. Linear Algebra Appli.
  doi: 10.1002/nla.617
– volume: 31
  start-page: 103
  issue: 1
  year: 2012
  ident: 959_CR25
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2165342
– volume-title: The Matrix Cookbook
  year: 2008
  ident: 959_CR27
SSID ssj0010027
Score 2.3518946
Snippet In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν , the location parameter μ and the scatter matrix Σ of the...
In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν, the location parameter μ and the scatter matrix Σ of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Algebra
Algorithms
Computer Science
Degrees of freedom
Iterative methods
Maximum likelihood estimation
Normal distribution
Numeric Computing
Numerical Analysis
Original Paper
Parameters
Probability density functions
Scattering
Statistical analysis
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xOtADUFrUFFrNgRuxanttZ31CgIJ6IBGigLhZ3ocBKYlT7ELv_HFm7E0ikMqlJ6-067WlmZ3nzjcA-6HtKakMOTk2El5UJKlHajjwcqvjNPe1zZuM6fVZbziUNzfpuQu4Ve5a5UwmNoLalJpj5D_CNJAJ4wpEh9PfHneN4uyqa6GxDKuMVEZ8vnrcH55fzPMI7HU1-U6SxWTrSFc20xbPkefD1clcWc3BsKfXqmlhb75JkTaa53Tzf_95CzaczYlHLZN8hCU72YZNZ3-iO93VNnwYzDFcq0_wfDRywcJHW2FdIs1hf4D56Ja-Ud-NkexdHJwh43S0BZBYFsjKkcddrHSD3Ylj7gLwt4v5xKCx5N9bXlfQ05RjHvLGv1qMTazRMJSv68L1Ga5O-5cnPz3XssHTIhG1pyJRJNpXUuhEST9PjBGpjcjrM74VNpBkHvupTqNeTGY96cU40HEuSCnqxNckbnZgZVJO7BfAsFco8txDoeI0CvxcGhnpwgoTa6UCqzsQzKiVaYdnzm01RtkCiZkpnBGFs4bC2VMHDubvTFs0j3dX783ImrmTXWULmnagO2OMxfS_d_v6_m67sB7ydZnmLuUerNQPf-w3WNOP9X318N3x9Qv6u_6X
  priority: 102
  providerName: ProQuest
Title Alternatives to the EM algorithm for ML estimation of location, scatter matrix, and degree of freedom of the Student t distribution
URI https://link.springer.com/article/10.1007/s11075-020-00959-w
https://www.proquest.com/docview/2918610474
Volume 87
WOSCitedRecordID wos000572298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7x6KE9FEpbNS1Ec-itsWR7_VgfAQVVgkSIUMTN8j5ckJK4il3ovX-8M846USuKBCevvOuVpdnd-WZn5huAz6FNlVSGjBwbCS8qk8wjNRx4hdVxVvjaFq3H9OosHY_l9XV27pLC6i7avXNJtif1OtmNLBXOJuZMaL68ut-E7ZjZZthGn1ytfAdsabU-Tjp_Cd9Ilyrz8Bx_q6M1xvzHLdpqm5Od5_3nLrx26BIPl8vhDWzY-R7sOKSJbh_X9Kor5tC924NXoxWBa_0Wfh9O3U3hna2xqZD6cDjCYvq9Wtw2NzMksIujM2SSjmX2I1Ylsmbk9gBr3RJ34oxLAPwaYDE3aCwZ95bHlfQ01YybPPFkSbCJDRrm8XUluN7Bt5Ph5fFXz9Vr8LRIROOpSJSJ9pUUOlHSLxJjRGYjMvmMb4UNJGFjP9NZlMaE6UkpxoGOC0EaUSe-prPmPWzNq7n9ABimpSKzPRQqzqLAL6SRkS6tMLFWKrC6B0Entlw7MnOuqTHN1zTMLIacxJC3Ysjve_Bl9c2PJZXHo6P3u9WQu21d52EWyITJLaIeDDrpr7v_P9vHpw3_BC9Djp1pAyv3YatZ_LQH8ELfNbf1og_bR8Px-UUfNk9Tr8_RqpN-uwX-AH4U_bk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoFBALBSYA5zYiCR2XgeECmzVqrurCgrqLSS2U5B2N2UTunDm__AbmUmcXYFEbz1wiiU7luJ8nofH8w3AU99EeZxrcnKMFI4swsQhNew5mVFBkrnKZE3E9OMomkzik5PkaAN-dbkwfK2yk4mNoNal4jPyF37ixSHzCshXZ18drhrF0dWuhEYLi0PzY0kuW_Xy4C3932e-vzc8frPv2KoCjhKhqJ1ciiJUbh4LFeaxm4Vai8RIcky0a4TxYrLg3EQlMgrI8iTRHXgqyATJbRW6inYEzXsFNqWQYdCDzdfDydG7VdyCvbwmvkqyn2yr2KbptMl65GlxNjRncvPh2_JPVbi2b_8KyTaabm_rf1ujW3DT2tS4226C27Bh5tuwZe1rtNKr2oYb4xVHbXUHfu5O7WHouamwLpH6cDjGbHpK31R_niHZ8zgeIfOQtAmeWBbIyp_bA6xUw02KM65y8H2A2VyjNqcLY3hcQU9dzrjJE79vOUSxRs1UxbbK2F34cCkLcw9683Ju7gP6UZEnbuSLPEik52axjqUqjNCBynPPqD54HTpSZfnauWzINF0zTTOiUkJU2iAqXfbh-eqds5at5MLROx2MUiu5qnSNoT4MOiCuu_8924OLZ3sC1_aPx6N0dDA5fAjXfb4a1Nwb3YFevfhmHsFVdV5_qRaP7Z5C-HTZEP0Nxt1Ybw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BQAgeGAzQCgPugTcaLYmT1Hmc2Koh2mpiMO0tin9kTGqTqck23vnHuUuclqGBhHiKZTtWpLNz3_nuvgN4F9qRksqQkWMj4UVFknqkhgMvtzpOc1_bvPWYnkxGs5k8PU2Pfsnib6Pde5dkl9PALE1ls3thit114htZLZxZzFnRfJF1fRfuRdTHQV2fj09WfgS2ulp_J_2LCetIlzZz-xo3VdMab_7mIm01z3jz_7_5CTx2qBP3um3yFO7Ycgs2HQJFd75r6uqLPPR9W_BouiJ2rZ_Bj725u0G8sjU2FdIYHkwxn59Vy_Pm2wIJBON0gkze0WVFYlUga0xuD7HWLaEnLrg0wPch5qVBY8notzyvoKepFtzkhY874k1s0DC_ryvN9Ry-jg--fDj0XB0HT4tENJ6KRJFoX0mhEyX9PDFGpDYiU9D4VthAEmb2U51Go5iwPinLONBxLkhT6sTX9A96ARtlVdptwHBUKDLnQ6HilOSdSyMjXVhhYq1UYPUAgl6EmXYk51xrY56t6ZlZDBmJIWvFkF0P4P3qnYuO4uOvs3f6nZG5415nYRrIhEkvogEM-52wHv7zai__bfpbeHC0P84mH2efXsHDkMNr2tjLHdholpf2NdzXV815vXzTnoKf8ssGLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternatives+to+the+EM+algorithm+for+ML+estimation+of+location%2C+scatter+matrix%2C+and+degree+of+freedom+of+the+Student+t+distribution&rft.jtitle=Numerical+algorithms&rft.au=Hasannasab%2C+Marzieh&rft.au=Hertrich%2C+Johannes&rft.au=Laus%2C+Friederike&rft.au=Steidl%2C+Gabriele&rft.date=2021-05-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=87&rft.issue=1&rft.spage=77&rft.epage=118&rft_id=info:doi/10.1007%2Fs11075-020-00959-w&rft.externalDocID=10_1007_s11075_020_00959_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon