Lotus effect optimization algorithm (LEA): a lotus nature-inspired algorithm for engineering design optimization

Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm, which combines efficient operators from the dragonfly algorithm, such as the movement of dragonflies in flower pollination for exploration, with the self-cleaning feature of water on flower leaves known as the lotus ef...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 80; číslo 1; s. 761 - 799
Hlavní autoři: Dalirinia, Elham, Jalali, Mehrdad, Yaghoobi, Mahdi, Tabatabaee, Hamid
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2024
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm, which combines efficient operators from the dragonfly algorithm, such as the movement of dragonflies in flower pollination for exploration, with the self-cleaning feature of water on flower leaves known as the lotus effect, for extraction and local search operations. The authors compared this method to other improved versions of the dragonfly algorithm using standard benchmark functions, and it outperformed all other methods according to Fredman's test on 29 benchmark functions. The article also highlights the practical application of LEA in reducing energy consumption in IoT nodes through clustering, resulting in increased packet delivery ratio and network lifetime. Additionally, the performance of the proposed method was tested on real-world problems with multiple constraints, such as the welded beam design optimization problem and the speed-reducer problem applied in a gearbox, and the results showed that LEA performs better than other methods in terms of accuracy.
AbstractList Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm, which combines efficient operators from the dragonfly algorithm, such as the movement of dragonflies in flower pollination for exploration, with the self-cleaning feature of water on flower leaves known as the lotus effect, for extraction and local search operations. The authors compared this method to other improved versions of the dragonfly algorithm using standard benchmark functions, and it outperformed all other methods according to Fredman's test on 29 benchmark functions. The article also highlights the practical application of LEA in reducing energy consumption in IoT nodes through clustering, resulting in increased packet delivery ratio and network lifetime. Additionally, the performance of the proposed method was tested on real-world problems with multiple constraints, such as the welded beam design optimization problem and the speed-reducer problem applied in a gearbox, and the results showed that LEA performs better than other methods in terms of accuracy.
Author Jalali, Mehrdad
Tabatabaee, Hamid
Dalirinia, Elham
Yaghoobi, Mahdi
Author_xml – sequence: 1
  givenname: Elham
  surname: Dalirinia
  fullname: Dalirinia, Elham
  organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University
– sequence: 2
  givenname: Mehrdad
  surname: Jalali
  fullname: Jalali, Mehrdad
  email: mehrdad.jalali@kit.edu
  organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT)
– sequence: 3
  givenname: Mahdi
  surname: Yaghoobi
  fullname: Yaghoobi, Mahdi
  organization: Department of Electrical Engineering, Mashhad Branch, Islamic Azad University
– sequence: 4
  givenname: Hamid
  surname: Tabatabaee
  fullname: Tabatabaee, Hamid
  organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University
BookMark eNp9kEtLAzEQx4Mo2Fa_gKcFL3pYzWPTpN5KqQ8oeNFzyG4ma0qbrEl60E_vthV8HHoaBv6Pmd8QHfvgAaELgm8IxuI2EUKpKDFlJeacsFIeoQHhol8rWR2jAZ5QXEpe0VM0TGmJMa6YYAPULULepAKshSYXoctu7T51dsEXetWG6PLburhazKfXd4UuVjux13kToXQ-dS6C-SW0IRbgW-cBovNtYSC51v-JPUMnVq8SnH_PEXq9n7_MHsvF88PTbLooGzZmudRWG1xXHDd2LAypsaAGBK8qYxglYPqvtZUCxnUlGwJgpcVSMEOMtLWUko3Q5T63i-F9AymrZdhE31cqRvmYywmlvFfJvaqJIaUIVjUu7-7MUbuVIlht-ao9X9XzVTu-altA_1m76NY6fhw2sb0pdVtAEH-uOuD6AoE9kaM
CitedBy_id crossref_primary_10_1016_j_advengsoft_2024_103862
crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1007_s11760_025_03899_x
crossref_primary_10_1038_s41598_025_96559_6
crossref_primary_10_1016_j_asoc_2025_113870
crossref_primary_10_1007_s00202_024_02591_6
crossref_primary_10_1007_s10707_025_00550_2
crossref_primary_10_1080_0954898X_2024_2339477
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_1038_s41598_025_07328_4
crossref_primary_10_3390_su17062744
crossref_primary_10_1186_s40537_025_01220_8
crossref_primary_10_1016_j_egyr_2025_08_007
crossref_primary_10_1007_s00202_024_02897_5
crossref_primary_10_1007_s12008_024_02174_6
crossref_primary_10_1016_j_compeleceng_2025_110315
crossref_primary_10_1016_j_csite_2025_106437
crossref_primary_10_1016_j_heliyon_2024_e34050
crossref_primary_10_1007_s12008_024_02158_6
crossref_primary_10_1016_j_bspc_2025_108200
crossref_primary_10_1016_j_mtcomm_2025_113842
crossref_primary_10_1080_03772063_2025_2505111
crossref_primary_10_1142_S0219876225500112
crossref_primary_10_1016_j_est_2025_117880
crossref_primary_10_3103_S8756699025700177
crossref_primary_10_3390_w17020234
crossref_primary_10_1007_s44163_025_00367_w
crossref_primary_10_1016_j_energy_2025_136929
crossref_primary_10_1007_s10586_024_04950_1
crossref_primary_10_1016_j_measurement_2025_118361
crossref_primary_10_1007_s11760_025_04559_w
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1007_s44443_025_00139_7
crossref_primary_10_1016_j_eij_2025_100623
crossref_primary_10_1109_ACCESS_2024_3406749
crossref_primary_10_1016_j_iot_2025_101593
crossref_primary_10_1007_s10668_025_06449_0
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_3390_biomimetics10060379
crossref_primary_10_32604_cmc_2024_055561
crossref_primary_10_1038_s41598_025_90000_8
crossref_primary_10_1108_WJE_02_2025_0110
Cites_doi 10.1007/s00500-020-05340-6
10.1016/j.comcom.2008.12.045
10.1007/978-3-642-32894-7_27
10.1016/j.enconman.2023.116938
10.1109/ICIMIA48430.2020.9074912
10.1016/j.cie.2021.107408
10.3390/s23083833
10.1016/j.asoc.2008.04.016
10.1109/ACCESS.2019.2893501
10.1007/s00366-020-00958-4
10.1038/s41598-022-14338-z
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2021.115665
10.1890/08-0153.1
10.1007/978-981-19-3571-8_40
10.1109/ICRCICN.2016.7813643
10.1021/acs.langmuir.5b00670
10.1016/j.procs.2017.12.034
10.1016/j.matcom.2020.06.012
10.1109/SIS.2005.1501605
10.1049/iet-com.2019.1311
10.1109/IMICPW.2019.8933284
10.47277/IJCNCS/8(2)2
10.1109/ACCESS.2018.2885539
10.1007/s11227-022-04959-6
10.1007/978-981-13-9282-5_51
10.1109/CSPA.2019.8695973
10.1016/j.cma.2021.114194
10.1007/s13369-022-06880-9
10.1007/s11276-017-1468-3
10.1109/IBCAST.2017.7868141
10.1016/j.ijleo.2016.04.041
10.1007/s10489-020-01893-z
10.3390/infrastructures7040046
10.1109/JSEN.2018.2869629
10.1006/anbo.1997.0400
10.1016/j.epsr.2023.109351
10.1007/978-981-13-9330-3_18
10.1007/s12652-017-0614-1
10.3390/app10144795
10.1016/j.matcom.2022.06.007
10.1109/Confluence47617.2020.9058312
10.1007/s10462-022-10173-w
10.1038/s41598-022-27344-y
10.1155/2019/6871298
10.1007/978-981-15-3284-9_65
10.1016/j.ins.2007.05.030
10.1007/s11042-020-10255-3
10.1016/j.cma.2022.114616
10.3390/s22030855
10.1109/MDAT.2020.2976669
10.1098/rsta.2016.0191
10.1016/j.cma.2020.113609
10.1109/CEC.2013.6557555
10.1016/j.knosys.2022.110011
10.1007/s004250050096
10.1007/s12652-020-01704-w
10.1016/j.eswa.2013.07.067
10.1016/j.future.2019.02.028
10.1016/j.eswa.2021.116158
10.1007/s00521-020-04866-y
10.1504/IJBIC.2010.032124
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05513-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 799
ExternalDocumentID 10_1007_s11227_023_05513_8
GrantInformation_xml – fundername: Karlsruher Institut für Technologie (KIT) (4220)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-afad0b450cf67d1b072de7544dd321ed100af87e6b48c1eef8f0873d1d8fb8883
IEDL.DBID M7S
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021399300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 04:23:40 EST 2025
Sat Nov 29 04:27:45 EST 2025
Tue Nov 18 21:33:20 EST 2025
Fri Feb 21 02:40:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Network clustering
Internet of Things (IoT)
Evolutionary algorithms
Lotus effect
Dragonfly algorithm
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-afad0b450cf67d1b072de7544dd321ed100af87e6b48c1eef8f0873d1d8fb8883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11227-023-05513-8
PQID 3256589225
PQPubID 2043774
PageCount 39
ParticipantIDs proquest_journals_3256589225
crossref_citationtrail_10_1007_s11227_023_05513_8
crossref_primary_10_1007_s11227_023_05513_8
springer_journals_10_1007_s11227_023_05513_8
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rajesh G, Mercilin Raajini X, Ashoka Rajan R, Gokuldhev M, Swetha C (2020) A multi-objective routing optimization using swarm intelligence in IoT networks. In: Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2019. Springer Singapore, pp 603–613
Nath S, Banik S, Seal A, Sarkar SK (2016) Optimizing MANET routing in AODV: an hybridization approach of ACO and firefly algorithm. In: 2016 Second International Conference on Research in Computational Intelligence and Communication networks (ICRCICN). IEEE, pp 122–127
AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): a nature-inspired meta-heuristic optimizerExpert Syst Appl2022191116158
XueJShenBDung beetle optimizer: a new meta-heuristic algorithm for global optimizationJ Supercomput202379773057336
ArafatMYMohSA survey on cluster-based routing protocols for unmanned aerial vehicle networksIEEE Access20187498516
CollinsCMSafiuddinMLotus-leaf-inspired biomimetic coatings: different types, key properties, and applications in infrastructuresInfrastructures20227446
YangHLiZLiuZA method of routing optimization using CHNN in MANETJ Ambient Intell Humaniz Comput20191017591768
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
KhaleelLRMitrasBAA novel hybrid Dragonfly algorithm with modified conjugate gradient methodInt J Comput Netw Commun Secur2020824048
ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng20223881141944337753
ReynoldsAMRhodesCJThe Lévy flight paradigm: random search patterns and mechanismsEcology2009904877887
SivakumarPRadhikaMPerformance analysis of leach-ga over leach and leach-c in wsnProcedia Comput Sci2018125248256
ZamaniHNadimi-ShahrakiMHGandomiAHStarling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimizationComput Methods Appl Mech Eng20223921146164379773
Li J, Zhang Z, Xu J, Wong CP (2000) Self-cleaning materials—lotus effect surfaces. Kirk-Othmer Encyclopedia of Chemical Technology
MohsinAHBakarKAZainalAOptimal control overhead based multi-metric routing for MANETWirel Netw20182423192335
Acı ÇI, Gülcan H (2019) A modified dragonfly optimization algorithm for single-and multiobjective problems using Brownian motion. Computational intelligence and neuroscience
Husnain G, Anwar S, Shahzad F (2017).Performance evaluation of CLPSO and MOPSO routing algorithms for optimized clustering in vehicular Ad hoc networks. In: 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, pp 772–778
DebnathSBaishyaSSenDArifWA hybrid memory-based dragonfly algorithm with differential evolution for engineering applicationEng Comput20213727752802
ShiraniMRSafi-EsfahaniFBMDA: applying biogeography-based optimization algorithm and Mexican hat wavelet to improve dragonfly algorithmSoft Comput202024211597916004
Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation: 11th International Conference, UCNC 2012, Orléan, France, September 3-7, 2012. Proceedings 11. Springer Berlin Heidelberg, pp 240–249
PanJSZhangLGWangRBSnášelVChuSCGannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problemsMath Comput Simul20222023433734445169
CuevasECienfuegosMA new algorithm inspired in the behavior of the social-spider for constrained optimizationExpert Syst Appl2014412412425
GeorgeDTRajRERajkumarAMabelMCOptimal sizing of solar-wind based hybrid energy system using modified dragonfly algorithm for an institutionEnergy Convers Manage2023283116938
AroraVKSharmaVSachdevaMA survey on LEACH and other's routing protocols in wireless sensor networkOptik20161271665906600
Site: https://www.mathworks.com/matlabcentral/fileexchange/124810-benchmark-problems
AkbariMAZareMAzizipanah-AbarghooeeRMirjaliliSDericheMThe cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problemsSci Rep202212110953
Dhumane A, Chiwhane S, Mangore Anirudh K, Ambala S (2022) Cluster-based energy-efficient routing in Internet of Things. In: ICT with Intelligent Applications: Proceedings of ICTIS 2022, Vol 1. Springer Nature Singapore, Singapore pp 415–427
WangNCHuangYFChenJCA stable weight-based on-demand routing protocol for mobile ad hoc networksInf Sci20071772455225537
Panda N, Pattanayak BK (2020) ACO-based secure routing protocols in MANETs. In: New Paradigm in Decision Science and Management: Proceedings of ICDSM 2018. Springer Singapore, pp 195–206
AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng20213761136094199299
DehghaniMMontazeriZTrojovskáETrojovskýPCoati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problemsKnowl-Based Syst2023259110011
NeinhuisCBarthlottWCharacterization and distribution of water-repellent, self-cleaning plant surfacesAnn Bot1997796667677
JiaHPengXLangCRemora optimization algorithmExpert Syst Appl2021185115665
KakueinejadMHHeydariAAskariMKeyniaFOptimal planning for the development of power system in respect to distributed generations based on the binary dragonfly algorithmAppl Sci202010144795
SinghPMittalNEfficient localisation approach for WSNs using hybrid DA–FA algorithmIET Commun2020141219751991
KarabogaDAkayBA comparative study of artificial bee colony algorithmAppl Math Comput200921411081322541051
AziziMAickelinUKhorshidiHABaghalzadeh ShishehgarkhanehMEnergy valley optimizer: a novel metaheuristic algorithm for global and engineering optimizationSci Rep2023131226
YuCCaiZYeXWangMZhaoXLiangGChenHLiCQuantum-like mutation-induced dragonfly-inspired optimization approachMath Comput Simul20201782592894118915
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
BarthlottWMailMNeinhuisCSuperhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applicationsPhilos Trans R Soc A Math Phys Eng Sci2016374207320160191
Nivetha SK, Asokan R, Senthilkumaran N (2019) Metaheuristics in Mobile AdHoc network route optimization. In: 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). IEEE, pp 414–418
LeTHuWCorkePJhaSERTP: energy-efficient and reliable transport protocol for data streaming in wireless sensor networksComput Commun2009327–1011541171
SinghHSawleYDixitSMalikHMárquezFPGOptimization of reactive power using dragonfly algorithm in DG integrated distribution systemElectr Power Syst Res2023220109351
Yousaf A, Ahmad F, Hamid S, Khan F (2019) Performance comparison of various LEACH protocols in wireless sensor networks. In: 2019 IEEE 15th International Colloquium on Signal Processing & its Applications (CSPA). IEEE, pp 108–113
YangXSFirefly algorithm, stochastic test functions and design optimisationInt J Bio-inspir Comput2010227884
Rathi PS, Mallikarjuna Rao CH (2020) Survey paper on routing in MANETs for optimal route selection based on routing protocol with particle swarm optimization and different ant colony optimization protocol. In: Smart Intelligent Computing and Applications: Proceedings of the Third International Conference on Smart Computing and Informatics, Vol 1. Springer Singapore, pp 539–547
Khapre SP, Chopra S, Khan A, Sharma P, Shankar A (2020) Optimized routing method for wireless sensor networks based on improved ant colony algorithm. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, pp 455–458
ArumugamMSRaoMVCTanAWA novel and effective particle swarm optimization like algorithm with extrapolation techniqueAppl Soft Comput200991308320
Al-TurjmanFMostardaLEverEDarwishAKhalilNSNetwork experience scheduling and routing approach for big data transmission in the Internet of ThingsIeee Access201971450114512
MeraihiYRamdane-CherifAAcheliDMahseurMDragonfly algorithm: a comprehensive review and applicationsNeural Comput Appl2020321662516646
AziziMTalatahariSGandomiAHFire Hawk optimizer: a novel metaheuristic algorithmArtif Intell Rev2023561287363
JoshiMKalitaKJangirPAhmadianfarIChakrabortySA conceptual comparison of Dragonfly algorithm variants for CEC-2021 global optimization problemsArab J Sci Eng202348215631593
HashimFAHussainKHousseinEHMabroukMSAl-AtabanyWArchimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problemsAppl Intell20215115311551
KumarNVidyarthiDPA green routing algorithm for IoT-enabled software defined wireless sensor networkIEEE Sens J2018182294499460
BarthlottWNeinhuisCPurity of the sacred lotus, or escape from contamination in biological surfacesPlanta199720218
AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problemsComput Ind Eng2021158107408
Mahfoud SW (1995) A comparison of parallel and sequential niching methods. In: Conference on Genetic Algorithms, Vol 136, p 143
TrojovskýPDehghaniMPelican optimization algorithm: a novel nature-inspired algorithm for engineering applicationsSensors2022223855
Kumar S, Sinha DK, Kumar V (2020) An approach to improve lifetime of MANET via power aware routing protocol and genetic algorithm. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, pp 550–553
AlshinwanMAbualigahLShehabMElazizMAKhasawnehAMAlaboolHHamadHADragonfly algorithm: a comprehensive survey of its results, variants, and applicationsMultimed Tools Appl2021801497915016
Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation. IEEE, pp 71–78
BatthKKSinghRSwarm intelligence for routing in mobile Ad Hoc networksInt J Adv Inf Sci Technol (IJAIST)201610.1109/SIS.2005.1501605
PasrichaSAyoubRKishinevskyMMandalSKOgrasU
M Joshi (5513_CR28) 2023; 48
P Singh (5513_CR66) 2020; 14
AA Heidari (5513_CR2) 2019; 97
LR Khaleel (5513_CR23) 2020; 8
H Zamani (5513_CR6) 2022; 392
H Singh (5513_CR27) 2023; 220
5513_CR56
5513_CR57
5513_CR58
5513_CR52
H Jia (5513_CR12) 2021; 185
AM Reynolds (5513_CR21) 2009; 90
P Sivakumar (5513_CR4) 2018; 125
MA Akbari (5513_CR5) 2022; 12
NC Wang (5513_CR34) 2007; 177
DT George (5513_CR26) 2023; 283
AH Mohsin (5513_CR32) 2018; 24
Y Meraihi (5513_CR49) 2020; 32
5513_CR48
M Alshinwan (5513_CR18) 2021; 80
5513_CR44
5513_CR40
5513_CR41
M Azizi (5513_CR14) 2023; 56
MH Kakueinejad (5513_CR24) 2020; 10
5513_CR43
L Abualigah (5513_CR10) 2022; 191
W Zhao (5513_CR8) 2022; 388
VK Arora (5513_CR47) 2016; 127
J Xue (5513_CR16) 2023; 79
S Mirjalili (5513_CR13) 2016; 95
XS Yang (5513_CR61) 2010; 2
N Kumar (5513_CR45) 2018; 18
D Karaboga (5513_CR60) 2009; 214
5513_CR1
M Yamamoto (5513_CR53) 2015; 31
B Abdollahzadeh (5513_CR9) 2021; 158
5513_CR37
FA Hashim (5513_CR64) 2021; 51
H Yang (5513_CR33) 2019; 10
5513_CR39
W Barthlott (5513_CR50) 1997; 202
C Neinhuis (5513_CR51) 1997; 79
E Cuevas (5513_CR59) 2014; 41
C Yu (5513_CR22) 2020; 178
5513_CR35
5513_CR36
T Le (5513_CR38) 2009; 32
M Dehghani (5513_CR11) 2023; 259
Y Zhang (5513_CR3) 2020; 11
KK Batth (5513_CR42) 2016
JS Pan (5513_CR65) 2022; 202
M Azizi (5513_CR15) 2023; 13
MY Arafat (5513_CR30) 2018; 7
F Al-Turjman (5513_CR31) 2019; 7
P Trojovský (5513_CR7) 2022; 22
MR Shirani (5513_CR19) 2020; 24
M Shah (5513_CR25) 2023; 23
5513_CR29
CM Collins (5513_CR55) 2022; 7
5513_CR20
MS Arumugam (5513_CR62) 2009; 9
S Pasricha (5513_CR46) 2020; 37
W Barthlott (5513_CR54) 2016; 374
L Abualigah (5513_CR63) 2021; 376
S Debnath (5513_CR17) 2021; 37
References_xml – reference: AlshinwanMAbualigahLShehabMElazizMAKhasawnehAMAlaboolHHamadHADragonfly algorithm: a comprehensive survey of its results, variants, and applicationsMultimed Tools Appl2021801497915016
– reference: GeorgeDTRajRERajkumarAMabelMCOptimal sizing of solar-wind based hybrid energy system using modified dragonfly algorithm for an institutionEnergy Convers Manage2023283116938
– reference: SinghPMittalNEfficient localisation approach for WSNs using hybrid DA–FA algorithmIET Commun2020141219751991
– reference: AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): a nature-inspired meta-heuristic optimizerExpert Syst Appl2022191116158
– reference: MeraihiYRamdane-CherifAAcheliDMahseurMDragonfly algorithm: a comprehensive review and applicationsNeural Comput Appl2020321662516646
– reference: ‏Site: https://www.mathworks.com/matlabcentral/fileexchange/124810-benchmark-problems
– reference: AziziMAickelinUKhorshidiHABaghalzadeh ShishehgarkhanehMEnergy valley optimizer: a novel metaheuristic algorithm for global and engineering optimizationSci Rep2023131226
– reference: ArumugamMSRaoMVCTanAWA novel and effective particle swarm optimization like algorithm with extrapolation techniqueAppl Soft Comput200991308320
