Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network

As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has ex...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 15; no. 17; p. 9671
Main Authors: Ji, Qiang, Li, Ran, Jing, Shi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2025
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has exposed problems of low efficiency and slow convergence when dealing with nonlinear, high-dimensional, and strongly coupled problems. In response to these issues, this paper proposes an UBDO framework that integrates an efficient intelligent optimization algorithm with an excellent surrogate model. By fusing butterfly search with Levy flight optimization, an improved chicken swarm algorithm is introduced, aiming to address the imbalance between global exploitation and local exploration capabilities in the original algorithm. Additionally, Bayesian optimization is employed to fit the limit-state evaluation function using a BP neural network, with the objective of reducing the high computational costs associated with uncertainty analysis through repeated limit-state evaluations in uncertainty-based optimization. Finally, a decoupled optimization framework is adopted to integrate uncertainty analysis with design optimization, enhancing global optimization capabilities under uncertainty and addressing challenges associated with results that lack sufficient accuracy or reliability to meet design requirements. Based on the results from engineering case studies, the proposed UBDO framework demonstrates notable effectiveness and superiority.
AbstractList As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has exposed problems of low efficiency and slow convergence when dealing with nonlinear, high-dimensional, and strongly coupled problems. In response to these issues, this paper proposes an UBDO framework that integrates an efficient intelligent optimization algorithm with an excellent surrogate model. By fusing butterfly search with Levy flight optimization, an improved chicken swarm algorithm is introduced, aiming to address the imbalance between global exploitation and local exploration capabilities in the original algorithm. Additionally, Bayesian optimization is employed to fit the limit-state evaluation function using a BP neural network, with the objective of reducing the high computational costs associated with uncertainty analysis through repeated limit-state evaluations in uncertainty-based optimization. Finally, a decoupled optimization framework is adopted to integrate uncertainty analysis with design optimization, enhancing global optimization capabilities under uncertainty and addressing challenges associated with results that lack sufficient accuracy or reliability to meet design requirements. Based on the results from engineering case studies, the proposed UBDO framework demonstrates notable effectiveness and superiority.
Audience Academic
Author Ji, Qiang
Li, Ran
Jing, Shi
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0009-0008-5800-916X
  surname: Ji
  fullname: Ji, Qiang
– sequence: 2
  givenname: Ran
  orcidid: 0009-0006-3059-6759
  surname: Li
  fullname: Li, Ran
– sequence: 3
  givenname: Shi
  orcidid: 0009-0003-3252-7202
  surname: Jing
  fullname: Jing, Shi
BookMark eNpdkU9v1DAQxSNUJErpiS8QiSNKsWPHf47LQmGlqj1Az9bEsbfebuzgeKmWI5-cKUGoqn2Y0dObn0bzXlcnMUVXVW8puWBMkw8wTbSjUgtJX1SnLZGiYZzKkyf9q-p8nncEn6ZMUXJa_b6N1uUCIZZj8xFmN9Sf3By2sb6ZShjDLyghxfoyw-geUr6vFw9Km3HK6Sf267tg712svz1AHuvVfptyKHdjDXFA9xFp8Ix27Q4Z9ljKI_JN9dLDfnbn_-pZdXv5-fv6a3N182WzXl01lglWGrCicwM4PlBNByyat9T2jluqmO2tJ7ZTlmvtNXTSCmhBcC_7ngDKUrGzarNwhwQ7M-UwQj6aBMH8FVLeGsgl2L0zA0WIbGlLqOLeir714KnkwirFNGfIerew8AY_Dm4uZpcOOeL6hrUcI-gYEei6WFxbQGiIPpUMFv_gxmAxPR9QX6mu44oT1eLA-2XA5jTP2fn_a1JiHkM2T0JmfwCPe50n
Cites_doi 10.1016/j.cma.2023.116083
10.1007/s00158-020-02587-3
10.1049/cim2.12097
10.1016/B978-0-443-13925-3.00019-4
10.3390/app11104708
10.1201/9781003464792
10.1016/j.cie.2024.110335
10.1016/j.advengsoft.2013.12.007
10.1007/s00366-020-01187-5
10.1109/TSMC.2019.2956757
10.1504/IJOSM.2025.146788
10.1016/j.matdes.2021.109789
10.1109/TAC.2020.2977939
10.1016/j.eswa.2023.121219
10.1111/ffe.12906
10.1098/rsta.2022.0395
10.1016/j.ress.2022.108539
10.1109/TSMC.2025.3579565
10.1108/IJSI-06-2023-0049
10.1016/j.knosys.2024.111850
10.1016/j.aej.2023.12.050
10.1007/s00158-024-03884-x
10.1007/s11709-023-0976-8
10.1007/s12065-023-00822-6
10.1108/IJSI-08-2023-0080
10.1504/IJOSM.2025.146803
10.1016/j.cma.2024.116863
10.1016/j.oceaneng.2024.116842
10.1016/j.engstruct.2021.112989
10.1016/j.compstruct.2022.115862
10.1016/j.ress.2023.109406
10.1016/j.renene.2022.12.062
10.1016/j.cma.2023.115925
10.1002/9781394226771.ch8
10.1016/j.net.2025.103485
10.1504/IJOSM.2025.146804
10.1007/s00500-018-3102-4
10.1016/j.cma.2020.113610
10.1088/1742-6596/1654/1/012043
10.1002/adma.202370237
10.1007/s00158-023-03639-0
10.1007/s11831-022-09804-w
10.1007/978-981-97-3820-5_44
10.1016/B978-0-443-13242-1.00026-6
10.3390/app15084438
10.1016/j.compstruc.2022.106910
10.1007/s10462-024-10723-4
10.1016/j.cma.2024.117388
10.1016/j.eswa.2025.128027
10.1108/IJSI-10-2022-0129
10.1080/0305215X.2021.1928110
10.1007/s10462-024-10786-3
10.1016/j.oceaneng.2024.118213
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15179671
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_d1f9a72120184fc6b2faf1746c883943
A855484082
10_3390_app15179671
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-ac65edae4d191de4d9421cbe4c183cbcf0c58c499f9a57c6a2a64f7bb0a8c4783
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001569569000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:54:24 EDT 2025
Thu Nov 20 19:10:28 EST 2025
Tue Nov 04 18:11:36 EST 2025
Sat Nov 29 07:14:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ac65edae4d191de4d9421cbe4c183cbcf0c58c499f9a57c6a2a64f7bb0a8c4783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-3059-6759
0009-0003-3252-7202
0009-0008-5800-916X
OpenAccessLink https://doaj.org/article/d1f9a72120184fc6b2faf1746c883943
PQID 3249675306
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_d1f9a72120184fc6b2faf1746c883943
proquest_journals_3249675306
gale_infotracacademiconefile_A855484082
crossref_primary_10_3390_app15179671
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Huang (ref_41) 2025; 2
Wang (ref_4) 2020; 65
ref_14
ref_11
Yang (ref_18) 2024; 382
Yang (ref_17) 2023; 14
ref_19
Yu (ref_36) 2023; 17
ref_15
Su (ref_40) 2025; 57
Meng (ref_8) 2023; 203
Correia (ref_42) 2025; 2
ref_23
Lai (ref_32) 2022; 9
Fu (ref_38) 2020; 1654
Dong (ref_49) 2023; 14
Meng (ref_7) 2023; 412
Meng (ref_3) 2024; 295
Gharehchopogh (ref_53) 2023; 30
Zhu (ref_25) 2024; 236
Allahvirdizadeh (ref_37) 2023; 238
Yang (ref_10) 2024; 6
Persoons (ref_13) 2023; 275
He (ref_22) 2024; 87
Ni (ref_39) 2021; 246
Zhong (ref_52) 2020; 62
ref_31
Hu (ref_16) 2024; 67
Luo (ref_1) 2024; 423
Alhijawi (ref_20) 2024; 17
Ghasemi (ref_24) 2024; 295
Li (ref_34) 2022; 224
Chen (ref_47) 2024; 57
Wang (ref_46) 2023; 35
Meng (ref_2) 2024; 307
Mirjalili (ref_51) 2014; 69
Lai (ref_9) 2023; 14
Wang (ref_26) 2024; 57
Zhang (ref_21) 2024; 194
Meng (ref_28) 2023; 66
Hamza (ref_29) 2022; 38
Meng (ref_35) 2021; 206
Yang (ref_5) 2019; 51
Zhang (ref_54) 2021; 374
Su (ref_43) 2025; 286
Meng (ref_27) 2019; 42
Gargama (ref_45) 2024; 8
Zadeh (ref_30) 2022; 296
Meng (ref_33) 2022; 54
Yang (ref_44) 2025; 2
Arora (ref_48) 2019; 23
Meng (ref_12) 2023; 407
Zhang (ref_6) 2024; 432
References_xml – volume: 412
  start-page: 116083
  year: 2023
  ident: ref_7
  article-title: A novel hybrid adaptive Kriging and water cycle algorithm for reliability-based design and optimization strategy: Application in offshore wind turbine monopile
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116083
– volume: 62
  start-page: 1951
  year: 2020
  ident: ref_52
  article-title: First-order reliability method based on Harris Hawks Optimization for high-dimensional reliability analysis
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02587-3
– volume: 6
  start-page: e12097
  year: 2024
  ident: ref_10
  article-title: MECSBO: Multi-strategy enhanced circulatory system based optimisation algorithm for global optimisation and reliability-based design optimisation problems
  publication-title: IET Collab. Intell. Manuf.
  doi: 10.1049/cim2.12097
– ident: ref_19
  doi: 10.1016/B978-0-443-13925-3.00019-4
– ident: ref_31
  doi: 10.3390/app11104708
– ident: ref_23
  doi: 10.1201/9781003464792
– volume: 194
  start-page: 110335
  year: 2024
  ident: ref_21
  article-title: Intelligent planning of fire evacuation routes in buildings based on improved adaptive ant colony algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110335
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_51
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 38
  start-page: 1953
  year: 2022
  ident: ref_29
  article-title: A new efficient hybrid approach for reliability-based design optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01187-5
– volume: 51
  start-page: 5895
  year: 2019
  ident: ref_5
  article-title: Stabilization of stochastic retarded systems based on sampled-data feedback control
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2956757
– volume: 2
  start-page: 1
  year: 2025
  ident: ref_42
  article-title: A review on fatigue design of offshore structures
  publication-title: Int. J. Ocean Syst. Manag.
  doi: 10.1504/IJOSM.2025.146788
– volume: 9
  start-page: 2151
  year: 2022
  ident: ref_32
  article-title: A general methodology for reliability-based robust design optimization of computation-intensive engineering problems
  publication-title: J. Comput. Des. Eng.
– volume: 206
  start-page: 109789
  year: 2021
  ident: ref_35
  article-title: Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109789
– volume: 65
  start-page: 5415
  year: 2020
  ident: ref_4
  article-title: Stability analysis of discrete-time semi-Markov jump linear systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.2977939
– volume: 236
  start-page: 121219
  year: 2024
  ident: ref_25
  article-title: Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121219
– volume: 42
  start-page: 1219
  year: 2019
  ident: ref_27
  article-title: Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.12906
– volume: 382
  start-page: 20220395
  year: 2024
  ident: ref_18
  article-title: A novel learning function for adaptive surrogate-model-based reliability evaluation
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2022.0395
– volume: 224
  start-page: 108539
  year: 2022
  ident: ref_34
  article-title: Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108539
– ident: ref_11
  doi: 10.1109/TSMC.2025.3579565
– volume: 14
  start-page: 809
  year: 2023
  ident: ref_17
  article-title: A reliability-based design and optimization strategy using a novel MPP searching method for maritime engineering structures
  publication-title: Int. J. Struct. Integr.
  doi: 10.1108/IJSI-06-2023-0049
– volume: 295
  start-page: 111850
  year: 2024
  ident: ref_24
  article-title: Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111850
– volume: 87
  start-page: 543
  year: 2024
  ident: ref_22
  article-title: EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.12.050
– volume: 67
  start-page: 168
  year: 2024
  ident: ref_16
  article-title: Reliability-based design optimization: A state-of-the-art review of its methodologies, applications, and challenges
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-024-03884-x
– volume: 17
  start-page: 1086
  year: 2023
  ident: ref_36
  article-title: Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-023-0976-8
– volume: 17
  start-page: 1245
  year: 2024
  ident: ref_20
  article-title: Genetic algorithms: Theory, genetic operators, solutions, and applications
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-023-00822-6
– volume: 14
  start-page: 946
  year: 2023
  ident: ref_9
  article-title: Fast solution of reliability-based robust design optimization by reducing the evaluation number for the performance functions
  publication-title: Int. J. Struct. Integr.
  doi: 10.1108/IJSI-08-2023-0080
– volume: 2
  start-page: 35
  year: 2025
  ident: ref_41
  article-title: Key vulnerability parameters for steel pipe pile-supported wharves considering the uncertainties in structural design
  publication-title: Int. J. Ocean Syst. Manag.
  doi: 10.1504/IJOSM.2025.146803
– volume: 423
  start-page: 116863
  year: 2024
  ident: ref_1
  article-title: Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.116863
– volume: 295
  start-page: 116842
  year: 2024
  ident: ref_3
  article-title: Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.116842
– volume: 246
  start-page: 112989
  year: 2021
  ident: ref_39
  article-title: Reliability based design optimization of bridges considering bridge-vehicle interaction by Kriging surrogate model
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112989
– volume: 296
  start-page: 115862
  year: 2022
  ident: ref_30
  article-title: An efficient Bi-level hybrid multi-objective reliability-based design optimization of composite structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115862
– volume: 238
  start-page: 109406
  year: 2023
  ident: ref_37
  article-title: Improved dynamic design method of ballasted high-speed railway bridges using surrogate-assisted reliability-based design optimization of dependent variables
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109406
– volume: 203
  start-page: 407
  year: 2023
  ident: ref_8
  article-title: A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.12.062
– volume: 407
  start-page: 115925
  year: 2023
  ident: ref_12
  article-title: Unified reliability-based design optimization with probabilistic, uncertain-but-bounded and fuzzy variables
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.115925
– volume: 8
  start-page: 125
  year: 2024
  ident: ref_45
  article-title: Genetic Algorithm and Artificial Neural Networks in Reliability-Based Design Optimization
  publication-title: Reliab. Anal. Mod. Power Syst.
  doi: 10.1002/9781394226771.ch8
– volume: 57
  start-page: 103485
  year: 2025
  ident: ref_40
  article-title: An improved CREAM model based on Deng entropy and evidence distance
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2025.103485
– volume: 2
  start-page: 52
  year: 2025
  ident: ref_44
  article-title: Modelling and analysis of offshore wind turbine gearbox under multi-field coupling
  publication-title: Int. J. Ocean. Syst. Manag.
  doi: 10.1504/IJOSM.2025.146804
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_48
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 374
  start-page: 113610
  year: 2021
  ident: ref_54
  article-title: A PDF-based performance shift approach for reliability-based design optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113610
– volume: 1654
  start-page: 012043
  year: 2020
  ident: ref_38
  article-title: A reliability based multidisciplinary design optimization method with multi-source uncertainties
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1654/1/012043
– volume: 35
  start-page: 2370237
  year: 2023
  ident: ref_46
  article-title: Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials (Adv. Mater. 33/2023)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202370237
– volume: 66
  start-page: 191
  year: 2023
  ident: ref_28
  article-title: Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: A comparative study
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-023-03639-0
– volume: 30
  start-page: 427
  year: 2023
  ident: ref_53
  article-title: Advances in sparrow search algorithm: A comprehensive survey
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09804-w
– ident: ref_14
  doi: 10.1007/978-981-97-3820-5_44
– ident: ref_15
  doi: 10.1016/B978-0-443-13242-1.00026-6
– ident: ref_50
  doi: 10.3390/app15084438
– volume: 275
  start-page: 106910
  year: 2023
  ident: ref_13
  article-title: Robust design optimisation under lack-of-knowledge uncertainty
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2022.106910
– volume: 57
  start-page: 98
  year: 2024
  ident: ref_26
  article-title: Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10723-4
– volume: 432
  start-page: 117388
  year: 2024
  ident: ref_6
  article-title: A novel reliability-based design optimization method through instance-based transfer learning
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117388
– volume: 286
  start-page: 128027
  year: 2025
  ident: ref_43
  article-title: A novel belief entropy and its application in cooperative situational awareness
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.128027
– volume: 14
  start-page: 248
  year: 2023
  ident: ref_49
  article-title: Robust optimization design method for structural reliability based on active-learning MPA-BP neural network
  publication-title: Int. J. Struct. Integr.
  doi: 10.1108/IJSI-10-2022-0129
– volume: 54
  start-page: 1374
  year: 2022
  ident: ref_33
  article-title: Reliability-based multidisciplinary concurrent design optimization method for complex engineering systems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2021.1928110
– volume: 57
  start-page: 170
  year: 2024
  ident: ref_47
  article-title: A comprehensive survey on the chicken swarm optimization algorithm and its applications: State-of-the-art and research challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10786-3
– volume: 307
  start-page: 118213
  year: 2024
  ident: ref_2
  article-title: Intelligent-inspired framework for fatigue reliability evaluation of offshore wind turbine support structures under hybrid uncertainty
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118213
SSID ssj0000913810
Score 2.3290138
Snippet As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 9671
SubjectTerms Accuracy
Algorithms
Analysis
Bayesian optimization
Behavior
BP neural network
Case studies
Collaboration
Design optimization
Efficiency
Engineering
engineering structure
Environmental engineering
improved chicken swarm optimization algorithm
Mathematical optimization
Methods
Neural networks
Optimization algorithms
uncertainty-based design optimization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9VAEJ8geNADAmp8imQPJOhhY7ttt_tO5j3lhQN5EhHDbbNfRaOvD_sqhCt_uTPtPoQDXjy1mW6aSWZ2PnZnfgOwK1zlpCkUrzKV8NwlhluMSrnwzpbe-8J37WNfD8vpVJ2eDo_igdsillUubWJnqP3c0Rn5O3T8QwxuMcJ9f_6L09Qoul2NIzQewBohlaGer433p0efb05ZCPVSpUnfmJdhfk_3winBUskyveOKOsT---xy52wmT_6XzQ1Yj2EmG_V6sQkrod6Cx7fAB7dgM27rBXsTsaffPoXrE6R0RQLtFR-jh_PsY1fjwT6hbZnFpk02WZZ0sX4NkvrTCXyn4o4foWbHl6aZsdHPM2Sv_TZjpva4-ipQ1-bdvxFACDI77SvSn8HJZP_LhwMexzRwl8ms5cbJIngTco-5n8fHMBepsyF3aC6cdVXiCuUws6qGpihRM4SReVVamxgklyp7Dqv1vA4vgEkZksQXxkvMOoUwKsiqEN5nVjibWDmA3aXE9HmPxqExiyHB6luCHcCYpHmzhCC0O8K8OdNxR2qfIj-Y_2IEpHJUWCsqU2F-Jp3CoDHPBrBHuqBpo7eNcSb2KyCnBJmlR1Tgp2he9wC2l7qgowVY6L-K8PLfn1_BI0Ezhbu6tW1YbZvf4TU8dBft90WzExX6D_MVA2Y
  priority: 102
  providerName: ProQuest
Title Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network
URI https://www.proquest.com/docview/3249675306
https://doaj.org/article/d1f9a72120184fc6b2faf1746c883943
Volume 15
WOSCitedRecordID wos001569569000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hyqE9oPJSF-jKByTKISJxEsc57lJWIMF2xaOCk-VX2lW7AWUD1V77yxk7WbQcEBdOSUaWNfLMeDzxzDcAe1QXmsmUB0XMwyDRoQwUnkoDarTKjDGp8eVjP8-y4ZDf3OSjhVZfLiesgQduFu7QREUuMUxBR8UTnFfRQhZ4jGaao29PPM5nmOULwZTfg_PIQVc1BXkxxvXuPjhycFQsi164II_U_9p-7J3M4DOstqdD0mu4WoMlW67DpwXMwHVYa61xSr61kNEHG_D_Gin-br-eBX10TIZ896kZ5AduCZO21pIM5plYpBmDpOanAr67nIw_tiSX_2Q1Ib2_v-6qcf17QmRpcPTMumLLl7M5XA9kdtgkkm_C9eD46ugkaLsrBDpmcR1IzVJrpE0MhmwGH3lCI61sotHKtdJFqFOuMSDC9U8zFCiVLCkypUKJ5IzHW7Bc3pX2CxDGbBiaVBqGwSKlkltWpNSYWFGtQsU6sDdfcHHfgGgIDD6cXMSCXDrQd8J4HuKQrz0B9UG0-iDe0ocO7DtRCmefdSW1bMsMkFOHdCV6Li-PuzbbHdidS1u0hjsVeL5EVlIMpLbfg5sd-Ehdw2CflLYLy3X1YL_Cin6sx9OqCx_6x8PRRdfrLn6NTs9Ht086jfab
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpALBTwoQg4RCRO4jgHhLaUVVfdLivRovZkHNspCDZbsoFqr_wgfiMzeZT2ALceOCVyrMhxPs_D_mYGYJOb3AgdSy8Ppe9Fxtdehlapx63JEmttbOvwsQ_jZDKRh4fpdAV-dbEwRKvsZGItqO3c0B75S1T8KRq3aOG-PvnmUdUoOl3tSmg0sNh1y1N02RavRtv4f59yPny7_2bHa6sKeCYUYeVpI2JntYssuioWL2nEA5O5yCC6TWZy38TSoCOQpzpO8EO4FlGeZJmvsTmRIb73CqxGBPYerE5He9Ojs10dyrIpA78JBAzD1Kdz6IDSYIkkuKD66goBf9MDtXIb3vrfpuU23GzNaDZocL8GK65Yhxvnkiuuw1orthbseZtb-8Ud-HmALTUJolp6W6jBLduuOSzsHcrOWRuUyoYdZY01fbCp2X3BeyKvfHEFe3-qyxkbfD3G6ag-zZguLPZeOopKvfg2SoCCg500jPu7cHApM3MPesW8cPeBCeF838baCvSqOdfSiTzm1oYZN5mfiT5sdghRJ022EYVeGgFJnQNSH7YIPWddKEV43TAvj1UrcZQNcDzo36OFJyNckBnPdY7-pzASjeIo7MMzwp4iQVaV2ug2HgNHSinB1IAIjJLqkfdho8OeaiXcQv0B3oN_P34C13b298ZqPJrsPoTrnOon1xy9DehV5Xf3CK6aH9XnRfm4XUwMPl42UH8DbgtjoQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwAFpAXSjgQxFwiJo4ieMcENqyrFi1LCtBUXsyfqVFsNmSDVR75Wfx6xgnTmkPcOuBUyLHihzn8zzsb2YAtqguNJMpD4qYh0GiQxkotEoDarTKjDGpacLHPu5lkwk_OMinK_Cri4VxtMpOJjaC2sy12yPfRsWfo3GLFu524WkR0-Ho5cm3wFWQcietXTmNFiK7dnmK7tvixXiI__oJpaPXH169CXyFgUDHLK4DqVlqjbSJQbfF4CVPaKSVTTQiXStdhDrlGp2CIpdphh9FJUuKTKlQYnPGY3zvFVhFkzyhPVidjt9OD892eFzGTR6FbVBgHOehO5OOXEoslkUX1GBTLeBvOqFRdKNb__MU3Yab3rwmg3Y9rMGKLdfhxrmki-uw5sXZgjzzObef34Gf-9jSkCPqZbCDmt2QYcNtIe9Qps58sCoZdVQ20vbBpnZXBu8dqeWLLcn7U1nNyODrEU5HfTwjsjTYe2ldtOrFt7nEKDjYScvEvwv7lzIz96BXzku7AYQxG4YmlYaht02p5JYVKTUmVlSrULE-bHVoESdtFhKB3psDlTgHqj7sOCSddXGpw5uGeXUkvCQSJsLxoN-Plh9PcKEqWsgC_VKmORrLSdyHpw6Hwgm4upJa-jgNHKlLFSYGjtjIXZ3yPmx2OBRe8i3EHxDe__fjx3AN0Sn2xpPdB3CdurLKDXVvE3p19d0-hKv6R_15UT3y64rAp8vG6W-T-2xh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Based+Design+Optimization+Framework+Based+on+Improved+Chicken+Swarm+Algorithm+and+Bayesian+Optimization+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Qiang+Ji&rft.au=Ran+Li&rft.au=Shi+Jing&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=17&rft.spage=9671&rft_id=info:doi/10.3390%2Fapp15179671&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d1f9a72120184fc6b2faf1746c883943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon