Self-adaptive differential evolution algorithm with discrete mutation control parameters
•In DMPSADE, control parameters and mutation strategies could be automatically adjusted.•We first proposed a new encoding for parameter control in DE algorithm.•Roulette wheel is used to implement the selection of mutation strategies. Generally, the optimization problem has different relationships (...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 42; H. 3; S. 1551 - 1572 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Ltd
15.02.2015
Elsevier |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •In DMPSADE, control parameters and mutation strategies could be automatically adjusted.•We first proposed a new encoding for parameter control in DE algorithm.•Roulette wheel is used to implement the selection of mutation strategies.
Generally, the optimization problem has different relationships (i.e., linear, approximately linear, non-linear, or highly non-linear) with different optimized variables. The choices of control parameters and mutation strategies would directly affect the performance of differential evolution (DE) algorithm in satisfying the evolution requirement of each optimized variable and balancing its exploitation and exploration capabilities. Therefore, a self-adaptive DE algorithm with discrete mutation control parameters (DMPSADE) is proposed. In DMPSADE, each variable of each individual has its own mutation control parameter, and each individual has its own crossover control parameter and mutation strategy. DMPSADE was compared with 8 state-of-the-art DE variants and 3 non-DE algorithms by using 25 benchmark functions. The statistical results indicate that the average performance of DMPSADE is better than those of all other competitors. |
|---|---|
| AbstractList | Generally, the optimization problem has different relationships (i.e., linear, approximately linear, non-linear, or highly non-linear) with different optimized variables. The choices of control parameters and mutation strategies would directly affect the performance of differential evolution (DE) algorithm in satisfying the evolution requirement of each optimized variable and balancing its exploitation and exploration capabilities. Therefore, a self-adaptive DE algorithm with discrete mutation control parameters (DMPSADE) is proposed. In DMPSADE, each variable of each individual has its own mutation control parameter, and each individual has its own crossover control parameter and mutation strategy. DMPSADE was compared with 8 state-of-the-art DE variants and 3 non-DE algorithms by using 25 benchmark functions. The statistical results indicate that the average performance of DMPSADE is better than those of all other competitors. •In DMPSADE, control parameters and mutation strategies could be automatically adjusted.•We first proposed a new encoding for parameter control in DE algorithm.•Roulette wheel is used to implement the selection of mutation strategies. Generally, the optimization problem has different relationships (i.e., linear, approximately linear, non-linear, or highly non-linear) with different optimized variables. The choices of control parameters and mutation strategies would directly affect the performance of differential evolution (DE) algorithm in satisfying the evolution requirement of each optimized variable and balancing its exploitation and exploration capabilities. Therefore, a self-adaptive DE algorithm with discrete mutation control parameters (DMPSADE) is proposed. In DMPSADE, each variable of each individual has its own mutation control parameter, and each individual has its own crossover control parameter and mutation strategy. DMPSADE was compared with 8 state-of-the-art DE variants and 3 non-DE algorithms by using 25 benchmark functions. The statistical results indicate that the average performance of DMPSADE is better than those of all other competitors. |
| Author | Fan, Qinqin Yan, Xuefeng |
| Author_xml | – sequence: 1 givenname: Qinqin surname: Fan fullname: Fan, Qinqin email: forever123fan@163.com – sequence: 2 givenname: Xuefeng surname: Yan fullname: Yan, Xuefeng email: xfyan@ecust.edu.cn |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928474$$DView record in Pascal Francis |
| BookMark | eNp9kLtqHDEUQEWwIevHD7iaJpBmxtK8JEEaY-IHGFw4gXTijnSVaNGM1pJ2Tf7e2qxJ4cKNbqFzLpdzQo6WsCAhF4w2jLLxct1geoGmpaxvqGxoP34iKyZ4V49cdkdkReXA657x_jM5SWlNKeOU8hX59YTe1mBgk90OK-OsxYhLduAr3AW_zS4sFfjfIbr8Z65eyluopCNmrOZthn-ADkuOwVcbiDCXn5jOyLEFn_D8bZ6Snzfff1zf1Q-Pt_fXVw-17sYu1yDRCiv5JKZJctlOVBouBwkMJjNRZIOxQpsBBWdm6iSj_TD21kjLGbQwdKfk62HvJobnLaas5nIdeg8Lhm1SbBwpFWWzKOiXNxSSBm8jLNoltYluhvhXtaJAPe8L1x44HUNKEe1_hFG1z63Wap9b7XMrKlXJXSTxTtLuECdHcP5j9dtBxdJp5zCqpB0uGo2LqLMywX2kvwLhjp_f |
| CitedBy_id | crossref_primary_10_1016_j_matcom_2020_04_003 crossref_primary_10_1155_2019_2965061 crossref_primary_10_1016_j_est_2021_103244 crossref_primary_10_1016_j_asoc_2017_03_032 crossref_primary_10_1016_j_ins_2016_05_037 crossref_primary_10_1007_s11831_022_09825_5 crossref_primary_10_1016_j_engappai_2024_108149 crossref_primary_10_1109_ACCESS_2020_3045423 crossref_primary_10_1007_s10489_021_02577_y crossref_primary_10_1016_j_eswa_2015_10_009 crossref_primary_10_1063_5_0209026 crossref_primary_10_1016_j_asoc_2016_07_012 crossref_primary_10_1371_journal_pone_0150558 crossref_primary_10_1155_2015_497398 crossref_primary_10_1016_j_advengsoft_2016_03_001 crossref_primary_10_1016_j_swevo_2016_05_003 crossref_primary_10_1108_EC_01_2017_0024 crossref_primary_10_3390_sym17020223 crossref_primary_10_1007_s10489_018_1267_2 crossref_primary_10_1371_journal_pone_0245887 crossref_primary_10_1016_j_asoc_2021_107678 crossref_primary_10_1007_s00500_016_2029_x crossref_primary_10_1038_s41598_020_79913_8 crossref_primary_10_1016_j_swevo_2020_100816 crossref_primary_10_1007_s11760_024_03218_w crossref_primary_10_1007_s42452_020_2856_3 crossref_primary_10_1016_j_asoc_2020_106609 crossref_primary_10_1016_j_eswa_2020_113451 crossref_primary_10_1080_0305215X_2018_1429602 crossref_primary_10_1007_s11047_019_09757_3 crossref_primary_10_3390_a9040078 crossref_primary_10_1016_j_swevo_2020_100699 crossref_primary_10_1109_ACCESS_2019_2900078 crossref_primary_10_1007_s00521_018_3483_4 crossref_primary_10_1007_s13748_015_0061_1 crossref_primary_10_1007_s10489_017_0914_3 crossref_primary_10_1109_TCYB_2017_2676882 crossref_primary_10_1016_j_asoc_2017_01_008 crossref_primary_10_1016_j_eswa_2022_117192 crossref_primary_10_1109_ACCESS_2019_2900925 crossref_primary_10_1007_s40031_021_00645_y crossref_primary_10_1109_TEVC_2019_2938531 crossref_primary_10_3233_IDT_180343 crossref_primary_10_1007_s10462_021_10099_9 crossref_primary_10_1016_j_eswa_2022_119017 crossref_primary_10_1016_j_iot_2024_101323 crossref_primary_10_1016_j_asoc_2019_105496 crossref_primary_10_1016_j_future_2017_07_020 crossref_primary_10_1007_s00500_017_2588_5 crossref_primary_10_1371_journal_pone_0216906 crossref_primary_10_1109_TCYB_2017_2772849 crossref_primary_10_1186_s40064_016_2838_5 crossref_primary_10_3390_a10020044 crossref_primary_10_1007_s10489_020_01973_0 crossref_primary_10_1109_TCYB_2019_2914060 crossref_primary_10_1109_TCYB_2019_2892735 crossref_primary_10_1155_2017_8469103 crossref_primary_10_1177_16878132251355020 crossref_primary_10_3390_a10030076 crossref_primary_10_1007_s00521_021_06216_y crossref_primary_10_1016_j_knosys_2022_110091 crossref_primary_10_1109_ACCESS_2020_2983728 crossref_primary_10_1016_j_ins_2016_02_006 crossref_primary_10_1016_j_swevo_2018_11_007 crossref_primary_10_1016_j_asoc_2019_106031 crossref_primary_10_1007_s00500_016_2418_1 crossref_primary_10_1016_j_jksuci_2018_05_009 crossref_primary_10_3233_JIFS_169289 |
| Cites_doi | 10.1109/NAFIPS.1996.534789 10.1007/s10462-009-9137-2 10.1109/CEC.2008.4631082 10.1109/TEVC.2005.857610 10.1016/j.amc.2013.07.068 10.1016/j.ejor.2011.07.038 10.1016/j.asoc.2010.04.024 10.1109/TEVC.2010.2087271 10.1109/CEC.2006.1688311 10.1109/TSMCB.2012.2213808 10.1016/j.ejor.2013.10.024 10.1016/j.cor.2010.06.007 10.1109/TEVC.2013.2281528 10.1007/s10732-008-9080-4 10.1023/A:1008202821328 10.1109/TEVC.2006.872133 10.1016/j.ins.2010.07.015 10.1109/TSMCB.2011.2167966 10.1007/s12597-009-0012-3 10.1109/CEC.2002.1007033 10.1007/s00500-005-0537-1 10.1080/01621459.1937.10503522 10.1109/TEVC.2009.2014613 10.1016/j.cor.2011.03.003 10.1109/TII.2012.2198658 10.1016/j.ejor.2008.02.035 10.1016/j.asoc.2012.05.013 10.1016/j.ins.2012.09.019 10.1080/01621459.1952.10483441 10.1007/s10489-007-0091-x 10.1007/s00500-004-0363-x 10.1016/j.amc.2014.05.018 10.1080/01621459.1961.10482090 10.1109/4235.585893 10.1109/TCYB.2013.2239988 10.1007/s10589-012-9493-8 10.2307/3001968 10.1109/CEC.2005.1554902 10.1007/s00500-008-0344-6 10.1109/TCYB.2013.2245501 10.1109/TEVC.2008.927706 10.1016/j.ins.2011.03.010 10.1109/CEC.2005.1554725 10.1109/CEC.2006.1688533 10.1109/TEVC.2010.2059031 10.1016/j.ejor.2006.10.020 10.1109/4235.771166 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2014.09.046 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 1572 |
| ExternalDocumentID | 28928474 10_1016_j_eswa_2014_09_046 S0957417414006071 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-a9ef8f97b8bb9792b09d7959a1abdb0e15df8cd5e871db39104564fd9f71a2a53 |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345734700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Thu Oct 02 14:33:59 EDT 2025 Wed Apr 02 07:08:31 EDT 2025 Sat Nov 29 04:44:40 EST 2025 Tue Nov 18 22:23:53 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Mutation strategy adaptation Differential evolution algorithm Control parameter adaptation Discrete mutation parameters Evolutionary computation Capability index Statistical analysis Balancing Adaptive algorithm Evolutionary algorithm Adaptability Control program Control synthesis Differential evolution Mutation Mathematical programming |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-a9ef8f97b8bb9792b09d7959a1abdb0e15df8cd5e871db39104564fd9f71a2a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1660087928 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1660087928 pascalfrancis_primary_28928474 crossref_primary_10_1016_j_eswa_2014_09_046 crossref_citationtrail_10_1016_j_eswa_2014_09_046 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_09_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-15 |
| PublicationDateYYYYMMDD | 2015-02-15 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Brest, J., Zumer, V., & Maucec, M. S. (2006). Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In Price, Storn, Lampinen (b0295) 2005 (pp. 506–513). ICSI Berkeley. Zaharie, D. (2002a). Critical values for the control parameters of differential evolution algorithms. In Neri, F., & Tirronen, V. (2008). On memetic differential evolution frameworks: a study of advantages and limitations in hybridization. In Storn, Price (b0220) 1997; 11 Piotrowski, Napiorkowski, Kiczko (b0180) 2012; 216 Salman, Engelbrecht, Omran (b0200) 2007; 183 Wolpert, Macready (b0265) 1997; 1 Wang, Rahnamayan, Sun, Omran (b0255) 2013; 43 Zhang, Sanderson (b0280) 2009; 13 Teng, Teo, Hijazi (b0230) 2009; 13 Mallipeddi, Suganthan (b0150) 2009; 46 Akay, Karaboga (b0010) 2012; 192 Teo (b0235) 2005 Wang, Cai, Zhang (b0250) 2011; 15 Zaharie, D. (2002b). Parameter adaptation in differential evolution by controlling the population diversity. In Eiben, Smith (b0065) 2004; 45 Elsayed, Sarker, Essam (b0080) 2013; 222 Ghosh, Das, Chowdhury, Giri (b0115) 2011; 181 (pp. 1857–1864). Omran, Engelbrecht, Salman (b0170) 2009; 196 Teo (b0240) 2006; 10 Tirronen, Neri (b0245) 2009 Elsayed, Sarker, Essam (b0095) 2014; 241 Kruskal, Wallis (b0130) 1952; 47 García, Molina, Lozano, Herrera (b0110) 2009; 15 Wilcoxon (b0260) 1945; 1 Dunn (b0050) 1961; 56 Eiben, Hinterding, Michalewicz (b0055) 1999; 3 (pp. 62–67). Das, Suganthan (b0045) 2011; 15 Friedman (b0100) 1937; 32 (pp. 831–836). Honolulu, HI, USA. Elsayed, Sarker, Essam (b0090) 2013; 54 Brest, Greiner, Boskovic, Mernik, Zumer (b0030) 2006; 10 Auger, A., & Hansen, N. (2005). A restart CMA evolution strategy with increasing population size. In (vol. 10, pp. 293–298). Elsayed, Sarker, Essam (b0070) 2011; 38 Liang, Qin, Suganthan, Baskar (b0135) 2006; 10 Elsayed, Sarker, Essam (b0075) 2012; 12 Elsayed, Sarker, Essam (b0085) 2013; 9 Pan, Suganthan, Wang, Gao, Mallipeddi (b0175) 2011; 38 Sarker, Elsayed, Ray (b0300) 2014; 18 Brest, Maučec (b0035) 2008; 29 Gong, Cai (b0120) 2013; 43 Ali, Siarry, Pant (b0015) 2012; 217 Liu, Lampinen (b0145) 2005; 9 2005005. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. In Eiben, Smith (b0060) 2003 Neri, Tirronen (b0165) 2010; 33 (pp. 215–222). Vancouver, BC, Canada. Qin, Huang, Suganthan (b0190) 2009; 13 (pp. 2135–2142). Hong Kong, China. Storn, R., & Price, K. (1995). Gämperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A parameter study for differential evolution. In Islam, Das, Ghosh, Roy, Suganthan (b0125) 2012; 42 Storn, R. (1996). On the usage of differential evolution for function optimization. In (pp. 519–523). Cai, Wang (b0040) 2013; 43 (pp. 385–397). Zhu, Tang, Fang, Zhang (b0285) 2013; 223 (pp. 1769–1776). Ronkkonen, J., Kukkonen, S., & Price, K. V. (2005). Real-parameter optimization with differential evolution. In Mallipeddi, Suganthan, Pan, Tasgetiren (b0155) 2011; 11 Liao, Stützle, Montes de Oca, Dorigo (b0140) 2014; 234 Abbass, H. A. (2002). The self-adaptive pareto differential evolution algorithm. In Zielinski, K., Weitkemper, P., Laur, R., & Kammeyer, K. -D. (2006). Parameter study for differential evolution using a power allocation problem including interference cancellation. In Qin (10.1016/j.eswa.2014.09.046_b0190) 2009; 13 Ghosh (10.1016/j.eswa.2014.09.046_b0115) 2011; 181 10.1016/j.eswa.2014.09.046_b0195 Dunn (10.1016/j.eswa.2014.09.046_b0050) 1961; 56 Salman (10.1016/j.eswa.2014.09.046_b0200) 2007; 183 10.1016/j.eswa.2014.09.046_b0275 Pan (10.1016/j.eswa.2014.09.046_b0175) 2011; 38 10.1016/j.eswa.2014.09.046_b0270 Sarker (10.1016/j.eswa.2014.09.046_b0300) 2014; 18 Gong (10.1016/j.eswa.2014.09.046_b0120) 2013; 43 Kruskal (10.1016/j.eswa.2014.09.046_b0130) 1952; 47 Wolpert (10.1016/j.eswa.2014.09.046_b0265) 1997; 1 Eiben (10.1016/j.eswa.2014.09.046_b0065) 2004; 45 Liu (10.1016/j.eswa.2014.09.046_b0145) 2005; 9 Teo (10.1016/j.eswa.2014.09.046_b0235) 2005 Brest (10.1016/j.eswa.2014.09.046_b0035) 2008; 29 10.1016/j.eswa.2014.09.046_b0225 Eiben (10.1016/j.eswa.2014.09.046_b0055) 1999; 3 10.1016/j.eswa.2014.09.046_b0105 Neri (10.1016/j.eswa.2014.09.046_b0165) 2010; 33 10.1016/j.eswa.2014.09.046_b0025 Elsayed (10.1016/j.eswa.2014.09.046_b0095) 2014; 241 Storn (10.1016/j.eswa.2014.09.046_b0220) 1997; 11 10.1016/j.eswa.2014.09.046_b0020 Omran (10.1016/j.eswa.2014.09.046_b0170) 2009; 196 Tirronen (10.1016/j.eswa.2014.09.046_b0245) 2009 Elsayed (10.1016/j.eswa.2014.09.046_b0080) 2013; 222 Ali (10.1016/j.eswa.2014.09.046_b0015) 2012; 217 Brest (10.1016/j.eswa.2014.09.046_b0030) 2006; 10 Teo (10.1016/j.eswa.2014.09.046_b0240) 2006; 10 Wang (10.1016/j.eswa.2014.09.046_b0250) 2011; 15 Liang (10.1016/j.eswa.2014.09.046_b0135) 2006; 10 10.1016/j.eswa.2014.09.046_b0215 Eiben (10.1016/j.eswa.2014.09.046_b0060) 2003 Islam (10.1016/j.eswa.2014.09.046_b0125) 2012; 42 10.1016/j.eswa.2014.09.046_b0210 Cai (10.1016/j.eswa.2014.09.046_b0040) 2013; 43 Teng (10.1016/j.eswa.2014.09.046_b0230) 2009; 13 Wilcoxon (10.1016/j.eswa.2014.09.046_b0260) 1945; 1 10.1016/j.eswa.2014.09.046_b0290 Mallipeddi (10.1016/j.eswa.2014.09.046_b0150) 2009; 46 Price (10.1016/j.eswa.2014.09.046_b0295) 2005 10.1016/j.eswa.2014.09.046_b0005 Zhang (10.1016/j.eswa.2014.09.046_b0280) 2009; 13 Friedman (10.1016/j.eswa.2014.09.046_b0100) 1937; 32 García (10.1016/j.eswa.2014.09.046_b0110) 2009; 15 Wang (10.1016/j.eswa.2014.09.046_b0255) 2013; 43 10.1016/j.eswa.2014.09.046_b0160 Das (10.1016/j.eswa.2014.09.046_b0045) 2011; 15 Elsayed (10.1016/j.eswa.2014.09.046_b0075) 2012; 12 Elsayed (10.1016/j.eswa.2014.09.046_b0070) 2011; 38 Elsayed (10.1016/j.eswa.2014.09.046_b0085) 2013; 9 Mallipeddi (10.1016/j.eswa.2014.09.046_b0155) 2011; 11 Akay (10.1016/j.eswa.2014.09.046_b0010) 2012; 192 Zhu (10.1016/j.eswa.2014.09.046_b0285) 2013; 223 Elsayed (10.1016/j.eswa.2014.09.046_b0090) 2013; 54 Liao (10.1016/j.eswa.2014.09.046_b0140) 2014; 234 Piotrowski (10.1016/j.eswa.2014.09.046_b0180) 2012; 216 |
| References_xml | – reference: , 2005005. – volume: 29 start-page: 228 year: 2008 end-page: 247 ident: b0035 article-title: Population size reduction for the differential evolution algorithm publication-title: Applied Intelligence – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: b0045 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: b0130 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American Statistical Association – volume: 183 start-page: 785 year: 2007 end-page: 804 ident: b0200 article-title: Empirical analysis of self-adaptive differential evolution publication-title: European Journal of Operational Research – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b0100 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – reference: Zaharie, D. (2002b). Parameter adaptation in differential evolution by controlling the population diversity. In – reference: (pp. 215–222). Vancouver, BC, Canada. – volume: 56 start-page: 52 year: 1961 end-page: 64 ident: b0050 article-title: Multiple comparisons among means publication-title: Journal of the American Statistical Association – reference: (pp. 385–397). – reference: Zaharie, D. (2002a). Critical values for the control parameters of differential evolution algorithms. In – volume: 181 start-page: 3749 year: 2011 end-page: 3765 ident: b0115 article-title: An improved differential evolution algorithm with fitness-based adaptation of the control parameters publication-title: Information Sciences – reference: Gämperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A parameter study for differential evolution. In – volume: 217 start-page: 404 year: 2012 end-page: 416 ident: b0015 article-title: An efficient differential evolution based algorithm for solving multi-objective optimization problems publication-title: European Journal of Operational Research – volume: 15 start-page: 55 year: 2011 end-page: 66 ident: b0250 article-title: Differential evolution with composite trial vector generation strategies and control parameters publication-title: IEEE Transactions on Evolutionary Computation – reference: (pp. 506–513). – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: b0030 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Transactions on Evolutionary Computation – year: 2003 ident: b0060 article-title: Introduction to evolutionary computing – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b0260 article-title: Individual comparisons by ranking methods publication-title: Biometrics – reference: (pp. 1769–1776). – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: b0110 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization publication-title: Journal of Heuristics – volume: 216 start-page: 33 year: 2012 end-page: 46 ident: b0180 article-title: Differential evolution algorithm with separated groups for multi-dimensional optimization problems publication-title: European Journal of Operational Research – volume: 234 start-page: 597 year: 2014 end-page: 609 ident: b0140 article-title: A unified ant colony optimization algorithm for continuous optimization publication-title: European Journal of Operational Research – reference: (pp. 62–67). – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b0135 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation – reference: Storn, R., & Price, K. (1995). – reference: Abbass, H. A. (2002). The self-adaptive pareto differential evolution algorithm. In – reference: (pp. 2135–2142). Hong Kong, China. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: b0190 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 38 start-page: 1877 year: 2011 end-page: 1896 ident: b0070 article-title: Multi-operator based evolutionary algorithms for solving constrained optimization problems publication-title: Computers & Operations Research – volume: 13 start-page: 709 year: 2009 end-page: 724 ident: b0230 article-title: Self-adaptive population sizing for a tune-free differential evolution publication-title: Soft Computing – reference: Brest, J., Zumer, V., & Maucec, M. S. (2006). Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In – year: 2005 ident: b0295 article-title: Differential evolution, a practical approach to global optimization – volume: 43 start-page: 2066 year: 2013 end-page: 2081 ident: b0120 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Transactions on Cybernetics – volume: 192 start-page: 120 year: 2012 end-page: 142 ident: b0010 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Information Sciences – volume: 42 start-page: 482 year: 2012 end-page: 500 ident: b0125 article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – reference: (pp. 519–523). – volume: 196 start-page: 128 year: 2009 end-page: 139 ident: b0170 article-title: Bare bones differential evolution publication-title: European Journal of Operational Research – volume: 33 start-page: 61 year: 2010 end-page: 106 ident: b0165 article-title: Recent advances in differential evolution: A survey and experimental analysis publication-title: Artificial Intelligence Review – reference: Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. In – volume: 223 start-page: 164 year: 2013 end-page: 191 ident: b0285 article-title: Adaptive population tuning scheme for differential evolution publication-title: Information Sciences – reference: (pp. 831–836). Honolulu, HI, USA. – reference: Zielinski, K., Weitkemper, P., Laur, R., & Kammeyer, K. -D. (2006). Parameter study for differential evolution using a power allocation problem including interference cancellation. In – start-page: 199 year: 2009 end-page: 234 ident: b0245 article-title: Differential evolution with fitness diversity self-adaptation publication-title: Nature-inspired algorithms for optimisation – volume: 9 start-page: 89 year: 2013 end-page: 99 ident: b0085 article-title: An improved self-adaptive differential evolution algorithm for optimization problems publication-title: IEEE Transactions on Industrial Informatics – volume: 18 start-page: 689 year: 2014 end-page: 707 ident: b0300 article-title: Differential evolution with dynamic parameters selection for optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 3 start-page: 124 year: 1999 end-page: 141 ident: b0055 article-title: Parameter control in evolutionary algorithms publication-title: IEEE Transactions on Evolutionary Computation – reference: ICSI Berkeley. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b0280 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on Evolutionary Computation – reference: Neri, F., & Tirronen, V. (2008). On memetic differential evolution frameworks: a study of advantages and limitations in hybridization. In – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0265 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – reference: (pp. 1857–1864). – start-page: 1284 year: 2005 end-page: 1290 ident: b0235 article-title: Differential evolution with self-adaptive populations publication-title: Knowledge-based intelligent information and engineering systems – volume: 38 start-page: 394 year: 2011 end-page: 408 ident: b0175 article-title: A differential evolution algorithm with self-adapting strategy and control parameters publication-title: Computers & Operations Research – volume: 11 start-page: 1679 year: 2011 end-page: 1696 ident: b0155 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Applied Soft Computing – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0220 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – reference: (vol. 10, pp. 293–298). – volume: 45 start-page: 415 year: 2004 ident: b0065 article-title: Introduction to evolutionary computing publication-title: Computing Reviews – volume: 10 start-page: 673 year: 2006 end-page: 686 ident: b0240 article-title: Exploring dynamic self-adaptive populations in differential evolution publication-title: Soft Computing – reference: Storn, R. (1996). On the usage of differential evolution for function optimization. In – reference: Auger, A., & Hansen, N. (2005). A restart CMA evolution strategy with increasing population size. In – reference: Ronkkonen, J., Kukkonen, S., & Price, K. V. (2005). Real-parameter optimization with differential evolution. In – volume: 46 start-page: 184 year: 2009 end-page: 213 ident: b0150 article-title: Differential evolution algorithm with ensemble of populations for global numerical optimization publication-title: Opsearch – volume: 54 start-page: 771 year: 2013 end-page: 790 ident: b0090 article-title: Self-adaptive differential evolution incorporating a heuristic mixing of operators publication-title: Computational Optimization and Applications – volume: 43 start-page: 2202 year: 2013 end-page: 2215 ident: b0040 article-title: Differential evolution with neighborhood and direction information for numerical optimization publication-title: IEEE Transactions on Cybernetics – volume: 241 start-page: 267 year: 2014 end-page: 282 ident: b0095 article-title: A self-adaptive combined strategies algorithm for constrained optimization using differential evolution publication-title: Applied Mathematics and Computation – volume: 222 start-page: 680 year: 2013 end-page: 711 ident: b0080 article-title: Adaptive configuration of evolutionary algorithms for constrained optimization publication-title: Applied Mathematics and Computation – volume: 9 start-page: 448 year: 2005 end-page: 462 ident: b0145 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Computing – volume: 12 start-page: 3208 year: 2012 end-page: 3227 ident: b0075 article-title: On an evolutionary approach for constrained optimization problem solving publication-title: Applied Soft Computing – volume: 43 start-page: 634 year: 2013 end-page: 647 ident: b0255 article-title: Gaussian bare-bones differential evolution publication-title: IEEE Transactions on Cybernetics – ident: 10.1016/j.eswa.2014.09.046_b0210 doi: 10.1109/NAFIPS.1996.534789 – volume: 217 start-page: 404 year: 2012 ident: 10.1016/j.eswa.2014.09.046_b0015 article-title: An efficient differential evolution based algorithm for solving multi-objective optimization problems publication-title: European Journal of Operational Research – volume: 33 start-page: 61 year: 2010 ident: 10.1016/j.eswa.2014.09.046_b0165 article-title: Recent advances in differential evolution: A survey and experimental analysis publication-title: Artificial Intelligence Review doi: 10.1007/s10462-009-9137-2 – ident: 10.1016/j.eswa.2014.09.046_b0160 doi: 10.1109/CEC.2008.4631082 – ident: 10.1016/j.eswa.2014.09.046_b0225 – volume: 10 start-page: 281 year: 2006 ident: 10.1016/j.eswa.2014.09.046_b0135 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857610 – volume: 222 start-page: 680 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0080 article-title: Adaptive configuration of evolutionary algorithms for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.07.068 – volume: 216 start-page: 33 year: 2012 ident: 10.1016/j.eswa.2014.09.046_b0180 article-title: Differential evolution algorithm with separated groups for multi-dimensional optimization problems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2011.07.038 – volume: 11 start-page: 1679 year: 2011 ident: 10.1016/j.eswa.2014.09.046_b0155 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.04.024 – volume: 15 start-page: 55 year: 2011 ident: 10.1016/j.eswa.2014.09.046_b0250 article-title: Differential evolution with composite trial vector generation strategies and control parameters publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2087271 – ident: 10.1016/j.eswa.2014.09.046_b0025 doi: 10.1109/CEC.2006.1688311 – volume: 43 start-page: 634 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0255 article-title: Gaussian bare-bones differential evolution publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2213808 – volume: 234 start-page: 597 year: 2014 ident: 10.1016/j.eswa.2014.09.046_b0140 article-title: A unified ant colony optimization algorithm for continuous optimization publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2013.10.024 – volume: 38 start-page: 394 year: 2011 ident: 10.1016/j.eswa.2014.09.046_b0175 article-title: A differential evolution algorithm with self-adapting strategy and control parameters publication-title: Computers & Operations Research doi: 10.1016/j.cor.2010.06.007 – volume: 18 start-page: 689 year: 2014 ident: 10.1016/j.eswa.2014.09.046_b0300 article-title: Differential evolution with dynamic parameters selection for optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281528 – year: 2005 ident: 10.1016/j.eswa.2014.09.046_b0295 – start-page: 1284 year: 2005 ident: 10.1016/j.eswa.2014.09.046_b0235 article-title: Differential evolution with self-adaptive populations – start-page: 199 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0245 article-title: Differential evolution with fitness diversity self-adaptation – volume: 15 start-page: 617 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0110 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization publication-title: Journal of Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2014.09.046_b0220 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 10 start-page: 646 year: 2006 ident: 10.1016/j.eswa.2014.09.046_b0030 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2006.872133 – ident: 10.1016/j.eswa.2014.09.046_b0270 – volume: 192 start-page: 120 year: 2012 ident: 10.1016/j.eswa.2014.09.046_b0010 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Information Sciences doi: 10.1016/j.ins.2010.07.015 – ident: 10.1016/j.eswa.2014.09.046_b0215 – volume: 42 start-page: 482 year: 2012 ident: 10.1016/j.eswa.2014.09.046_b0125 article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2011.2167966 – volume: 46 start-page: 184 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0150 article-title: Differential evolution algorithm with ensemble of populations for global numerical optimization publication-title: Opsearch doi: 10.1007/s12597-009-0012-3 – volume: 45 start-page: 415 year: 2004 ident: 10.1016/j.eswa.2014.09.046_b0065 article-title: Introduction to evolutionary computing publication-title: Computing Reviews – ident: 10.1016/j.eswa.2014.09.046_b0005 doi: 10.1109/CEC.2002.1007033 – volume: 10 start-page: 673 year: 2006 ident: 10.1016/j.eswa.2014.09.046_b0240 article-title: Exploring dynamic self-adaptive populations in differential evolution publication-title: Soft Computing doi: 10.1007/s00500-005-0537-1 – volume: 32 start-page: 675 year: 1937 ident: 10.1016/j.eswa.2014.09.046_b0100 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1937.10503522 – volume: 13 start-page: 945 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0280 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2014613 – volume: 38 start-page: 1877 year: 2011 ident: 10.1016/j.eswa.2014.09.046_b0070 article-title: Multi-operator based evolutionary algorithms for solving constrained optimization problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.03.003 – volume: 9 start-page: 89 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0085 article-title: An improved self-adaptive differential evolution algorithm for optimization problems publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2012.2198658 – volume: 196 start-page: 128 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0170 article-title: Bare bones differential evolution publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.02.035 – volume: 12 start-page: 3208 year: 2012 ident: 10.1016/j.eswa.2014.09.046_b0075 article-title: On an evolutionary approach for constrained optimization problem solving publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.05.013 – ident: 10.1016/j.eswa.2014.09.046_b0275 – volume: 223 start-page: 164 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0285 article-title: Adaptive population tuning scheme for differential evolution publication-title: Information Sciences doi: 10.1016/j.ins.2012.09.019 – volume: 47 start-page: 583 year: 1952 ident: 10.1016/j.eswa.2014.09.046_b0130 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1952.10483441 – volume: 29 start-page: 228 year: 2008 ident: 10.1016/j.eswa.2014.09.046_b0035 article-title: Population size reduction for the differential evolution algorithm publication-title: Applied Intelligence doi: 10.1007/s10489-007-0091-x – ident: 10.1016/j.eswa.2014.09.046_b0105 – volume: 9 start-page: 448 year: 2005 ident: 10.1016/j.eswa.2014.09.046_b0145 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Computing doi: 10.1007/s00500-004-0363-x – volume: 241 start-page: 267 year: 2014 ident: 10.1016/j.eswa.2014.09.046_b0095 article-title: A self-adaptive combined strategies algorithm for constrained optimization using differential evolution publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2014.05.018 – volume: 56 start-page: 52 year: 1961 ident: 10.1016/j.eswa.2014.09.046_b0050 article-title: Multiple comparisons among means publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1961.10482090 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.eswa.2014.09.046_b0265 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 43 start-page: 2066 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0120 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2239988 – volume: 54 start-page: 771 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0090 article-title: Self-adaptive differential evolution incorporating a heuristic mixing of operators publication-title: Computational Optimization and Applications doi: 10.1007/s10589-012-9493-8 – volume: 1 start-page: 80 year: 1945 ident: 10.1016/j.eswa.2014.09.046_b0260 article-title: Individual comparisons by ranking methods publication-title: Biometrics doi: 10.2307/3001968 – year: 2003 ident: 10.1016/j.eswa.2014.09.046_b0060 – ident: 10.1016/j.eswa.2014.09.046_b0020 doi: 10.1109/CEC.2005.1554902 – volume: 13 start-page: 709 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0230 article-title: Self-adaptive population sizing for a tune-free differential evolution publication-title: Soft Computing doi: 10.1007/s00500-008-0344-6 – volume: 43 start-page: 2202 year: 2013 ident: 10.1016/j.eswa.2014.09.046_b0040 article-title: Differential evolution with neighborhood and direction information for numerical optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2245501 – volume: 13 start-page: 398 year: 2009 ident: 10.1016/j.eswa.2014.09.046_b0190 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.927706 – volume: 181 start-page: 3749 year: 2011 ident: 10.1016/j.eswa.2014.09.046_b0115 article-title: An improved differential evolution algorithm with fitness-based adaptation of the control parameters publication-title: Information Sciences doi: 10.1016/j.ins.2011.03.010 – ident: 10.1016/j.eswa.2014.09.046_b0195 doi: 10.1109/CEC.2005.1554725 – ident: 10.1016/j.eswa.2014.09.046_b0290 doi: 10.1109/CEC.2006.1688533 – volume: 15 start-page: 4 year: 2011 ident: 10.1016/j.eswa.2014.09.046_b0045 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2059031 – volume: 183 start-page: 785 year: 2007 ident: 10.1016/j.eswa.2014.09.046_b0200 article-title: Empirical analysis of self-adaptive differential evolution publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.10.020 – volume: 3 start-page: 124 year: 1999 ident: 10.1016/j.eswa.2014.09.046_b0055 article-title: Parameter control in evolutionary algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.771166 |
| SSID | ssj0017007 |
| Score | 2.4431589 |
| Snippet | •In DMPSADE, control parameters and mutation strategies could be automatically adjusted.•We first proposed a new encoding for parameter control in DE... Generally, the optimization problem has different relationships (i.e., linear, approximately linear, non-linear, or highly non-linear) with different optimized... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1551 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Balancing Computer science; control theory; systems Control parameter adaptation Control system synthesis Control theory. Systems Differential evolution algorithm Discrete mutation parameters Evolution Evolutionary computation Exact sciences and technology Expert systems Mutation strategy adaptation Mutations Nonlinearity Optimization Strategy Theoretical computing |
| Title | Self-adaptive differential evolution algorithm with discrete mutation control parameters |
| URI | https://dx.doi.org/10.1016/j.eswa.2014.09.046 https://www.proquest.com/docview/1660087928 |
| Volume | 42 |
| WOSCitedRecordID | wos000345734700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEJcUeUy2Qk3qqgXOv4cUJDgNAEYqDwZNmxPTq1adek234-x_Fl6cYm9sBLVFmJk_T7cs7x8bkg9Ba0VqFSmkSlcd_ntdRRKVUaiYkgnJdEi75n5M8vZH-_rCr61W20t307AdI05dkZXf5XqGEMwDapszeAO0wKA_AbQIcjwA7HfwL-u5rpiEu-7IOCfAOUznjG1Ym785jPDherafd7bh2xJjd3BebzeL520Yc-hN2UBp-bkJl2w4dvCiR3rgy0T5AbbIUHVlj36rdpczwNLPxlB6u10srpTed2SPo0bpt4GfyHJMoT22LHi9I8HVAmG8hFY5gNdGxS2H49l-S3dSUcvVPtqSkKldgitPlfimVfUGIhtNBHrR0xMwczc7CYMpjjNtpOSUFB9G3vftqrPofNJhLbrHr_Ri63yoYBXnySq-yXe0vewlelbTuUS5q9N1cOHqL7bp2Bdy0_HqFbqnmMHvgeHtiJ9Ceo2qALHtIFB7rgQBdsoMaeLtjTBTu64HO6PEU_PuwdvP8YuW4bUZ1Nsi7iVOlSUyJKISihqYipNI3oecKFFLFKCqnLWhYKlthSZGBmmkpEWlJNEp7yInuGtppFo54jTPIUFhIpj0UhTX08XkjBYWGr4lhJQeUIJf4_ZLUrRW86oszY1eiN0Dhcs7SFWK49u_DQMGdKWhORAdOuvW5nA8dwq7SkxpDLR-iNB5aBIDa7a7xRi3XLksnE1HeE017c6FFforvn39crtNWt1uo1ulOfdNN2teO4-gdbsbHW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+differential+evolution+algorithm+with+discrete+mutation+control+parameters&rft.jtitle=Expert+systems+with+applications&rft.au=Fan%2C+Qinqin&rft.au=Yan%2C+Xuefeng&rft.date=2015-02-15&rft.issn=0957-4174&rft.volume=42&rft.issue=3&rft.spage=1551&rft.epage=1572&rft_id=info:doi/10.1016%2Fj.eswa.2014.09.046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2014_09_046 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |