Existence and Relaxation Results for Second Order Multivalued Systems

We consider nonlinear systems driven by a general nonhomogeneous differential operator with various types of boundary conditions and with a reaction in which we have the combined effects of a maximal monotone term A ( x ) and of a multivalued perturbation F ( t , x , y ) which can be convex or nonco...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta applicandae mathematicae Ročník 173; číslo 1
Hlavní autoři: Papageorgiou, Nikolaos S., Vetro, Calogero
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.06.2021
Springer Nature B.V
Témata:
ISSN:0167-8019, 1572-9036
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider nonlinear systems driven by a general nonhomogeneous differential operator with various types of boundary conditions and with a reaction in which we have the combined effects of a maximal monotone term A ( x ) and of a multivalued perturbation F ( t , x , y ) which can be convex or nonconvex valued. We consider the cases where D ( A ) ≠ R N and D ( A ) = R N and prove existence and relaxation theorems. Applications to differential variational inequalities and control systems are discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-021-00410-9