– reference: KumarNVidyarthiDPA green routing algorithm for IoT-enabled software defined wireless sensor networkIEEE Sens J2018182294499460
– reference: ReynoldsAMRhodesCJThe Lévy flight paradigm: random search patterns and mechanismsEcology2009904877887
– reference: PasrichaSAyoubRKishinevskyMMandalSKOgrasUYA survey on energy management for mobile and IoT devicesIEEE Des Test2020375724
– reference: Li J, Zhang Z, Xu J, Wong CP (2000) Self-cleaning materials—lotus effect surfaces. Kirk-Othmer Encyclopedia of Chemical Technology
– reference: Dhumane A, Chiwhane S, Mangore Anirudh K, Ambala S (2022) Cluster-based energy-efficient routing in Internet of Things. In: ICT with Intelligent Applications: Proceedings of ICTIS 2022, Vol 1. Springer Nature Singapore, Singapore pp 415–427
– reference: HashimFAHussainKHousseinEHMabroukMSAl-AtabanyWArchimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problemsAppl Intell20215115311551
– reference: PanJSZhangLGWangRBSnášelVChuSCGannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problemsMath Comput Simul20222023433734445169
– reference: XueJShenBDung beetle optimizer: a new meta-heuristic algorithm for global optimizationJ Supercomput202379773057336
– reference: BarthlottWMailMNeinhuisCSuperhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applicationsPhilos Trans R Soc A Math Phys Eng Sci2016374207320160191
– reference: ShiraniMRSafi-EsfahaniFBMDA: applying biogeography-based optimization algorithm and Mexican hat wavelet to improve dragonfly algorithmSoft Comput202024211597916004
– reference: Husnain G, Anwar S, Shahzad F (2017).Performance evaluation of CLPSO and MOPSO routing algorithms for optimized clustering in vehicular Ad hoc networks. In: 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, pp 772–778
– reference: YangXSFirefly algorithm, stochastic test functions and design optimisationInt J Bio-inspir Comput2010227884
– reference: Rathi PS, Mallikarjuna Rao CH (2020) Survey paper on routing in MANETs for optimal route selection based on routing protocol with particle swarm optimization and different ant colony optimization protocol. In: Smart Intelligent Computing and Applications: Proceedings of the Third International Conference on Smart Computing and Informatics, Vol 1. Springer Singapore, pp 539–547
– reference: Al-TurjmanFMostardaLEverEDarwishAKhalilNSNetwork experience scheduling and routing approach for big data transmission in the Internet of ThingsIeee Access201971450114512
– reference: Rajesh G, Mercilin Raajini X, Ashoka Rajan R, Gokuldhev M, Swetha C (2020) A multi-objective routing optimization using swarm intelligence in IoT networks. In: Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2019. Springer Singapore, pp 603–613
– reference: AroraVKSharmaVSachdevaMA survey on LEACH and other's routing protocols in wireless sensor networkOptik20161271665906600
– reference: Mahfoud SW (1995) A comparison of parallel and sequential niching methods. In: Conference on Genetic Algorithms, Vol 136, p 143)
– reference: Nivetha SK, Asokan R, Senthilkumaran N (2019) Metaheuristics in Mobile AdHoc network route optimization. In: 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). IEEE, pp 414–418
– reference: NeinhuisCBarthlottWCharacterization and distribution of water-repellent, self-cleaning plant surfacesAnn Bot1997796667677
– reference: KarabogaDAkayBA comparative study of artificial bee colony algorithmAppl Math Comput200921411081322541051
– reference: KhaleelLRMitrasBAA novel hybrid Dragonfly algorithm with modified conjugate gradient methodInt J Comput Netw Commun Secur2020824048
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
– reference: AziziMTalatahariSGandomiAHFire Hawk optimizer: a novel metaheuristic algorithmArtif Intell Rev2023561287363
– reference: AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng20213761136094199299
– reference: JiaHPengXLangCRemora optimization algorithmExpert Syst Appl2021185115665
– reference: YuCCaiZYeXWangMZhaoXLiangGChenHLiCQuantum-like mutation-induced dragonfly-inspired optimization approachMath Comput Simul20201782592894118915
– reference: ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng20223881141944337753
– reference: BarthlottWNeinhuisCPurity of the sacred lotus, or escape from contamination in biological surfacesPlanta199720218
– reference: KakueinejadMHHeydariAAskariMKeyniaFOptimal planning for the development of power system in respect to distributed generations based on the binary dragonfly algorithmAppl Sci202010144795
– reference: TrojovskýPDehghaniMPelican optimization algorithm: a novel nature-inspired algorithm for engineering applicationsSensors2022223855
– reference: WangNCHuangYFChenJCA stable weight-based on-demand routing protocol for mobile ad hoc networksInf Sci20071772455225537
– reference: ZamaniHNadimi-ShahrakiMHGandomiAHStarling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimizationComput Methods Appl Mech Eng20223921146164379773
– reference: JoshiMKalitaKJangirPAhmadianfarIChakrabortySA conceptual comparison of Dragonfly algorithm variants for CEC-2021 global optimization problemsArab J Sci Eng202348215631593
– reference: DebnathSBaishyaSSenDArifWA hybrid memory-based dragonfly algorithm with differential evolution for engineering applicationEng Comput20213727752802
– reference: Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation. IEEE, pp 71–78
– reference: Acı ÇI, Gülcan H (2019) A modified dragonfly optimization algorithm for single-and multiobjective problems using Brownian motion. Computational intelligence and neuroscience
– reference: AkbariMAZareMAzizipanah-AbarghooeeRMirjaliliSDericheMThe cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problemsSci Rep202212110953
– reference: YamamotoMNishikawaNMayamaHNonomuraYYokojimaSNakamuraSUchidaKTheoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leafLangmuir2015312673557363
– reference: AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problemsComput Ind Eng2021158107408
– reference: Kumar S, Sinha DK, Kumar V (2020) An approach to improve lifetime of MANET via power aware routing protocol and genetic algorithm. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, pp 550–553
– reference: Yousaf A, Ahmad F, Hamid S, Khan F (2019) Performance comparison of various LEACH protocols in wireless sensor networks. In: 2019 IEEE 15th International Colloquium on Signal Processing & its Applications (CSPA). IEEE, pp 108–113
– reference: CollinsCMSafiuddinMLotus-leaf-inspired biomimetic coatings: different types, key properties, and applications in infrastructuresInfrastructures20227446
– reference: SinghHSawleYDixitSMalikHMárquezFPGOptimization of reactive power using dragonfly algorithm in DG integrated distribution systemElectr Power Syst Res2023220109351
– reference: YangHLiZLiuZA method of routing optimization using CHNN in MANETJ Ambient Intell Humaniz Comput20191017591768
– reference: Panda N, Pattanayak BK (2020) ACO-based secure routing protocols in MANETs. In: New Paradigm in Decision Science and Management: Proceedings of ICDSM 2018. Springer Singapore, pp 195–206
– reference: CuevasECienfuegosMA new algorithm inspired in the behavior of the social-spider for constrained optimizationExpert Syst Appl2014412412425
– reference: ArafatMYMohSA survey on cluster-based routing protocols for unmanned aerial vehicle networksIEEE Access20187498516
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
– reference: MohsinAHBakarKAZainalAOptimal control overhead based multi-metric routing for MANETWirel Netw20182423192335
– reference: Khapre SP, Chopra S, Khan A, Sharma P, Shankar A (2020) Optimized routing method for wireless sensor networks based on improved ant colony algorithm. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, pp 455–458
– reference: ZhangYWangYA novel energy-aware bio-inspired clustering scheme for IoT communicationJ Ambient Intell Humaniz Comput20201142394248
– reference: ShahMBoradeHSanghaviVPurohitAWankhedeVVakhariaVEnhancing tool wear prediction accuracy using walsh-hadamard transform, DCGAN and Dragonfly algorithm-based feature selectionSensors20232383833
– reference: Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation: 11th International Conference, UCNC 2012, Orléan, France, September 3-7, 2012. Proceedings 11. Springer Berlin Heidelberg, pp 240–249
– reference: LeTHuWCorkePJhaSERTP: energy-efficient and reliable transport protocol for data streaming in wireless sensor networksComput Commun2009327–1011541171
– reference: DehghaniMMontazeriZTrojovskáETrojovskýPCoati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problemsKnowl-Based Syst2023259110011
– reference: SivakumarPRadhikaMPerformance analysis of leach-ga over leach and leach-c in wsnProcedia Comput Sci2018125248256
– reference: BatthKKSinghRSwarm intelligence for routing in mobile Ad Hoc networksInt J Adv Inf Sci Technol (IJAIST)201610.1109/SIS.2005.1501605
– reference: Nath S, Banik S, Seal A, Sarkar SK (2016) Optimizing MANET routing in AODV: an hybridization approach of ACO and firefly algorithm. In: 2016 Second International Conference on Research in Computational Intelligence and Communication networks (ICRCICN). IEEE, pp 122–127
– volume: 24
  start-page: 15979
  issue: 21
  year: 2020
  ident: 5513_CR19
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05340-6
– volume: 32
  start-page: 1154
  issue: 7–10
  year: 2009
  ident: 5513_CR38
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2008.12.045
– ident: 5513_CR56
  doi: 10.1007/978-3-642-32894-7_27
– volume: 283
  start-page: 116938
  year: 2023
  ident: 5513_CR26
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2023.116938
– ident: 5513_CR35
  doi: 10.1109/ICIMIA48430.2020.9074912
– volume: 158
  start-page: 107408
  year: 2021
  ident: 5513_CR9
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107408
– volume: 23
  start-page: 3833
  issue: 8
  year: 2023
  ident: 5513_CR25
  publication-title: Sensors
  doi: 10.3390/s23083833
– volume: 9
  start-page: 308
  issue: 1
  year: 2009
  ident: 5513_CR62
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2008.04.016
– volume: 7
  start-page: 14501
  year: 2019
  ident: 5513_CR31
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2893501
– volume: 37
  start-page: 2775
  year: 2021
  ident: 5513_CR17
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-00958-4
– volume: 12
  start-page: 10953
  issue: 1
  year: 2022
  ident: 5513_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14338-z
– volume: 95
  start-page: 51
  year: 2016
  ident: 5513_CR13
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 185
  start-page: 115665
  year: 2021
  ident: 5513_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115665
– volume: 90
  start-page: 877
  issue: 4
  year: 2009
  ident: 5513_CR21
  publication-title: Ecology
  doi: 10.1890/08-0153.1
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 5513_CR60
  publication-title: Appl Math Comput
– ident: 5513_CR29
  doi: 10.1007/978-981-19-3571-8_40
– ident: 5513_CR44
  doi: 10.1109/ICRCICN.2016.7813643
– volume: 31
  start-page: 7355
  issue: 26
  year: 2015
  ident: 5513_CR53
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b00670
– volume: 125
  start-page: 248
  year: 2018
  ident: 5513_CR4
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.12.034
– volume: 178
  start-page: 259
  year: 2020
  ident: 5513_CR22
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2020.06.012
– year: 2016
  ident: 5513_CR42
  publication-title: Int J Adv Inf Sci Technol (IJAIST)
  doi: 10.1109/SIS.2005.1501605
– volume: 14
  start-page: 1975
  issue: 12
  year: 2020
  ident: 5513_CR66
  publication-title: IET Commun
  doi: 10.1049/iet-com.2019.1311
– ident: 5513_CR36
  doi: 10.1109/IMICPW.2019.8933284
– volume: 8
  start-page: 40
  issue: 2
  year: 2020
  ident: 5513_CR23
  publication-title: Int J Comput Netw Commun Secur
  doi: 10.47277/IJCNCS/8(2)2
– volume: 7
  start-page: 498
  year: 2018
  ident: 5513_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885539
– volume: 79
  start-page: 7305
  issue: 7
  year: 2023
  ident: 5513_CR16
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04959-6
– ident: 5513_CR52
– ident: 5513_CR43
  doi: 10.1007/978-981-13-9282-5_51
– ident: 5513_CR48
  doi: 10.1109/CSPA.2019.8695973
– volume: 388
  start-page: 114194
  year: 2022
  ident: 5513_CR8
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
– volume: 48
  start-page: 1563
  issue: 2
  year: 2023
  ident: 5513_CR28
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06880-9
– volume: 24
  start-page: 2319
  year: 2018
  ident: 5513_CR32
  publication-title: Wirel Netw
  doi: 10.1007/s11276-017-1468-3
– ident: 5513_CR41
  doi: 10.1109/IBCAST.2017.7868141
– volume: 127
  start-page: 6590
  issue: 16
  year: 2016
  ident: 5513_CR47
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.04.041
– volume: 51
  start-page: 1531
  year: 2021
  ident: 5513_CR64
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01893-z
– ident: 5513_CR1
– volume: 7
  start-page: 46
  issue: 4
  year: 2022
  ident: 5513_CR55
  publication-title: Infrastructures
  doi: 10.3390/infrastructures7040046
– volume: 18
  start-page: 9449
  issue: 22
  year: 2018
  ident: 5513_CR45
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2869629
– volume: 79
  start-page: 667
  issue: 6
  year: 1997
  ident: 5513_CR51
  publication-title: Ann Bot
  doi: 10.1006/anbo.1997.0400
– volume: 220
  start-page: 109351
  year: 2023
  ident: 5513_CR27
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2023.109351
– ident: 5513_CR37
  doi: 10.1007/978-981-13-9330-3_18
– volume: 10
  start-page: 1759
  year: 2019
  ident: 5513_CR33
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0614-1
– volume: 10
  start-page: 4795
  issue: 14
  year: 2020
  ident: 5513_CR24
  publication-title: Appl Sci
  doi: 10.3390/app10144795
– volume: 202
  start-page: 343
  year: 2022
  ident: 5513_CR65
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.06.007
– ident: 5513_CR40
  doi: 10.1109/Confluence47617.2020.9058312
– volume: 56
  start-page: 287
  issue: 1
  year: 2023
  ident: 5513_CR14
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10173-w
– volume: 13
  start-page: 226
  issue: 1
  year: 2023
  ident: 5513_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-27344-y
– ident: 5513_CR20
  doi: 10.1155/2019/6871298
– ident: 5513_CR39
  doi: 10.1007/978-981-15-3284-9_65
– volume: 177
  start-page: 5522
  issue: 24
  year: 2007
  ident: 5513_CR34
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2007.05.030
– volume: 80
  start-page: 14979
  year: 2021
  ident: 5513_CR18
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10255-3
– volume: 392
  start-page: 114616
  year: 2022
  ident: 5513_CR6
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114616
– volume: 22
  start-page: 855
  issue: 3
  year: 2022
  ident: 5513_CR7
  publication-title: Sensors
  doi: 10.3390/s22030855
– volume: 37
  start-page: 7
  issue: 5
  year: 2020
  ident: 5513_CR46
  publication-title: IEEE Des Test
  doi: 10.1109/MDAT.2020.2976669
– volume: 374
  start-page: 20160191
  issue: 2073
  year: 2016
  ident: 5513_CR54
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2016.0191
– volume: 376
  start-page: 113609
  year: 2021
  ident: 5513_CR63
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: 5513_CR57
  doi: 10.1109/CEC.2013.6557555
– volume: 259
  start-page: 110011
  year: 2023
  ident: 5513_CR11
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.110011
– volume: 202
  start-page: 1
  year: 1997
  ident: 5513_CR50
  publication-title: Planta
  doi: 10.1007/s004250050096
– volume: 11
  start-page: 4239
  year: 2020
  ident: 5513_CR3
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-01704-w
– volume: 41
  start-page: 412
  issue: 2
  year: 2014
  ident: 5513_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.07.067
– volume: 97
  start-page: 849
  year: 2019
  ident: 5513_CR2
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 191
  start-page: 116158
  year: 2022
  ident: 5513_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– volume: 32
  start-page: 16625
  year: 2020
  ident: 5513_CR49
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04866-y
– ident: 5513_CR58
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 5513_CR61
  publication-title: Int J Bio-inspir Comput
  doi: 10.1504/IJBIC.2010.032124
SSID ssj0004373
Score 2.5320632
Snippet Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm, which combines efficient operators from the dragonfly algorithm, such as the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 761
SubjectTerms Accuracy
Benchmarks
Biogeography
Clustering
Compilers
Computer Science
Data transmission
Design engineering
Design optimization
Energy consumption
Energy efficiency
Evolutionary algorithms
Flowers
Heuristic
Internet of Things
Interpreters
Optimization algorithms
Optimization techniques
Performance evaluation
Processor Architectures
Productivity
Programming Languages
Sensors
Wireless networks
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yh48KLqQ3Tx2461Ii4dSxEfpLST70EKblib19zt5GSsq6DmTYTP7mG8yO98gdE6Z50thFAE0zojDI48IwBEEnLPxvAhCn5xLb9jng4EYjfz7sigsqW67VynJ_KSui90oY5yAjyFW1pWEiHW0Ae5OZA0bHh6HdTWkXeSVfQiMhOuwslTmex2r7qjGmF_Sorm36TX_N84dtF2iS9wplsMuWtPxHmpWnRtwuZH30bw_S5cJLi5z4BkcG9OyHhOHk5fZYpy-TvFFv9u5vMEhnuTCBQUoGcdZbl6rT4KAe7GueQ2xym-FrKg9QM-97tPtHSl7LxBpe3ZKQhMqK3JcSxqPKxpZnCmdkeUpZTOqFXxqaATXXuQISbU2wliC24oqYSKIqu1D1IhnsT5CmAtfSmbzyPiWY7SXMdBBlAjgjobcWE4L0WoKAlkSk2f9MSZBTamcmTQAkwa5SQPRQlcf78wLWo5fpdvVzAblFk0CG8CeC-uSuS10Xc1k_fhnbcd_Ez9BWwyAUPHbpo0a6WKpT9GmfEvHyeIsX7rvePnnPg
  priority: 102
  providerName: Springer Nature
Title Lotus effect optimization algorithm (LEA): a lotus nature-inspired algorithm for engineering design optimization
URI https://link.springer.com/article/10.1007/s11227-023-05513-8
https://www.proquest.com/docview/3256589225
Volume 80
WOSCitedRecordID wos001021399300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnDpFgrqAl35wIGqWMTOww4XRKtFSKxWKygIcYkSPyjSsrtls_39HScOKZXgwsWXOKMon-2Z8cx8A7DPeJIqaTVFa5zTSBQJlWhHUFTONkkKdH0qLr2bgRgO5e1tOvIXbnOfVtmcidVBrafK3ZEfhaibYxTD45PZb-q6Rrnoqm-hsQyrjiWBVal7V21dZFhHmFN0kWQccV80U5fOMc4FRY1FA9fjhMqXiqm1Nv8LkFZ656zz3i_-CB-8xUlO6yWyAUtmsgmdppsD8Zv7E8wG03IxJ3WCB5niUfLoazRJPr5HweWvR3Iw6J9-PSY5GVeTa1pQ-jBx8Xqj_5mItjAxLdch0VWmyAuxW3B91v_545z6fgxUhUlY0tzmOiiiOFA2EZoVgeDaOAI9rUPOjMYfm1spTFJEUjFjrLSBFKFmWtoCPe1wG1Ym04n5DETIVCkeisKmQWRN4ljp0HNEg4_lwgZRF1gDRqY8WbnrmTHOWpplB2CGAGYVgJnswrfnd2Y1Vcebs_ca1DK_bedZC1kXDhvc28evS9t5W9ourHM0huqrmz1YKZ8W5gusqT_lw_ypB6vf-8PRZQ-WLwTtVUsYx1F8h-Pl1c1f-1716Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmuhFVCSuoPRBE4x27MfsdA8JMUQhEIYNBzDcxpl-AMmyu7ADxj_Fb6R6Hg6YwI2D15meSnr663p0dX0F8IGLODHaW4reuKCRKmKq0Y-gaJx9HBcY-lRcej9TNRjow8Nkbwau2lqYcK2y1YmVorZjE87Iv0q0zX0UI_rfJmc0dI0K2dW2hUYNix335zeGbNO17R-4vh-F2NzY_75Fm64C1MhYljT3uWVF1GfGx8rygilhXaCBs1YK7ixnLPdaubiItOHOee2ZVtJyq32B8aJEuY_gcSTxYUgCK9rVYco6o51gSKb7kWiKdOpSPS6EomghKQs9Vai-bQg77_afhGxl5zbn_rc_9AKeNx41Wa-3wEuYcaNXMNd2qyCN8pqHSTouL6akvsBCxqgqT5saVJIPj3Ai5fEpWUk31j-tkpwMq8E17Sk9GYX7CM7eGIi-PnEdlyOx1U2YW2Jfw8GDzHsBZkfjkXsDROnEGCFV4RMWeRcH1j2MjNGh5bnyLOoBbxc_Mw0Ze-gJMsw6GukAmAwBk1WAyXQPPv_9ZlJTkdw7eqlFSdaopWnWQaQHX1qcda_vlvb2fmnL8HRrfzfN0u3BziI8E-j41cdUSzBbnl-4d_DEXJYn0_P31YYh8Ouh8XcNmodQDQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oGuOL-BlR1D74oNGGrRtr5xtRiEZCSFTC27KtrZLAIDD8-2334cCoifF5t8t2bXe_2939DuDcJI4bMsmxQuME2zRwMFM4AivnLB0nUKFPwqXXa9NOh_X7bnehiz-pds9TkmlPg2ZpiuLahMta0fhmEkKx8jfY0BNKMFuFNVsX0ut4_alXdEZaaY7ZVUESq9ska5v5Xseyayrw5pcUaeJ5WuX_P_M2bGWoEzXSbbIDKyLahXI-0QFlB3wPJu1xPJ-htMgDjdXnZJT1aSJ_-DqeDuK3EbpoNxuXN8hHw0Q4pQbFg0jn7AVfEFR4GImC7xDxpFpkSe0-vLSaz7f3OJvJgEPLsWLsS58bgV03QulQbgYGJVxoEj3OLWIKrl7Vl4wKJ7BZaAohmTQYtbjJmQxUtG0dQCkaR-IQEGVuGBKLBtI1bCkczUynokcF-kyfSsOugJkvhxdmhOV6bsbQK6iWtUk9ZVIvManHKnD1ec8kpev4Vbqar7KXHd2ZZykQWFf7ldQrcJ2vanH5Z21HfxM_g43uXctrP3Qej2GTKKyU_tmpQimezsUJrIfv8WA2PU129AfG5_MG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lotus+effect+optimization+algorithm+%28LEA%29%3A+a+lotus+nature-inspired+algorithm+for+engineering+design+optimization&rft.jtitle=The+Journal+of+supercomputing&rft.au=Dalirinia%2C+Elham&rft.au=Jalali%2C+Mehrdad&rft.au=Yaghoobi%2C+Mahdi&rft.au=Tabatabaee%2C+Hamid&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=1&rft.spage=761&rft.epage=799&rft_id=info:doi/10.1007%2Fs11227-023-05513-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon