Optimized realization of Bayesian networks in reduced normal form using latent variable model

Bayesian networks in their Factor Graph Reduced Normal Form are a powerful paradigm for implementing inference graphs. Unfortunately, the computational and memory costs of these networks may be considerable even for relatively small networks, and this is one of the main reasons why these structures...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 25; číslo 10; s. 7029 - 7040
Hlavní autoři: Gennaro, Giovanni Di, Buonanno, Amedeo, Palmieri, Francesco A. N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2021
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Bayesian networks in their Factor Graph Reduced Normal Form are a powerful paradigm for implementing inference graphs. Unfortunately, the computational and memory costs of these networks may be considerable even for relatively small networks, and this is one of the main reasons why these structures have often been underused in practice. In this work, through a detailed algorithmic and structural analysis, various solutions for cost reduction are proposed. Moreover, an online version of the classic batch learning algorithm is also analysed, showing very similar results in an unsupervised context but with much better performance; which may be essential if multi-level structures are to be built. The solutions proposed, together with the possible online learning algorithm, are included in a C++ library that is quite efficient, especially if compared to the direct use of the well-known sum-product and Maximum Likelihood algorithms. The results obtained are discussed with particular reference to a Latent Variable Model structure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-021-05642-3