Self-adaptive differential evolution algorithm with discrete mutation control parameters

•In DMPSADE, control parameters and mutation strategies could be automatically adjusted.•We first proposed a new encoding for parameter control in DE algorithm.•Roulette wheel is used to implement the selection of mutation strategies. Generally, the optimization problem has different relationships (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 42; číslo 3; s. 1551 - 1572
Hlavní autoři: Fan, Qinqin, Yan, Xuefeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 15.02.2015
Elsevier
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•In DMPSADE, control parameters and mutation strategies could be automatically adjusted.•We first proposed a new encoding for parameter control in DE algorithm.•Roulette wheel is used to implement the selection of mutation strategies. Generally, the optimization problem has different relationships (i.e., linear, approximately linear, non-linear, or highly non-linear) with different optimized variables. The choices of control parameters and mutation strategies would directly affect the performance of differential evolution (DE) algorithm in satisfying the evolution requirement of each optimized variable and balancing its exploitation and exploration capabilities. Therefore, a self-adaptive DE algorithm with discrete mutation control parameters (DMPSADE) is proposed. In DMPSADE, each variable of each individual has its own mutation control parameter, and each individual has its own crossover control parameter and mutation strategy. DMPSADE was compared with 8 state-of-the-art DE variants and 3 non-DE algorithms by using 25 benchmark functions. The statistical results indicate that the average performance of DMPSADE is better than those of all other competitors.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2014.09.046