Analysis of College Students’ Consumption Behavior Data Based on Fractional-Order Firefly Optimization Clustering Algorithm
Data mining-based student consumption behavior analysis is an important part of smart campus construction, which could find students’ eating patterns and consumption levels. Therefore, data mining-based student consumption behavior analysis became a hot topic both in research and industry areas. For...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 15; H. 14; S. 7723 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2025
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data mining-based student consumption behavior analysis is an important part of smart campus construction, which could find students’ eating patterns and consumption levels. Therefore, data mining-based student consumption behavior analysis became a hot topic both in research and industry areas. For an increasing amount of data, traditional data mining algorithms are not suitable. The clustering algorithm is becoming more and more important in the field of data mining, but the traditional clustering algorithm does not take the clustering efficiency and clustering effect into consideration. In this paper, the algorithm based on k-means and clustering by fractional-order firefly algorithm (FFA-k-means), which optimizes the clustering centers algorithm, is proposed. This method is used to cluster students from colleges. The experiment shows that the algorithm proposed in this paper has better clustering results compared with the traditional k-means clustering algorithm. Additionally, through the analysis results, it can be found that the problem of the group of students with too few times of consumption, the problem of a low number of students’ consumption of three meals, and the proportion of living diets is too low. The causes and characteristics of these problems are used as a reference for colleges to take corresponding measures timely. |
|---|---|
| AbstractList | Data mining-based student consumption behavior analysis is an important part of smart campus construction, which could find students’ eating patterns and consumption levels. Therefore, data mining-based student consumption behavior analysis became a hot topic both in research and industry areas. For an increasing amount of data, traditional data mining algorithms are not suitable. The clustering algorithm is becoming more and more important in the field of data mining, but the traditional clustering algorithm does not take the clustering efficiency and clustering effect into consideration. In this paper, the algorithm based on k-means and clustering by fractional-order firefly algorithm (FFA-k-means), which optimizes the clustering centers algorithm, is proposed. This method is used to cluster students from colleges. The experiment shows that the algorithm proposed in this paper has better clustering results compared with the traditional k-means clustering algorithm. Additionally, through the analysis results, it can be found that the problem of the group of students with too few times of consumption, the problem of a low number of students’ consumption of three meals, and the proportion of living diets is too low. The causes and characteristics of these problems are used as a reference for colleges to take corresponding measures timely. |
| Audience | Academic |
| Author | He, Qi Sun, Hongyu Dong, Yanhua Meng, Xiang |
| Author_xml | – sequence: 1 givenname: Xiang orcidid: 0009-0002-4680-885X surname: Meng fullname: Meng, Xiang – sequence: 2 givenname: Qi surname: He fullname: He, Qi – sequence: 3 givenname: Yanhua surname: Dong fullname: Dong, Yanhua – sequence: 4 givenname: Hongyu orcidid: 0000-0002-9182-4827 surname: Sun fullname: Sun, Hongyu |
| BookMark | eNpNUU1v1DAQtVCRKEtP_AFLHFGKvzaOj9uFLZUq7QE4WxPHTr1K4mA7SIuExN_g7_FL6u0iVM_BozfznmbmvUYXU5gsQm8pueZckQ8wz3RNhZSMv0CXjMi64oLKi2f5K3SV0oGUpyhvKLlEvzYTDMfkEw4Ob8Mw2N7iL3np7JTT399_CjalZZyzDxO-sQ_ww4eIP0IGfAPJdrjAuwjmVIeh2sfORrzz0brhiPeFNvqf8ETeDkvKNvqpx5uhD9Hnh_ENeulgSPbq379C33afvm4_V_f727vt5r4yvOa5AtIRqoRytOaq5pKKVhIhXUOYlR1x7WmhNQGjzJobaRuhbFNT27SCK9YwvkJ3Z90uwEHP0Y8QjzqA109AiL2GmL0ZrFa16jpFa6raRjBHQHBjXE2lZW1NKBStd2etOYbvi01ZH8ISy_JJc8Y5EUpRUrquz109FFE_uZDLlUp0dvSmGOd8wTfNukzOmuLGCr0_E0wMKZX7_R-TEn3yVz_zlz8CCziZ0w |
| Cites_doi | 10.1016/j.compbiomed.2021.105180 10.1016/j.neucom.2021.04.028 10.1109/ICDMW.2015.45 10.1016/j.ins.2015.02.011 10.1177/1754073920930784 10.1109/ACCESS.2018.2809445 10.1016/j.spl.2020.108960 10.5194/isprs-archives-XLII-3-W10-659-2020 10.1016/j.eswa.2020.114418 10.1049/ip-f-2.1991.0048 10.2105/AJPH.2004.047399 10.1016/j.pec.2009.08.007 10.1016/j.chb.2012.07.003 10.1109/TFUZZ.2009.2034531 10.1016/j.future.2020.03.055 10.1515/ijnsns-2016-0026 10.1016/j.ins.2020.08.052 10.1016/j.compbiomed.2021.105193 10.1016/j.future.2019.02.028 10.1007/s11704-017-6498-6 10.1142/S021800141959016X 10.1109/JSYST.2019.2922281 10.1016/j.eswa.2019.01.074 10.1016/j.cja.2019.10.009 10.1007/s11063-019-10185-8 10.1515/fca-2015-0031 10.1145/3299087 10.1007/BF02289263 10.1016/j.patcog.2020.107625 10.1109/ICSCSE.2017.22 10.1109/TFUZZ.2020.2966182 10.1007/978-94-007-0747-4 10.1016/j.compbiomed.2021.104866 10.1109/ACCESS.2018.2810267 10.1007/s42952-019-00037-5 10.1111/boer.12222 10.1016/j.compbiomed.2021.104820 10.1016/j.compbiomed.2021.104933 10.1007/s12293-016-0212-3 10.1016/j.knosys.2020.106672 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15147723 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_969dd91619b842f0a43ccf617e2b601a A850092891 10_3390_app15147723 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-a0d01949f163963714b7047f802e7d0fb000950ac9c53c7e849e861e8b4392823 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001549336000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 18:52:08 EDT 2025 Fri Jul 25 19:12:00 EDT 2025 Tue Nov 04 18:09:41 EST 2025 Sat Nov 29 07:18:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-a0d01949f163963714b7047f802e7d0fb000950ac9c53c7e849e861e8b4392823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9182-4827 0009-0002-4680-885X |
| OpenAccessLink | https://doaj.org/article/969dd91619b842f0a43ccf617e2b601a |
| PQID | 3233049910 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_969dd91619b842f0a43ccf617e2b601a proquest_journals_3233049910 gale_infotracacademiconefile_A850092891 crossref_primary_10_3390_app15147723 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_26) 2021; 450 Zhou (ref_39) 2021; 43 Ramazan (ref_50) 2019; 125 Rezaee (ref_27) 2021; 213 Miller (ref_12) 2020; 12 Feng (ref_29) 2020; 168 Cook (ref_14) 2020; 72 ref_51 Nie (ref_1) 2018; 12 Dong (ref_4) 2018; 46 Zheng (ref_5) 2018; 48 Sabo (ref_19) 2015; 305 Wang (ref_35) 2018; 35 Liu (ref_48) 2020; 29 Saha (ref_25) 2021; 110 Crozier (ref_49) 1991; 138 Meng (ref_17) 2020; 33 Lopes (ref_53) 2016; 17 Ling (ref_44) 2020; 37 Jiang (ref_6) 2019; 33 Head (ref_9) 2012; 28 Feng (ref_32) 2018; 6 ref_24 ref_23 Li (ref_45) 2013; 23 ref_22 ref_21 ref_20 Wang (ref_31) 2018; 10 Ma (ref_15) 2020; 14 Zhang (ref_36) 2019; 40 Patton (ref_10) 2006; 96 Yao (ref_11) 2019; 10 Mirzaei (ref_18) 2009; 18 Long (ref_37) 2015; 46 Quintiliani (ref_8) 2010; 79 Thorndike (ref_47) 1953; 18 Kim (ref_13) 2020; 49 Li (ref_30) 2020; 111 ref_34 Heidari (ref_33) 2019; 97 Edelmann (ref_41) 2021; 169 Chen (ref_46) 2020; 40 Peng (ref_28) 2018; 6 Liu (ref_42) 2020; 51 Lin (ref_38) 2014; 50 Yang (ref_7) 2020; 42 Laohakiat (ref_16) 2021; 547 Pu (ref_43) 2021; 59 Machado (ref_52) 2015; 18 ref_3 ref_2 Wang (ref_40) 2021; 45 |
| References_xml | – ident: ref_24 doi: 10.1016/j.compbiomed.2021.105180 – volume: 450 start-page: 230 year: 2021 ident: ref_26 article-title: A local search algorithm for k-means with outliers publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.028 – volume: 45 start-page: 699 year: 2021 ident: ref_40 article-title: Research on intersection traffic light timing optimization based on firefly algorithm publication-title: J. Wuhan Univ. Technol. – ident: ref_2 doi: 10.1109/ICDMW.2015.45 – volume: 305 start-page: 208 year: 2015 ident: ref_19 article-title: An approach to cluster separability in a partition publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.02.011 – volume: 12 start-page: 297 year: 2020 ident: ref_12 article-title: Support vector machines and affective science publication-title: Emot. Rev. doi: 10.1177/1754073920930784 – volume: 6 start-page: 10708 year: 2018 ident: ref_32 article-title: Binary moth search algorithm for discounted 0–1 knapsack problem publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809445 – volume: 169 start-page: 108960 year: 2021 ident: ref_41 article-title: On relationships between the Pearson and the distance correlation coefficients publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2020.108960 – volume: 42 start-page: 659 year: 2020 ident: ref_7 article-title: Research on EARLY warning system of college students’ behavior based on big data environment publication-title: ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-3-W10-659-2020 – volume: 168 start-page: 114418 year: 2020 ident: ref_29 article-title: Monarch Butterfly Optimization: A Comprehensive Review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114418 – volume: 138 start-page: 371 year: 1991 ident: ref_49 article-title: Least sum of squared errors publication-title: IEE Proc. F-Radar Signal Process. doi: 10.1049/ip-f-2.1991.0048 – volume: 96 start-page: 1582 year: 2006 ident: ref_10 article-title: Promoting Social Inclusion at colleges: A Group-Randomized Trial of Effects on Student Health Risk Behavior and Well-Being publication-title: Am. J. Public Health doi: 10.2105/AJPH.2004.047399 – volume: 79 start-page: 134 year: 2010 ident: ref_8 article-title: Multiple health behavior clusters among female college students publication-title: Patient Educ. Couns. doi: 10.1016/j.pec.2009.08.007 – volume: 28 start-page: 2331 year: 2012 ident: ref_9 article-title: Understanding student attitudes of mobile phone features: Rethinking adoption through conjoint, cluster and SEM analyses publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2012.07.003 – volume: 18 start-page: 27 year: 2009 ident: ref_18 article-title: A Novel Hierarchical-Clustering-Combination Scheme Based on Fuzzy-Similarity Relations publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2034531 – volume: 111 start-page: 300 year: 2020 ident: ref_30 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 17 start-page: 381 year: 2016 ident: ref_53 article-title: Application of fractional-order techniques in the analysis of forest fires publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2016-0026 – volume: 547 start-page: 404 year: 2021 ident: ref_16 article-title: An incremental density-based clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.052 – ident: ref_21 doi: 10.1016/j.compbiomed.2021.105193 – volume: 97 start-page: 849 year: 2019 ident: ref_33 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 59 start-page: 1246 year: 2021 ident: ref_43 article-title: Application of K-Means algorithm based on density information entropy in customer segmentation publication-title: J. Jilin Univ. (Sci. Ed.) – volume: 12 start-page: 494 year: 2018 ident: ref_1 article-title: Advanced forecasting of career choices for college students based on campus big data publication-title: Front. Comput. Sci. doi: 10.1007/s11704-017-6498-6 – volume: 40 start-page: 501 year: 2019 ident: ref_36 article-title: Remote sensing image fusion based on adaptive pulse coupled neural network (PCNN) in firefly optimization publication-title: J. Harbin Eng. Univ. – volume: 50 start-page: 35 year: 2014 ident: ref_38 article-title: Fuzzy clustering algorithm based on firefly algorithm publication-title: Comput. Eng. Appl. – volume: 33 start-page: 1959016 year: 2019 ident: ref_6 article-title: Campus data analysis based on positive and negative sequential patterns publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S021800141959016X – volume: 14 start-page: 1992 year: 2020 ident: ref_15 article-title: Practical privacy-preserving frequent itemset mining on supermarket transactions publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2922281 – volume: 35 start-page: 3003 year: 2018 ident: ref_35 article-title: Hybridized firefly algorithm based RFID network multi-objective planning publication-title: Appl. Res. Comput. – volume: 125 start-page: 33 year: 2019 ident: ref_50 article-title: Estimating the number of clusters in a dataset via consensus clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.074 – volume: 33 start-page: 2070 year: 2020 ident: ref_17 article-title: Modified micro-mechanics based multiscale model for progressive failure prediction of 2D twill woven composites publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.10.009 – volume: 23 start-page: 98 year: 2013 ident: ref_45 article-title: K-means clustering algorithm with adaptive feature weights publication-title: Comput. Technol. Dev. – ident: ref_34 – volume: 51 start-page: 1771 year: 2020 ident: ref_42 article-title: Daily activity feature selection in smart homes based on pearson correlation coefficient publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10185-8 – volume: 43 start-page: 70 year: 2021 ident: ref_39 article-title: Firefly algorithm-based insulation fit for extra-high voltage DC transmission lines publication-title: J. Xiangtan Univ. (Nat. Sci. Ed.) – volume: 37 start-page: 2821 year: 2020 ident: ref_44 article-title: Digital cluster user classification method based on improved RFM model publication-title: Appl. Res. Comput. – volume: 18 start-page: 495 year: 2015 ident: ref_52 article-title: Fractional-order calculus: Quo vadimus? (where are we going?) publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2015-0031 – volume: 10 start-page: 1 year: 2019 ident: ref_11 article-title: Predicting academic performance for college students: A campus behavior perspective publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3299087 – volume: 46 start-page: 1260 year: 2015 ident: ref_37 article-title: Firefly algorithm forsolving constrained optimizationproblems and engineering applications publication-title: J. Cent. South Univ. (Sci. Technol.) – volume: 18 start-page: 267 year: 1953 ident: ref_47 article-title: Who belongs in the family publication-title: Psychometrika doi: 10.1007/BF02289263 – volume: 110 start-page: 107625 year: 2021 ident: ref_25 article-title: Cluster number assisted K-means publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107625 – ident: ref_3 doi: 10.1109/ICSCSE.2017.22 – volume: 29 start-page: 986 year: 2020 ident: ref_48 article-title: Determine the number of unknown targets in Open World based on Elbow method publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2966182 – ident: ref_51 doi: 10.1007/978-94-007-0747-4 – ident: ref_20 doi: 10.1016/j.compbiomed.2021.104866 – volume: 6 start-page: 11897 year: 2018 ident: ref_28 article-title: Clustering Approach Based on Mini Batch Kmeans for Intrusion Detection System Over Big Data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810267 – volume: 49 start-page: 757 year: 2020 ident: ref_13 article-title: Influence diagnostics in support vector machines publication-title: J. Korean Stat. Soc. doi: 10.1007/s42952-019-00037-5 – volume: 72 start-page: 272 year: 2020 ident: ref_14 article-title: Random forests and selected samples publication-title: Bull. Econ. Res. doi: 10.1111/boer.12222 – ident: ref_22 doi: 10.1016/j.compbiomed.2021.104820 – ident: ref_23 doi: 10.1016/j.compbiomed.2021.104933 – volume: 10 start-page: 151 year: 2018 ident: ref_31 article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Comput. doi: 10.1007/s12293-016-0212-3 – volume: 46 start-page: 1200 year: 2018 ident: ref_4 article-title: Research and analysis of college students’ behavior portrait based on campus data publication-title: Comput. Digit. Eng. – volume: 48 start-page: 85 year: 2018 ident: ref_5 article-title: Neural network model of precise financial support for poor students in colleges and universities publication-title: Pract. Underst. Math. – volume: 213 start-page: 106672 year: 2021 ident: ref_27 article-title: GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106672 – volume: 40 start-page: 123 year: 2020 ident: ref_46 article-title: Joint elbow method and expectation maximization of Gaussian hybrid clustering power system customer binning algorithm publication-title: Comput. Appl. |
| SSID | ssj0000913810 |
| Score | 2.3234162 |
| Snippet | Data mining-based student consumption behavior analysis is an important part of smart campus construction, which could find students’ eating patterns and... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 7723 |
| SubjectTerms | Academic achievement Algorithms Analysis Behavior Cluster analysis Clustering College campuses College students consumer behavior analysis Data analysis Data mining Datasets Food habits fractional-order firefly algorithm Higher education k-means Machine learning Optimization smart campus Student behavior |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3BlgMcgBYQCwX5UAk4RPXGTmyf0HZhBQfalQCpnCzHsQvSdrckKRIHJP4Gf49fwkziLeUAJ675UJx45s0bx_MGYC8URakq47MoK54h4Cl0qeizwikhRc2Dd0OzCXV4qI-PzSKVR7dpW-UGE3ugHtSead82gvB-vfa0Yr4vcsrDkdvw52efM-ohRf9aU0ONq7BFwlv5CLYWr98sPlysuZAGpp7woUxPYLZPf4kx5EmkmOKPwNTr9_8NpfvQM7_1fwd9G24mCsqmg81sw5Ww2oEbl4QJd2A7uXzLniZd6md34NtGwIStI0sLDuztoI3Z_vz-g836cs4eg1jSXWzYC9c5doCxsmZ4eN4MhRRumR2R6CebI-TG5Vd2hLedpppQNluek34DDoVNlyf4Ct3H07vwfv7y3exVlro3ZF6Uosscr5E-ShOR8aGXq4msFJcqap4HVfM40DvuvPGF8CpoaYIuJ0FXyJEwERT3YLRar8J9YII77gpT1TVmPzlFUFfrUEoVEFCK3I1hbzN19mwQ6bCY3NAM20szPIYDmtaLS0hZuz-wbk5sclRrSoOPQR5sKi3zyJ0U3kfkeSGvMHnFZz0ho7Dk_x1-M5fKGHCkpKRlp7ogHSttJmPY3RiFTcDQ2t828ODfpx_C9ZxaDfc7g3dh1DXn4RFc81-6T23zOFn2L6eWCn8 priority: 102 providerName: ProQuest |
| Title | Analysis of College Students’ Consumption Behavior Data Based on Fractional-Order Firefly Optimization Clustering Algorithm |
| URI | https://www.proquest.com/docview/3233049910 https://doaj.org/article/969dd91619b842f0a43ccf617e2b601a |
| Volume | 15 |
| WOSCitedRecordID | wos001549336000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hwgEOFS0glpbKh0rAIcKJndg-7i5dwYHtiodUTpbj2FBpu4uyKRIHJP4Gf49fwvixaDkgLhxjJdLI8_rG8XwDcOrquhGtsoXnLS0w4Al0KW-L2gjGWUedNWnYhJjP5cWFWuyM-gp3whI9cNq456pRXYcYplSt5JWnhjNrPeZdV7VYTERoRIXaKaZiDFZloK5KDXkM6_rwPxiTG0cwyf5IQZGp_2_xOCaZ2V3Yz-iQjJNUB3DDrQ7hzg5n4CEcZG_ckKeZMvrZPfi25RYha0_yWQB5m2grNz-__yDT2GkZwwPJlIg9eWEGQyaYxjqCy7M-9TiYZXEe-DjJDKOhX34l5_jZVW7XJNPldaBWQFHIePlx3V8On67uw_vZ2bvpyyIPVigsa9hQGNohsuPKIxhDBxQlbwXlwktaOdFRn5AXNVbZmlnhJFdONqWTLcIXrNHYA9hbrVfuIRBGDTW1alFHWGSH5GY66RouHPp6XZkRnG73Wn9O_Bka646gEr2jkhFMgh5-vxJIr-MCmoLOpqD_ZQojeBK0qINrDrhnJncYoKSB5EqPZR0opqQqR3C8VbTOPrvRrApnO4iX6aP_Ic0R3K7CrOB4tfcY9ob-2j2GW_bLcLnpT-Dm5Gy-eHMSzRafFq9eLz78AhFt8pA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwAFpALBTwoQg4RHhjJ7YPCO1uu2rVsq2gSL25juO0lba7ZZOCekDib_An-FH8EsaJU8oBbj1wzbeclzdv7MwbgFWXJKnIlI0KntEICU_gJ1XYKDGCcZZTZ03TbEKMx3J_X-0uwI-2Fsb_VtlyYk3U-cz6OfLXLPaZN6oZ-vb0U-S7RvnV1baFRgOLLXf-BVO28s3mGr7f53E8Wt8bbkShq0BkWcqqyNAcZQ1XBSoRRJ_o8UxQLgpJYydyWjSygxqrbMKscJIrJ9OekxnGbkxQGF73GixyhhTTgcXB-nj3_cWsjnfZlD3aFAIypqhfh8agylHEsj9CX90h4G9xoA5uozv_27DchdtBRpN-g_slWHDTZbh1yVxxGZYCbZXkZfDWfnUPvrYmLGRWkDBpQj40_p7lz2_fybAuSa15lATvyDlZM5UhA4z3OcHNo3lTDGIm0Y43LiUjDBvF5Jzs4Gknoa6VDCdn3oMCH4X0J4c4ZNXRyX34eCWD8gA609nUPQTCqKEmUVmeYwYXexVgculSLhySYhKbLqy24NCnjdGIxgTNY0hfwlAXBh44F4d4d_B6w2x-qAPZaJUqvA1qeZVJHhfUcGZtgVrVxRkm4HivFx522nNYhWNmQikGPql3A9N9mXgvLql6XVhpYacDuZX6N-Ye_Xv3M7ixsfduW29vjrcew83Yt06u_3RegU41P3NP4Lr9XB2X86fhOyJwcNUY_QX03lev |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKixAsgBYQAwW8KAIWUZ3Yie0FQvNoRFU0HfGQujOOYxek6UxJUlAXSPwGv8Ln8CVcJ04pC9h1wTbJTCLn-NxzHd9zEdqyaZrxQprIsYJEQHgcppQzUao5ZbQk1uiu2QSfTsXBgZytoB99LYzfVtlzYkvU5dL4NfJtmvjMG9QM2XZhW8Rskr84_hT5DlL-S2vfTqODyJ49_QLpW_18dwLv-nGS5Dtvxy-j0GEgMjSjTaRJCRKHSQeqBJDIY1ZwwrgTJLG8JK6TIEQbaVJquBVMWpHFVhQQxyFZofC_l9AapzKGGbU22pnOXp-t8HjHTRGTriiQUkn8N2kIsAwELf0jDLbdAv4WE9pAl9_4n4foJroe5DUedvNhHa3YxQa6ds50cQOtBzqr8dPguf3sFvram7PgpcNhMQW_6Xw_65_fvuNxW6ra8isOnpIVnuhG4xHogBLD4bzqikT0PNr3hqY4h3Di5qd4H352FOpd8Xh-4r0p4FHwcH4IQ9Z8OLqN3l3IoNxBq4vlwt5FmBJNdCqLsoTMLvHqQJfCZoxbIMs00QO01QNFHXcGJAoSN48ndQ5PAzTyIDq7xLuGtweW1aEKJKRkJuE2oPFlIVjiiGbUGAca1iYFJOZwrycegspzWwNjpkOJBjypdwlTQ5F6jy4h4wHa7CGoAunV6jf-7v379CN0BYCpXu1O9-6jq4nvqNxugN5Eq011Yh-gy-Zz87GuHoYphdH7i4boL9UxYHI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+College+Students%E2%80%99+Consumption+Behavior+Data+Based+on+Fractional-Order+Firefly+Optimization+Clustering+Algorithm&rft.jtitle=Applied+sciences&rft.au=Meng%2C+Xiang&rft.au=He%2C+Qi&rft.au=Dong%2C+Yanhua&rft.au=Sun%2C+Hongyu&rft.date=2025-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=14&rft.spage=7723&rft_id=info:doi/10.3390%2Fapp15147723&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15147723 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |