Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging

To implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging for evaluation of tumor blood flow (TBF) in patients with brain tumors. Thir...

Full description

Saved in:
Bibliographic Details
Published in:Radiology Vol. 228; no. 2; p. 523
Main Authors: Warmuth, Carsten, Gunther, Matthias, Zimmer, Claus
Format: Journal Article
Language:English
Published: United States 01.08.2003
Subjects:
ISSN:0033-8419
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging for evaluation of tumor blood flow (TBF) in patients with brain tumors. Thirty-six patients with histologically proven brain tumors were examined at 1.5 T. A second version of quantitative imaging of perfusion by using a single subtraction with addition of thin-section periodic saturation after inversion and a time delay (Q2TIPS) technique of pulsed arterial spin labeling in the multisection mode was implemented. After arterial spin labeling, a combined T2- and T2*-weighted first-pass bolus perfusion study (gadopentetate dimeglumine, 0.2 mmol/kg) was performed by using a double-echo echo-planar imaging sequence. In regions of interest, maps of absolute and relative cerebral blood flow were computed and analyzed with arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging, respectively. Both techniques yielded the highest perfusion values in imaging of glioblastomas and the lowest values in imaging of two low-grade gliomas that both showed strong gadopentetate dimeglumine enhancement. There was a close linear correlation between dynamic susceptibility-weighted contrast-enhanced MR imaging and arterial spin labeling in the tumor region of interest (linear regression coefficient, R = 0.83; P <.005). Blood flow is underestimated with arterial spin labeling at low flow rates. High- and low-grade gliomas can be distinguished at the same level of significance with both methods. Absolute TBF is less important for tumor grading than is the ratio of TBF to age-dependent mean brain perfusion. Arterial spin labeling is a suitable method for assessment of microvascular perfusion and allows distinction between high- and low-grade gliomas.
AbstractList To implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging for evaluation of tumor blood flow (TBF) in patients with brain tumors. Thirty-six patients with histologically proven brain tumors were examined at 1.5 T. A second version of quantitative imaging of perfusion by using a single subtraction with addition of thin-section periodic saturation after inversion and a time delay (Q2TIPS) technique of pulsed arterial spin labeling in the multisection mode was implemented. After arterial spin labeling, a combined T2- and T2*-weighted first-pass bolus perfusion study (gadopentetate dimeglumine, 0.2 mmol/kg) was performed by using a double-echo echo-planar imaging sequence. In regions of interest, maps of absolute and relative cerebral blood flow were computed and analyzed with arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging, respectively. Both techniques yielded the highest perfusion values in imaging of glioblastomas and the lowest values in imaging of two low-grade gliomas that both showed strong gadopentetate dimeglumine enhancement. There was a close linear correlation between dynamic susceptibility-weighted contrast-enhanced MR imaging and arterial spin labeling in the tumor region of interest (linear regression coefficient, R = 0.83; P <.005). Blood flow is underestimated with arterial spin labeling at low flow rates. High- and low-grade gliomas can be distinguished at the same level of significance with both methods. Absolute TBF is less important for tumor grading than is the ratio of TBF to age-dependent mean brain perfusion. Arterial spin labeling is a suitable method for assessment of microvascular perfusion and allows distinction between high- and low-grade gliomas.
To implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging for evaluation of tumor blood flow (TBF) in patients with brain tumors.PURPOSETo implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging for evaluation of tumor blood flow (TBF) in patients with brain tumors.Thirty-six patients with histologically proven brain tumors were examined at 1.5 T. A second version of quantitative imaging of perfusion by using a single subtraction with addition of thin-section periodic saturation after inversion and a time delay (Q2TIPS) technique of pulsed arterial spin labeling in the multisection mode was implemented. After arterial spin labeling, a combined T2- and T2*-weighted first-pass bolus perfusion study (gadopentetate dimeglumine, 0.2 mmol/kg) was performed by using a double-echo echo-planar imaging sequence. In regions of interest, maps of absolute and relative cerebral blood flow were computed and analyzed with arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging, respectively.MATERIALS AND METHODSThirty-six patients with histologically proven brain tumors were examined at 1.5 T. A second version of quantitative imaging of perfusion by using a single subtraction with addition of thin-section periodic saturation after inversion and a time delay (Q2TIPS) technique of pulsed arterial spin labeling in the multisection mode was implemented. After arterial spin labeling, a combined T2- and T2*-weighted first-pass bolus perfusion study (gadopentetate dimeglumine, 0.2 mmol/kg) was performed by using a double-echo echo-planar imaging sequence. In regions of interest, maps of absolute and relative cerebral blood flow were computed and analyzed with arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging, respectively.Both techniques yielded the highest perfusion values in imaging of glioblastomas and the lowest values in imaging of two low-grade gliomas that both showed strong gadopentetate dimeglumine enhancement. There was a close linear correlation between dynamic susceptibility-weighted contrast-enhanced MR imaging and arterial spin labeling in the tumor region of interest (linear regression coefficient, R = 0.83; P <.005). Blood flow is underestimated with arterial spin labeling at low flow rates. High- and low-grade gliomas can be distinguished at the same level of significance with both methods. Absolute TBF is less important for tumor grading than is the ratio of TBF to age-dependent mean brain perfusion.RESULTSBoth techniques yielded the highest perfusion values in imaging of glioblastomas and the lowest values in imaging of two low-grade gliomas that both showed strong gadopentetate dimeglumine enhancement. There was a close linear correlation between dynamic susceptibility-weighted contrast-enhanced MR imaging and arterial spin labeling in the tumor region of interest (linear regression coefficient, R = 0.83; P <.005). Blood flow is underestimated with arterial spin labeling at low flow rates. High- and low-grade gliomas can be distinguished at the same level of significance with both methods. Absolute TBF is less important for tumor grading than is the ratio of TBF to age-dependent mean brain perfusion.Arterial spin labeling is a suitable method for assessment of microvascular perfusion and allows distinction between high- and low-grade gliomas.CONCLUSIONArterial spin labeling is a suitable method for assessment of microvascular perfusion and allows distinction between high- and low-grade gliomas.
Author Gunther, Matthias
Warmuth, Carsten
Zimmer, Claus
Author_xml – sequence: 1
  givenname: Carsten
  surname: Warmuth
  fullname: Warmuth, Carsten
  organization: Department of Neuroradiology, Charité Medical School, Humboldt University of Berlin, Schumannstrasse 20-21, D-10098 Berlin, Germany
– sequence: 2
  givenname: Matthias
  surname: Gunther
  fullname: Gunther, Matthias
– sequence: 3
  givenname: Claus
  surname: Zimmer
  fullname: Zimmer, Claus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12819338$$D View this record in MEDLINE/PubMed
BookMark eNo1kMlKBDEURbNocf4AN5KVu2ozVHUSdyJOoIii6-ZlqDaSSsokhfR3-MMWqJv74HE4XO4BWsQUHUInlCwpbeV5ButTWDImGWGkJWqB9gnhvJEtVXvooJQPQmjbSbGL9iiTVHEu99H38wSx-t4bqD5FnHqsQ0oW9yF9YR-xzjBnnYaUywU2aRgh-_JLQq4uewi4jDMTQLvg4wZDtNhuIwze4DIV48bqtQ--bpsv5zfv1dlZFGuGUhsX3yGa-fP4gv0Am1lwhHZ6CMUd_91D9HZz_Xp11zw83d5fXT40hq94bUD1TJpWUa41KNF33FgDkjjFOr4C21uhO6mJFMpBy5ymQnCizMpyoYSj7BCd_XrHnD4nV-p68HPbECC6NJW14CvSCtbN4OkfOOnB2fWY56Z5u_6fkf0AGUB5kg
CitedBy_id crossref_primary_10_1007_s00234_015_1497_5
crossref_primary_10_1259_bjr_66316279
crossref_primary_10_1038_s41598_020_62658_9
crossref_primary_10_1002_jmri_20206
crossref_primary_10_1016_j_mri_2007_07_003
crossref_primary_10_1002_nbm_3124
crossref_primary_10_1158_1078_0432_CCR_07_0658
crossref_primary_10_1016_j_radcr_2021_06_082
crossref_primary_10_3389_fonc_2025_1647254
crossref_primary_10_1007_s00234_006_0122_z
crossref_primary_10_1016_j_ejrad_2017_10_005
crossref_primary_10_1097_01_rmr_0000245464_36148_dc
crossref_primary_10_1007_s00234_016_1756_0
crossref_primary_10_1016_j_ncl_2008_09_015
crossref_primary_10_1002_mrm_21317
crossref_primary_10_1097_WCO_0b013e328318402a
crossref_primary_10_1148_radiol_2521081059
crossref_primary_10_1186_s13014_020_01643_y
crossref_primary_10_1007_s11060_012_0997_y
crossref_primary_10_1007_s11547_024_01923_7
crossref_primary_10_1007_s00062_011_0126_x
crossref_primary_10_1016_j_ejro_2021_100378
crossref_primary_10_1148_radiol_2343040359
crossref_primary_10_1227_01_neu_0000279316_03266_cd
crossref_primary_10_1093_jnci_dji023
crossref_primary_10_1002_jmri_24026
crossref_primary_10_1007_s00330_015_3755_7
crossref_primary_10_3390_pharmaceutics14020451
crossref_primary_10_1016_j_crad_2004_09_009
crossref_primary_10_1016_j_neurad_2007_11_007
crossref_primary_10_1007_s00259_017_3777_2
crossref_primary_10_1016_j_ejrad_2014_07_002
crossref_primary_10_1007_s11060_017_2604_8
crossref_primary_10_1007_s00381_012_1741_9
crossref_primary_10_3389_fneur_2020_00005
crossref_primary_10_1111_j_1552_6569_2012_00703_x
crossref_primary_10_1097_RCT_0000000000001180
crossref_primary_10_1148_radiol_2016150789
crossref_primary_10_1097_RCT_0b013e31814cf81f
crossref_primary_10_1177_197140090702000203
crossref_primary_10_2217_iim_09_30
crossref_primary_10_1016_j_acra_2009_10_024
crossref_primary_10_1007_s11060_015_1908_9
crossref_primary_10_1177_197140091202500109
crossref_primary_10_1002_jmri_20579
crossref_primary_10_1161_01_STR_0000177884_72657_8b
crossref_primary_10_1053_j_seminoncol_2014_06_006
crossref_primary_10_1161_STROKEAHA_111_635979
crossref_primary_10_1016_j_nic_2010_04_008
crossref_primary_10_3390_cancers15143577
crossref_primary_10_1016_j_ejrad_2016_08_009
crossref_primary_10_1097_RMR_0b013e31821e570a
crossref_primary_10_1148_radiol_2015142156
crossref_primary_10_1007_s00234_021_02794_9
crossref_primary_10_1016_j_critrevonc_2006_01_004
crossref_primary_10_1016_j_ejrad_2019_01_008
crossref_primary_10_1007_s11060_014_1666_0
crossref_primary_10_1017_S1355617707070634
crossref_primary_10_1258_ar_2012_120191
crossref_primary_10_1007_s00234_015_1571_z
crossref_primary_10_1016_S1064_9689_03_00070_9
crossref_primary_10_1093_neuonc_nop006
crossref_primary_10_3171_2015_8_JNS151211
crossref_primary_10_1007_s11517_015_1332_5
crossref_primary_10_1093_neuros_nyw108
crossref_primary_10_3390_bs12020048
crossref_primary_10_3390_cancers14061432
crossref_primary_10_1016_j_clinimag_2020_04_006
crossref_primary_10_1007_s00234_012_1089_6
crossref_primary_10_1002_jmri_25489
crossref_primary_10_1007_s00062_017_0590_z
crossref_primary_10_1016_j_radonc_2015_12_017
crossref_primary_10_1148_radiol_2393042031
crossref_primary_10_1097_CCO_0000000000000896
crossref_primary_10_4103_neurol_india_NI_317_20
crossref_primary_10_1007_s10334_021_00975_4
crossref_primary_10_1007_s00117_004_1048_2
crossref_primary_10_1177_0284185112474916
crossref_primary_10_1016_S0150_9861_05_83159_1
crossref_primary_10_1007_s00330_018_5359_5
crossref_primary_10_1016_j_hoc_2004_06_011
crossref_primary_10_1016_j_wneu_2016_06_004
crossref_primary_10_1371_journal_pone_0166662
crossref_primary_10_1007_s00234_018_1992_6
crossref_primary_10_1038_nrclinonc_2011_62
crossref_primary_10_1016_j_crad_2016_10_016
crossref_primary_10_1016_j_pmr_2016_01_002
crossref_primary_10_1016_j_mric_2008_12_002
crossref_primary_10_1007_s11547_025_02048_1
crossref_primary_10_1016_S0028_3770_05_83490_3
crossref_primary_10_1007_s00234_019_02358_y
crossref_primary_10_1007_s00330_019_06474_4
crossref_primary_10_1002_mrm_24520
crossref_primary_10_1177_19714009231193163
crossref_primary_10_1186_s12880_020_00450_x
crossref_primary_10_1097_RMR_0000000000000065
crossref_primary_10_1155_2017_6053879
crossref_primary_10_1016_j_ejca_2016_10_037
crossref_primary_10_1016_j_actbio_2019_05_051
crossref_primary_10_3892_etm_2016_3225
crossref_primary_10_1002_jmri_24178
crossref_primary_10_1016_j_ejrad_2008_06_033
crossref_primary_10_1007_s00330_013_3057_x
crossref_primary_10_1016_j_mric_2012_08_001
crossref_primary_10_1016_j_neurad_2013_04_005
crossref_primary_10_1016_j_mric_2023_08_005
crossref_primary_10_1007_s00330_010_1870_z
crossref_primary_10_1016_j_ejrad_2016_05_015
crossref_primary_10_1259_bjr_20200661
crossref_primary_10_1002_jmri_25022
crossref_primary_10_1016_j_heliyon_2023_e17615
crossref_primary_10_3389_fnhum_2019_00350
crossref_primary_10_1016_j_jns_2006_02_015
crossref_primary_10_1007_s00234_018_2021_5
crossref_primary_10_1007_s11604_011_0025_8
crossref_primary_10_1016_j_neuchi_2008_03_007
crossref_primary_10_3389_fonc_2022_874924
crossref_primary_10_3892_ol_2019_10656
crossref_primary_10_1016_j_heliyon_2021_e07615
crossref_primary_10_1007_s11060_020_03475_y
crossref_primary_10_1016_j_neuroimage_2016_09_007
crossref_primary_10_1007_s11910_005_0009_0
crossref_primary_10_1097_01_rli_0000119195_50515_04
crossref_primary_10_4329_wjr_v2_i10_384
crossref_primary_10_1016_j_mri_2011_07_026
crossref_primary_10_1148_radiol_2016152228
crossref_primary_10_1097_RLI_0b013e3181ec9db0
crossref_primary_10_1517_14728222_11_4_473
crossref_primary_10_1016_j_acra_2015_09_013
crossref_primary_10_3390_diagnostics12061444
crossref_primary_10_1016_j_neurad_2010_12_003
crossref_primary_10_1186_s43055_025_01517_x
crossref_primary_10_1007_s00330_019_06379_2
crossref_primary_10_1016_j_neuroimage_2016_03_054
crossref_primary_10_1016_j_nic_2005_11_005
crossref_primary_10_3389_fneur_2021_733323
crossref_primary_10_1016_j_clineuro_2011_12_022
crossref_primary_10_1148_radiol_14140130
crossref_primary_10_1002_jmri_24751
crossref_primary_10_1016_j_radonc_2019_05_020
crossref_primary_10_1002_nbm_1210
crossref_primary_10_1007_s10334_007_0073_3
crossref_primary_10_1155_2014_108691
crossref_primary_10_1016_j_nicl_2019_101696
crossref_primary_10_1016_j_cpet_2013_03_003
crossref_primary_10_1109_TMI_2006_886807
crossref_primary_10_1016_j_pscychresns_2010_01_009
crossref_primary_10_1007_s11060_014_1586_z
crossref_primary_10_1007_s00330_009_1675_0
crossref_primary_10_1371_journal_pone_0075717
crossref_primary_10_1016_j_xphs_2017_06_019
crossref_primary_10_1586_14737140_6_5_733
crossref_primary_10_1148_radiol_12111740
crossref_primary_10_3389_fneur_2015_00033
crossref_primary_10_3390_cancers13122960
crossref_primary_10_1148_radiol_2351031663
crossref_primary_10_1002_jmri_24421
crossref_primary_10_3171_JNS_07_09_0600
crossref_primary_10_1042_BSR20180507
crossref_primary_10_1177_153303460400300605
crossref_primary_10_1097_00002142_200402000_00003
crossref_primary_10_1016_j_mri_2014_01_016
crossref_primary_10_1007_s00062_011_0073_6
crossref_primary_10_1007_s11060_023_04290_x
crossref_primary_10_1002_cam4_177
crossref_primary_10_1016_j_wneu_2015_09_048
crossref_primary_10_1016_j_neuroimage_2017_08_062
crossref_primary_10_3390_cancers16030576
crossref_primary_10_1016_j_neuroimage_2007_11_053
crossref_primary_10_1002_jmri_25191
crossref_primary_10_1093_neuonc_noy095
crossref_primary_10_1200_JCO_2010_32_6082
crossref_primary_10_1002_nbm_3297
crossref_primary_10_1016_j_mri_2010_05_002
crossref_primary_10_29001_2073_8552_2025_40_2_32_43
crossref_primary_10_1148_radiol_2453061932
crossref_primary_10_1016_j_neuroimage_2020_117031
crossref_primary_10_1016_j_neurad_2024_101211
crossref_primary_10_3390_jcm10112387
crossref_primary_10_1007_s11864_008_0052_6
crossref_primary_10_1007_s00330_021_08406_7
crossref_primary_10_1007_s00234_009_0616_6
crossref_primary_10_1177_197140091302600405
crossref_primary_10_1007_s00234_015_1574_9
crossref_primary_10_1002_tox_23800
crossref_primary_10_1259_bjr_67705974
crossref_primary_10_1016_j_clinimag_2011_11_003
crossref_primary_10_1097_MD_0000000000016012
crossref_primary_10_1371_journal_pone_0099616
crossref_primary_10_1002_nbm_2915
crossref_primary_10_1002_jmri_23586
crossref_primary_10_1007_s00234_011_0977_5
crossref_primary_10_3390_cancers15112992
crossref_primary_10_3390_diagnostics12102450
crossref_primary_10_3389_fnins_2022_856808
crossref_primary_10_1007_s00247_011_2280_3
crossref_primary_10_1007_s10334_011_0255_x
crossref_primary_10_1016_j_nurt_2007_04_005
crossref_primary_10_1016_j_neuroimage_2019_01_004
crossref_primary_10_1517_14712598_8_4_541
crossref_primary_10_1002_nbm_2904
crossref_primary_10_1097_RCT_0b013e318282d7e2
crossref_primary_10_1212_01_wnl_0000219767_49705_9c
crossref_primary_10_1016_j_ncl_2013_08_002
crossref_primary_10_1517_17460441_2_11_1477
crossref_primary_10_1016_j_addr_2014_07_010
crossref_primary_10_1016_j_nicl_2020_102447
crossref_primary_10_3348_kjr_2016_17_5_598
crossref_primary_10_3892_etm_2017_4370
crossref_primary_10_1186_s41747_021_00243_z
crossref_primary_10_1016_j_mric_2009_01_008
crossref_primary_10_1016_j_acra_2010_08_002
crossref_primary_10_1016_j_clon_2023_08_001
crossref_primary_10_1002_jmri_20415
crossref_primary_10_1002_nbm_1231
crossref_primary_10_1148_rg_220088
crossref_primary_10_1038_s41598_022_05992_4
crossref_primary_10_1016_j_wneu_2020_07_039
crossref_primary_10_1016_j_neurad_2021_01_002
crossref_primary_10_1259_bjr_20150624
crossref_primary_10_1002_mrm_21403
crossref_primary_10_1586_14737140_7_11_1537
crossref_primary_10_1007_s00117_006_1406_3
crossref_primary_10_1016_j_nic_2012_02_012
crossref_primary_10_1586_14737175_8_10_1507
ContentType Journal Article
Copyright Copyright RSNA, 2003.
Copyright_xml – notice: Copyright RSNA, 2003.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.2282020409
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
ExternalDocumentID 12819338
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ACRZS
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
NPM
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
VXZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZKG
ZVN
ZXP
7X8
ID FETCH-LOGICAL-c363t-a9f28c4913bba97f53cdca80e92536adfd7b58b0879ea42eb177309c6d3797e12
IEDL.DBID 7X8
ISICitedReferencesCount 291
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184381100034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0033-8419
IngestDate Fri Sep 05 09:18:53 EDT 2025
Wed Feb 19 01:34:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright RSNA, 2003.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-a9f28c4913bba97f53cdca80e92536adfd7b58b0879ea42eb177309c6d3797e12
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 12819338
PQID 73604725
PQPubID 23479
ParticipantIDs proquest_miscellaneous_73604725
pubmed_primary_12819338
PublicationCentury 2000
PublicationDate 2003-Aug
20030801
PublicationDateYYYYMMDD 2003-08-01
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-Aug
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2003
SSID ssj0014587
Score 2.2707598
Snippet To implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 523
SubjectTerms Adolescent
Adult
Aged
Brain Neoplasms - blood supply
Brain Neoplasms - pathology
Cerebrovascular Circulation - physiology
Child
Contrast Media
Female
Gadolinium DTPA
Glioma - blood supply
Glioma - pathology
Humans
Image Processing, Computer-Assisted
Linear Models
Magnetic Resonance Imaging - methods
Male
Microcirculation
Middle Aged
Perfusion
Spin Labels
Statistics, Nonparametric
Title Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/12819338
https://www.proquest.com/docview/73604725
Volume 228
WOSCitedRecordID wos000184381100034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUKRYgL-1JWH7gakjibERJCiIpLq4JA6q1yvIhKkJSmpeI7-GHGkxRucOCSk6NE9rP97Hkzj5BT39pQhiZmkRUeC5XPGfA4zTwNkylUUWxiiWYTSbeb9vui1yCX81wYJ6ucr4m4UOtCuTvy84THrrBhdDV6Y84zysVWawONBdLkQGQcppP-TwwhjNKqYiaH74e-qGOawP_Px1IPi5ezAM4bLjnU-4Vf4j7TXvvfH66T1Zpf0usKEBukYfJNstypI-hb5PN-Kit9EA4JLSxF7Tq1L8WMDnOaOc8IOpm-FuPygqpvm0LXEvWfAFhajqAN4AeT2anMNdWVsz0tpyUKZVBz-8FmePNqNEVJvCwnzOTPKDqgnQc6fEWPpG3y1L59vLljtTEDUzzmEyaFDVIVCp9nmRSJjbjSSqaeEUHEY6mtTrIozbw0EUaGgXElrrgnVKx5IhLjBztkMS9ys0coIEVHLlUoA8gAnZAiUFLAjplpIHaWt8jJvLMHAHwXzZC5KablYN7dLbJbjddgVNXnGGBwEI7e-3--e0BWUJyHgr5D0rQw5c0RWVLvk2E5PkY8wbPb63wB_BfZYg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+blood+flow+in+brain+tumors%3A+comparison+of+arterial+spin+labeling+and+dynamic+susceptibility-weighted+contrast-enhanced+MR+imaging&rft.jtitle=Radiology&rft.au=Warmuth%2C+Carsten&rft.au=Gunther%2C+Matthias&rft.au=Zimmer%2C+Claus&rft.date=2003-08-01&rft.issn=0033-8419&rft.volume=228&rft.issue=2&rft.spage=523&rft_id=info:doi/10.1148%2Fradiol.2282020409&rft_id=info%3Apmid%2F12819338&rft_id=info%3Apmid%2F12819338&rft.externalDocID=12819338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon