Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization
In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation...
Uloženo v:
| Vydáno v: | Digital signal processing Ročník 23; číslo 4; s. 1303 - 1313 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.07.2013
|
| Témata: | |
| ISSN: | 1051-2004, 1095-4333 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation using the data collected from sensor nodes. But these algorithms, being derivative based, have a tendency of providing local minima solution particularly for minimization of multimodal cost function. Hence for problems like distributed parameters estimation of IIR systems, alternative distributed algorithms are required to be developed. Keeping this in view the present paper proposes two population based incremental particle swarm optimization (IPSO) algorithms for estimation of parameters of noisy IIR systems. But the proposed IPSO algorithms provide poor performance when the measured data is contaminated with outliers in the training samples. To alleviate this problem the paper has proposed a robust distributed algorithm (RDIPSO) for IIR system identification task. The simulation results of benchmark IIR systems demonstrate that the proposed algorithms provide excellent identification performance in all cases even when the training samples are contaminated with outliers.
► Proposes a novel distributed population based learning algorithm IPSO. ► Estimates global IIR parameters using IPSO. ► Computes robust distributed IIR parameters using Wilcoxon norm. |
|---|---|
| AbstractList | In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation using the data collected from sensor nodes. But these algorithms, being derivative based, have a tendency of providing local minima solution particularly for minimization of multimodal cost function. Hence for problems like distributed parameters estimation of IIR systems, alternative distributed algorithms are required to be developed. Keeping this in view the present paper proposes two population based incremental particle swarm optimization (IPSO) algorithms for estimation of parameters of noisy IIR systems. But the proposed IPSO algorithms provide poor performance when the measured data is contaminated with outliers in the training samples. To alleviate this problem the paper has proposed a robust distributed algorithm (RDIPSO) for IIR system identification task. The simulation results of benchmark IIR systems demonstrate that the proposed algorithms provide excellent identification performance in all cases even when the training samples are contaminated with outliers. In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation using the data collected from sensor nodes. But these algorithms, being derivative based, have a tendency of providing local minima solution particularly for minimization of multimodal cost function. Hence for problems like distributed parameters estimation of IIR systems, alternative distributed algorithms are required to be developed. Keeping this in view the present paper proposes two population based incremental particle swarm optimization (IPSO) algorithms for estimation of parameters of noisy IIR systems. But the proposed IPSO algorithms provide poor performance when the measured data is contaminated with outliers in the training samples. To alleviate this problem the paper has proposed a robust distributed algorithm (RDIPSO) for IIR system identification task. The simulation results of benchmark IIR systems demonstrate that the proposed algorithms provide excellent identification performance in all cases even when the training samples are contaminated with outliers. ► Proposes a novel distributed population based learning algorithm IPSO. ► Estimates global IIR parameters using IPSO. ► Computes robust distributed IIR parameters using Wilcoxon norm. |
| Author | Panda, Ganapati Majhi, Babita |
| Author_xml | – sequence: 1 givenname: Babita surname: Majhi fullname: Majhi, Babita email: babita.majhi@gmail.com organization: Dept. of Automatic Control and System Engineering, University of Sheffield, UK – sequence: 2 givenname: Ganapati surname: Panda fullname: Panda, Ganapati email: gpanda@iitbbs.ac.in organization: School of Electrical Sciences, Indian Institute of Technology, Bhubaneswar, India |
| BookMark | eNqNkT1PHDEQhi0EEh_hB9C5pNnN2D7vnkWFSEhOQooUQW357HHi06692N5E8Ouzx6VKgVLNFO8zGr3POTmOKSIhVwxaBqz7uGtdmVoOTLTAW2DyiJwxULJZCSGO97tkDQdYnZLzUnYA0K94d0Z-fgql5rCdKzpqoqM5bedS6WSyGbFiplhqGE0NKdLk6WbznZaXUnEsdC4h_qAh2owjxmqGPVWDHZCW3yaPNE0LGl7f4A_kxJuh4OXfeUGe7j8_3n1tHr592dzdPjRWdKI2CtesV9uuByWgN8KAM53yxoBED84yJ5TzW9F3Spm18mvJpAPle2a495yLC3J9uDvl9Dwvz-sxFIvDYCKmuWgmmVhxybv_iIqed4JLsV6i7BC1OZWS0espL63kF81A7wXonV4E6L0ADVwvAham_4exob51UbMJw7vkzYHEpahfAbMuNmC06EJGW7VL4R36Dw_-o_A |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2018_01_011 crossref_primary_10_1016_j_swevo_2016_06_007 crossref_primary_10_1049_iet_spr_2014_0188 crossref_primary_10_4018_IJCINI_2020100102 crossref_primary_10_1049_ccs_2019_0030 crossref_primary_10_1016_j_dsp_2014_05_008 crossref_primary_10_1007_s00034_016_0370_z crossref_primary_10_1007_s12652_018_0839_7 crossref_primary_10_1016_j_eswa_2014_10_040 crossref_primary_10_1016_j_jksues_2017_11_002 crossref_primary_10_1016_j_simpat_2015_01_007 crossref_primary_10_3390_en16041706 |
| Cites_doi | 10.1109/IPDPS.2007.370434 10.1109/79.543974 10.1109/ICASSP.2004.1326696 10.1109/ACSSC.2008.5074397 10.1109/TASSP.1985.1164706 10.1109/SUPERGEN.2009.5347938 10.1109/TAC.1985.1103972 10.1016/j.micpro.2010.11.001 10.1109/IPSN.2006.244160 10.1109/EEM.2011.5953070 10.1145/1120725.1120990 10.1109/TAC.1982.1103019 10.1109/TSP.2010.2051429 10.1016/j.eswa.2010.11.037 10.1109/MSP.2002.985672 10.1109/IPSN.2005.1440896 10.1016/j.parco.2006.11.005 10.1016/j.ins.2010.08.045 10.1109/ICASSP.2001.940390 10.1109/WCSP.2009.5371429 10.1049/cp.2010.0667 10.1109/ICASSP.2007.366830 10.1109/ICNC.2008.63 10.1109/TNN.2007.904035 10.1109/SIS.2007.368026 10.1109/ICWMC.2010.33 10.1109/ICMSAO.2011.5775570 10.1016/S0165-1684(00)00101-8 10.1109/MCOM.2002.1024422 10.1109/JSAC.2005.843546 10.1109/MC.2004.93 10.1109/21.21597 10.1109/ICASSP.2009.4960216 10.1109/CAMSAP.2011.6136004 10.1109/29.17533 10.1109/TSP.2007.896034 10.1109/SUPERGEN.2009.5348246 10.1109/53.29644 10.1109/TSP.2008.917383 10.1109/CEC.2009.4983197 10.1109/ICASSP.2006.1660721 10.1016/j.parco.2010.09.003 10.1109/IPDPSW.2010.5470706 10.1109/TAC.1979.1101973 10.1016/S1389-1286(01)00302-4 10.1109/ISCAS.2007.378747 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. |
| Copyright_xml | – notice: 2013 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.dsp.2013.02.015 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1095-4333 |
| EndPage | 1313 |
| ExternalDocumentID | 10_1016_j_dsp_2013_02_015 S1051200413000389 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-9e8179b6709307a3a0da69faa05ef0dc1d39dfb37699a89f8515d09f71a2ff223 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319180200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Thu Oct 02 06:56:16 EDT 2025 Sat Sep 27 17:46:55 EDT 2025 Sat Nov 29 07:57:46 EST 2025 Tue Nov 18 21:01:47 EST 2025 Fri Feb 23 02:28:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Robust distributed parameter estimation Distributed parameter estimation Incremental particle swarm optimization (IPSO) IIR system identification Particle swarm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-9e8179b6709307a3a0da69faa05ef0dc1d39dfb37699a89f8515d09f71a2ff223 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1372632538 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1513425262 proquest_miscellaneous_1372632538 crossref_primary_10_1016_j_dsp_2013_02_015 crossref_citationtrail_10_1016_j_dsp_2013_02_015 elsevier_sciencedirect_doi_10_1016_j_dsp_2013_02_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | C.G. Lopes, A.H. Sayed, Diffusion least mean squares over adaptive networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Honolulu, HI, 2007, pp. 917–920. Hsieh, Lin, Jeng (br0440) 2008; 19 R. Abdolee, B. Champagne, Distributed blind adaptive algorithms based on constant modulus for wireless sensor networks, in: IEEE 6th International Conf. on Wireless and Mobile Communications (ICWMC), Valencia, Spain, 20–25 September 2010, pp. 303–308. M.G. Rabbat, R.D. Nowak, Decentralized source localization and tracking, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Montreal, QC, Canada, 2004, pp. 921–924. Ng, Leung, Chung, Luk, Lau (br0460) 1996 Castanon, Teneketzis (br0080) 1985; AC-30 Takahashi, Yamada, Sayed (br0240) 2010; 58 C.Y. Chong, Hierarchical estimation, in: 2nd MIT/ONR Workshop on C3, Monterey, CA, July 1979. Mussi, Daolio, Cagnoni (br0400) 2011; 181 Lopes, Sayed (br0220) 2008; 56 P. Wannakarn, S. Khamsawang, S. Pothiya, S. Jiriwibhakorn, Optimal power flow problem solved by using distributed Sobol particle swarm optimization, in: IEEE International Conf. on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Thailand, 19–21 May 2010, pp. 445–449. Kumar, Zhao, Shepherd (br0050) 2002; 19 D. Estrin, G. Pottie, M. Srivastava, Instrumenting the worlds with wireless sensor networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Salt Lake City, UT, 2001, pp. 2033–2036. J. Chen, S.-Y. Tu, A.H. Sayed, Distributed optimization via diffusion adaptation, in: IEEE 4th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto Rico, 13–16 December, pp. 281–284. N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Taiwan, April 19–24, 2009, pp. 2845–2848. X. Tang, G. Tang, Risk distribution network planning including distributed generation based on particle swarm optimization algorithm with immunity, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5. Speyer (br0110) 1979; AC-24 H. Prasain, G. Kumar Jha, P. Thulasiraman, R. Thulasiram, A parallel particle swarm optimization algorithm for option pricing, in: IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), April 19–23, 2010, pp. 1–7. S.A. White, An adaptive recursive digital filter, in: Proc. 9th Asilomar Conf. Circuits Systems Computing, 1975, p. 21. S. Golestani, M. Tadayon, Optimal switch placement in distribution power system using linear fragmented particle swarm optimization algorithm preprocessed by GA, in: IEEE 8th International Conf. on European Energy Market (EEM), Zagreb, Croatia, 25–27 May 2011, pp. 537–542. Shynk (br0470) 1989; 37 S.L. Goh, Z. Babic, D.P. Mandic, An adaptive amplitude learning algorithm for nonlinear adaptive IIR filters, in: Proc. of TELSIKS, 2003, pp. 313–316. S. Tang, Y. Qian, M. Chen, Improved particle swarm optimization algorithm based cross-layer power allocation scheme in distributed antenna systems, in: IEEE International Conf. on Wireless Communications and Signal Processing, China, November 13–15, 2009. M. Chu, D.J. Allstot, An elitist distributed particle swarm algorithm for RF IC optimization, in: Asia and South Pacific Design Automation Conference, vol. 2, 2005, pp. 671–674. Shi, Eberhart (br0530) 1998; vol. 1447 Culler, Estrin, Srivastava (br0070) 2004; 37 B. Wang, Z. He, Distributed optimization over wireless sensor networks using swarm intelligence, in: IEEE Int. Symposium on Circuits & Systems, 2007, pp. 2502–2505. Akyildiz, Su, Sankarasubramaniam, Cayirci (br0060) 2002; 40 Stearns (br0480) 1981; CAS-28 C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Toulouse, France, 2006, pp. 584–587. X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: IEEE International Conference on Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007, pp. 1–7. Akyildiz, Su, Sankarasubramaniam, Cayirci (br0010) 2002; 38 L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in: Proc. 4th Int. Symp. Information Processing in Sensor Networks, Los Angeles, CA, 2005, pp. 63–70. Q. Kang, H. He, H. Wang, C. Jiang, A novel discrete particle swarm optimization algorithm for job scheduling in grids, in: IEEE Fourth International Conference on Natural Computation, Jinan, Shandong, China, 18–20 October 2008, pp. 401–405. Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: IEEE Congress on Computational Intelligence, 1998, pp. 69–73. Rabbat, Nowak (br0030) 2005; 23 Willsky, Bello, Castanon, Levy, Verghese (br0090) 1982; AC-27 M.A. Tinati, A. Rastegarnia, A. Khalili, An incremental least-mean square algorithm with adaptive combiner, in: IET 3rd International Conf. on Wireless, Mobile and Multimedia Networks (ICWMNN 2010), Beijing, China, 26–29 September 2010, pp. 266–269. Mandic, Chambers (br0510) 2000; 80 Li, Wada (br0370) 2011; 37 L. Xiao, S. Boyd, S. Lall, A space–time diffusion scheme for peer-to-peer least-squares estimation, in: Proc. 5th Int. Symp. Information Processing in Sensor Networks, Nashville, TN, 2006. Sahin, Çetin Yavuz, Arnavut, Uluyol (br0360) 2007; 33 Tu, Liang (br0420) 2011; 38 J.M. Hereford, A distributed particle swarm optimization algorithm for swarm robotic applications, in: IEEE Congress on Evolutionary Computation, Canada, 2006, pp. 1678–1685. Shynk (br0450) 1989 Lopes, Sayed (br0180) 2007; 55 M.R. AlRashidi, M.F. AlHajri, Proper planning of multiple distributed generation sources using heuristic approach, in: IEEE 4th International Conf. on Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, 19–21 April 2011, pp. 1–5. Kang, He (br0410) 2011; 35 Chair, Varshney (br0100) 1988; 18 B. Majhi, G. Panda, B. Mulgrew, Distributed identification of nonlinear processes using incremental and diffusion type PSO algorithms, in: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009, pp. 2076–2082. L. Li, Y. Zhang, J.A. Chambers, Variable length adaptive filtering within incremental learning algorithms for distributed networks, in: IEEE 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 26–29 October 2008, pp. 225–229. L. Lu, J. Liu, J. Wang, A distributed hierarchical structure optimization algorithm based poly-particle swarm for reconfiguration of distribution network, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5. R.A. David, S.D. Stearns, Adaptive IIR algorithms based on gradient search, in: Proc. 24th Midwest Symp. Circuits Systems, 1981. Wax, Kailath (br0040) 1985; ASSP-33 10.1016/j.dsp.2013.02.015_br0190 Shi (10.1016/j.dsp.2013.02.015_br0530) 1998; vol. 1447 10.1016/j.dsp.2013.02.015_br0500 Chair (10.1016/j.dsp.2013.02.015_br0100) 1988; 18 10.1016/j.dsp.2013.02.015_br0300 10.1016/j.dsp.2013.02.015_br0540 Willsky (10.1016/j.dsp.2013.02.015_br0090) 1982; AC-27 10.1016/j.dsp.2013.02.015_br0340 10.1016/j.dsp.2013.02.015_br0020 10.1016/j.dsp.2013.02.015_br0140 10.1016/j.dsp.2013.02.015_br0260 10.1016/j.dsp.2013.02.015_br0380 Kumar (10.1016/j.dsp.2013.02.015_br0050) 2002; 19 Mussi (10.1016/j.dsp.2013.02.015_br0400) 2011; 181 10.1016/j.dsp.2013.02.015_br0210 10.1016/j.dsp.2013.02.015_br0330 10.1016/j.dsp.2013.02.015_br0130 10.1016/j.dsp.2013.02.015_br0250 Akyildiz (10.1016/j.dsp.2013.02.015_br0060) 2002; 40 Speyer (10.1016/j.dsp.2013.02.015_br0110) 1979; AC-24 10.1016/j.dsp.2013.02.015_br0490 10.1016/j.dsp.2013.02.015_br0170 10.1016/j.dsp.2013.02.015_br0290 Rabbat (10.1016/j.dsp.2013.02.015_br0030) 2005; 23 Stearns (10.1016/j.dsp.2013.02.015_br0480) 1981; CAS-28 Takahashi (10.1016/j.dsp.2013.02.015_br0240) 2010; 58 Shynk (10.1016/j.dsp.2013.02.015_br0470) 1989; 37 Kang (10.1016/j.dsp.2013.02.015_br0410) 2011; 35 Lopes (10.1016/j.dsp.2013.02.015_br0180) 2007; 55 Hsieh (10.1016/j.dsp.2013.02.015_br0440) 2008; 19 10.1016/j.dsp.2013.02.015_br0520 Akyildiz (10.1016/j.dsp.2013.02.015_br0010) 2002; 38 10.1016/j.dsp.2013.02.015_br0200 10.1016/j.dsp.2013.02.015_br0320 10.1016/j.dsp.2013.02.015_br0120 Sahin (10.1016/j.dsp.2013.02.015_br0360) 2007; 33 Wax (10.1016/j.dsp.2013.02.015_br0040) 1985; ASSP-33 10.1016/j.dsp.2013.02.015_br0160 10.1016/j.dsp.2013.02.015_br0280 Ng (10.1016/j.dsp.2013.02.015_br0460) 1996 Mandic (10.1016/j.dsp.2013.02.015_br0510) 2000; 80 Tu (10.1016/j.dsp.2013.02.015_br0420) 2011; 38 Lopes (10.1016/j.dsp.2013.02.015_br0220) 2008; 56 Shynk (10.1016/j.dsp.2013.02.015_br0450) 1989 Li (10.1016/j.dsp.2013.02.015_br0370) 2011; 37 Culler (10.1016/j.dsp.2013.02.015_br0070) 2004; 37 10.1016/j.dsp.2013.02.015_br0310 10.1016/j.dsp.2013.02.015_br0430 10.1016/j.dsp.2013.02.015_br0230 10.1016/j.dsp.2013.02.015_br0350 10.1016/j.dsp.2013.02.015_br0150 Castanon (10.1016/j.dsp.2013.02.015_br0080) 1985; AC-30 10.1016/j.dsp.2013.02.015_br0270 10.1016/j.dsp.2013.02.015_br0390 |
| References_xml | – reference: L. Xiao, S. Boyd, S. Lall, A space–time diffusion scheme for peer-to-peer least-squares estimation, in: Proc. 5th Int. Symp. Information Processing in Sensor Networks, Nashville, TN, 2006. – volume: 80 start-page: 1909 year: 2000 end-page: 1916 ident: br0510 article-title: A normalised real time recurrent learning algorithm publication-title: Signal Process. – volume: 19 start-page: 13 year: 2002 end-page: 14 ident: br0050 article-title: Special issue on collaborative information processing publication-title: IEEE Signal Process. Mag. – reference: Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: IEEE Congress on Computational Intelligence, 1998, pp. 69–73. – reference: D. Estrin, G. Pottie, M. Srivastava, Instrumenting the worlds with wireless sensor networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Salt Lake City, UT, 2001, pp. 2033–2036. – volume: vol. 1447 start-page: 591 year: 1998 end-page: 600 ident: br0530 article-title: Parameter selection in particle swarm optimization, evolutionary programming VII publication-title: Lecture Notes in Comput. Sci. – reference: P. Wannakarn, S. Khamsawang, S. Pothiya, S. Jiriwibhakorn, Optimal power flow problem solved by using distributed Sobol particle swarm optimization, in: IEEE International Conf. on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Thailand, 19–21 May 2010, pp. 445–449. – volume: AC-30 start-page: 418 year: 1985 end-page: 425 ident: br0080 article-title: Distributed estimation algorithms for nonlinear systems publication-title: IEEE Trans. Automat. Control – reference: M.A. Tinati, A. Rastegarnia, A. Khalili, An incremental least-mean square algorithm with adaptive combiner, in: IET 3rd International Conf. on Wireless, Mobile and Multimedia Networks (ICWMNN 2010), Beijing, China, 26–29 September 2010, pp. 266–269. – reference: J. Chen, S.-Y. Tu, A.H. Sayed, Distributed optimization via diffusion adaptation, in: IEEE 4th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto Rico, 13–16 December, pp. 281–284. – volume: CAS-28 year: 1981 ident: br0480 article-title: Error surfaces of recursive adaptive filters publication-title: IEEE Trans. Circuits Systems, Special Issue on Adaptive Systems – volume: 38 start-page: 393 year: 2002 end-page: 422 ident: br0010 article-title: Wireless sensor networks: A survey publication-title: Comput. Netw. – volume: 37 start-page: 519 year: 1989 end-page: 533 ident: br0470 article-title: Adaptive IIR filtering using parallel form realization publication-title: IEEE Trans. Acoust. Speech Signal Process. – reference: L. Lu, J. Liu, J. Wang, A distributed hierarchical structure optimization algorithm based poly-particle swarm for reconfiguration of distribution network, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5. – reference: L. Li, Y. Zhang, J.A. Chambers, Variable length adaptive filtering within incremental learning algorithms for distributed networks, in: IEEE 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 26–29 October 2008, pp. 225–229. – volume: 35 start-page: 10 year: 2011 end-page: 17 ident: br0410 article-title: A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems publication-title: Microprocess. Microsyst. – reference: L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in: Proc. 4th Int. Symp. Information Processing in Sensor Networks, Los Angeles, CA, 2005, pp. 63–70. – volume: 40 start-page: 102 year: 2002 end-page: 114 ident: br0060 article-title: A survey on sensor networks publication-title: IEEE Commun. Mag. – reference: M. Chu, D.J. Allstot, An elitist distributed particle swarm algorithm for RF IC optimization, in: Asia and South Pacific Design Automation Conference, vol. 2, 2005, pp. 671–674. – reference: J.M. Hereford, A distributed particle swarm optimization algorithm for swarm robotic applications, in: IEEE Congress on Evolutionary Computation, Canada, 2006, pp. 1678–1685. – volume: AC-24 start-page: 266 year: 1979 end-page: 269 ident: br0110 article-title: Computation and transmission requirements for a decentralized linear-quadratic Gaussian control system publication-title: IEEE Trans. Automat. Control – volume: ASSP-33 start-page: 1123 year: 1985 end-page: 1129 ident: br0040 article-title: Decentralized processing in sensor arrays publication-title: IEEE Trans. Acoust. Speech Signal Process. – reference: S. Tang, Y. Qian, M. Chen, Improved particle swarm optimization algorithm based cross-layer power allocation scheme in distributed antenna systems, in: IEEE International Conf. on Wireless Communications and Signal Processing, China, November 13–15, 2009. – volume: 19 start-page: 201 year: 2008 end-page: 211 ident: br0440 article-title: Preliminary study on Wilcoxon learning machines publication-title: IEEE Trans. Neural Netw. – volume: 33 start-page: 124 year: 2007 end-page: 143 ident: br0360 article-title: Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization publication-title: Parallel Comput. – volume: 37 start-page: 1 year: 2011 end-page: 10 ident: br0370 article-title: Communication latency tolerant parallel algorithm for particle swarm optimization publication-title: Parallel Comput. – volume: 181 start-page: 4642 year: 2011 end-page: 4657 ident: br0400 article-title: Evaluation of parallel particle swarm optimization algorithms within the CUDA publication-title: Inform. Sci. – reference: B. Majhi, G. Panda, B. Mulgrew, Distributed identification of nonlinear processes using incremental and diffusion type PSO algorithms, in: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009, pp. 2076–2082. – reference: R.A. David, S.D. Stearns, Adaptive IIR algorithms based on gradient search, in: Proc. 24th Midwest Symp. Circuits Systems, 1981. – reference: S.A. White, An adaptive recursive digital filter, in: Proc. 9th Asilomar Conf. Circuits Systems Computing, 1975, p. 21. – reference: B. Wang, Z. He, Distributed optimization over wireless sensor networks using swarm intelligence, in: IEEE Int. Symposium on Circuits & Systems, 2007, pp. 2502–2505. – reference: Q. Kang, H. He, H. Wang, C. Jiang, A novel discrete particle swarm optimization algorithm for job scheduling in grids, in: IEEE Fourth International Conference on Natural Computation, Jinan, Shandong, China, 18–20 October 2008, pp. 401–405. – volume: 55 start-page: 4064 year: 2007 end-page: 4077 ident: br0180 article-title: Incremental adaptive strategies over distributed networks publication-title: IEEE Trans. Signal Process. – reference: C.G. Lopes, A.H. Sayed, Diffusion least mean squares over adaptive networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Honolulu, HI, 2007, pp. 917–920. – start-page: 4 year: 1989 end-page: 21 ident: br0450 article-title: Adaptive IIR filtering publication-title: IEEE ASSP Mag. – reference: R. Abdolee, B. Champagne, Distributed blind adaptive algorithms based on constant modulus for wireless sensor networks, in: IEEE 6th International Conf. on Wireless and Mobile Communications (ICWMC), Valencia, Spain, 20–25 September 2010, pp. 303–308. – reference: C.Y. Chong, Hierarchical estimation, in: 2nd MIT/ONR Workshop on C3, Monterey, CA, July 1979. – reference: H. Prasain, G. Kumar Jha, P. Thulasiraman, R. Thulasiram, A parallel particle swarm optimization algorithm for option pricing, in: IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), April 19–23, 2010, pp. 1–7. – volume: 23 start-page: 798 year: 2005 end-page: 808 ident: br0030 article-title: Quantized incremental algorithms for distributed optimization publication-title: IEEE J. Sel. Areas Commun. – volume: 38 start-page: 5858 year: 2011 end-page: 5866 ident: br0420 article-title: Parallel computation models of particle swarm optimization implemented by multiple threads publication-title: Expert Syst. Appl. – reference: M.G. Rabbat, R.D. Nowak, Decentralized source localization and tracking, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Montreal, QC, Canada, 2004, pp. 921–924. – reference: X. Tang, G. Tang, Risk distribution network planning including distributed generation based on particle swarm optimization algorithm with immunity, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5. – reference: X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: IEEE International Conference on Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007, pp. 1–7. – volume: 58 start-page: 4795 year: 2010 end-page: 4810 ident: br0240 article-title: Diffusion least-mean squares with adaptive combiners: formulation and performance analysis publication-title: IEEE Trans. Signal Process. – reference: M.R. AlRashidi, M.F. AlHajri, Proper planning of multiple distributed generation sources using heuristic approach, in: IEEE 4th International Conf. on Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, 19–21 April 2011, pp. 1–5. – volume: 18 start-page: 695 year: 1988 end-page: 699 ident: br0100 article-title: Distributed Bayesian hypothesis testing with distributed data fusion publication-title: IEEE Trans. Syst. Man Cybern. – reference: C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Toulouse, France, 2006, pp. 584–587. – volume: 56 start-page: 3122 year: 2008 end-page: 3136 ident: br0220 article-title: Diffusion least mean squares over adaptive networks: Formulation and performance analysis publication-title: IEEE Trans. Signal Process. – start-page: 38 year: 1996 end-page: 46 ident: br0460 article-title: The genetic search approach publication-title: IEEE Signal Process. Mag. – volume: 37 start-page: 41 year: 2004 end-page: 49 ident: br0070 article-title: Overview of sensor networks publication-title: Computer – reference: N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Taiwan, April 19–24, 2009, pp. 2845–2848. – volume: AC-27 start-page: 799 year: 1982 end-page: 813 ident: br0090 article-title: Combining and updating of local estimates and regional maps along sets of one-dimensional tracks publication-title: IEEE Trans. Automat. Control – reference: S. Golestani, M. Tadayon, Optimal switch placement in distribution power system using linear fragmented particle swarm optimization algorithm preprocessed by GA, in: IEEE 8th International Conf. on European Energy Market (EEM), Zagreb, Croatia, 25–27 May 2011, pp. 537–542. – reference: S.L. Goh, Z. Babic, D.P. Mandic, An adaptive amplitude learning algorithm for nonlinear adaptive IIR filters, in: Proc. of TELSIKS, 2003, pp. 313–316. – ident: 10.1016/j.dsp.2013.02.015_br0290 doi: 10.1109/IPDPS.2007.370434 – start-page: 38 year: 1996 ident: 10.1016/j.dsp.2013.02.015_br0460 article-title: The genetic search approach publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543974 – ident: 10.1016/j.dsp.2013.02.015_br0490 – ident: 10.1016/j.dsp.2013.02.015_br0130 doi: 10.1109/ICASSP.2004.1326696 – ident: 10.1016/j.dsp.2013.02.015_br0190 doi: 10.1109/ACSSC.2008.5074397 – volume: ASSP-33 start-page: 1123 issue: 4 year: 1985 ident: 10.1016/j.dsp.2013.02.015_br0040 article-title: Decentralized processing in sensor arrays publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1985.1164706 – ident: 10.1016/j.dsp.2013.02.015_br0310 doi: 10.1109/SUPERGEN.2009.5347938 – volume: AC-30 start-page: 418 year: 1985 ident: 10.1016/j.dsp.2013.02.015_br0080 article-title: Distributed estimation algorithms for nonlinear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1985.1103972 – volume: 35 start-page: 10 issue: 1 year: 2011 ident: 10.1016/j.dsp.2013.02.015_br0410 article-title: A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2010.11.001 – ident: 10.1016/j.dsp.2013.02.015_br0160 doi: 10.1109/IPSN.2006.244160 – ident: 10.1016/j.dsp.2013.02.015_br0390 doi: 10.1109/EEM.2011.5953070 – ident: 10.1016/j.dsp.2013.02.015_br0280 doi: 10.1145/1120725.1120990 – volume: vol. 1447 start-page: 591 year: 1998 ident: 10.1016/j.dsp.2013.02.015_br0530 article-title: Parameter selection in particle swarm optimization, evolutionary programming VII – volume: AC-27 start-page: 799 year: 1982 ident: 10.1016/j.dsp.2013.02.015_br0090 article-title: Combining and updating of local estimates and regional maps along sets of one-dimensional tracks publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1982.1103019 – ident: 10.1016/j.dsp.2013.02.015_br0120 – volume: 58 start-page: 4795 issue: 9 year: 2010 ident: 10.1016/j.dsp.2013.02.015_br0240 article-title: Diffusion least-mean squares with adaptive combiners: formulation and performance analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2051429 – volume: 38 start-page: 5858 issue: 5 year: 2011 ident: 10.1016/j.dsp.2013.02.015_br0420 article-title: Parallel computation models of particle swarm optimization implemented by multiple threads publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.037 – volume: 19 start-page: 13 issue: 2 year: 2002 ident: 10.1016/j.dsp.2013.02.015_br0050 article-title: Special issue on collaborative information processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2002.985672 – ident: 10.1016/j.dsp.2013.02.015_br0150 doi: 10.1109/IPSN.2005.1440896 – volume: 33 start-page: 124 issue: 2 year: 2007 ident: 10.1016/j.dsp.2013.02.015_br0360 article-title: Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization publication-title: Parallel Comput. doi: 10.1016/j.parco.2006.11.005 – volume: 181 start-page: 4642 issue: 20 year: 2011 ident: 10.1016/j.dsp.2013.02.015_br0400 article-title: Evaluation of parallel particle swarm optimization algorithms within the CUDA™ architecture publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.08.045 – ident: 10.1016/j.dsp.2013.02.015_br0020 doi: 10.1109/ICASSP.2001.940390 – ident: 10.1016/j.dsp.2013.02.015_br0330 doi: 10.1109/WCSP.2009.5371429 – ident: 10.1016/j.dsp.2013.02.015_br0200 doi: 10.1049/cp.2010.0667 – ident: 10.1016/j.dsp.2013.02.015_br0170 doi: 10.1109/ICASSP.2007.366830 – ident: 10.1016/j.dsp.2013.02.015_br0300 doi: 10.1109/ICNC.2008.63 – volume: 19 start-page: 201 issue: 2 year: 2008 ident: 10.1016/j.dsp.2013.02.015_br0440 article-title: Preliminary study on Wilcoxon learning machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.904035 – ident: 10.1016/j.dsp.2013.02.015_br0270 doi: 10.1109/SIS.2007.368026 – ident: 10.1016/j.dsp.2013.02.015_br0210 doi: 10.1109/ICWMC.2010.33 – ident: 10.1016/j.dsp.2013.02.015_br0320 doi: 10.1109/ICMSAO.2011.5775570 – volume: 80 start-page: 1909 year: 2000 ident: 10.1016/j.dsp.2013.02.015_br0510 article-title: A normalised real time recurrent learning algorithm publication-title: Signal Process. doi: 10.1016/S0165-1684(00)00101-8 – volume: 40 start-page: 102 issue: 8 year: 2002 ident: 10.1016/j.dsp.2013.02.015_br0060 article-title: A survey on sensor networks publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2002.1024422 – volume: 23 start-page: 798 issue: 4 year: 2005 ident: 10.1016/j.dsp.2013.02.015_br0030 article-title: Quantized incremental algorithms for distributed optimization publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2005.843546 – volume: 37 start-page: 41 issue: 8 year: 2004 ident: 10.1016/j.dsp.2013.02.015_br0070 article-title: Overview of sensor networks publication-title: Computer doi: 10.1109/MC.2004.93 – volume: 18 start-page: 695 year: 1988 ident: 10.1016/j.dsp.2013.02.015_br0100 article-title: Distributed Bayesian hypothesis testing with distributed data fusion publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.21597 – ident: 10.1016/j.dsp.2013.02.015_br0230 doi: 10.1109/ICASSP.2009.4960216 – ident: 10.1016/j.dsp.2013.02.015_br0250 doi: 10.1109/CAMSAP.2011.6136004 – volume: 37 start-page: 519 issue: 4 year: 1989 ident: 10.1016/j.dsp.2013.02.015_br0470 article-title: Adaptive IIR filtering using parallel form realization publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.17533 – ident: 10.1016/j.dsp.2013.02.015_br0540 – volume: 55 start-page: 4064 issue: 8 year: 2007 ident: 10.1016/j.dsp.2013.02.015_br0180 article-title: Incremental adaptive strategies over distributed networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.896034 – ident: 10.1016/j.dsp.2013.02.015_br0350 doi: 10.1109/SUPERGEN.2009.5348246 – start-page: 4 year: 1989 ident: 10.1016/j.dsp.2013.02.015_br0450 article-title: Adaptive IIR filtering publication-title: IEEE ASSP Mag. doi: 10.1109/53.29644 – ident: 10.1016/j.dsp.2013.02.015_br0500 – volume: 56 start-page: 3122 issue: 7 year: 2008 ident: 10.1016/j.dsp.2013.02.015_br0220 article-title: Diffusion least mean squares over adaptive networks: Formulation and performance analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917383 – ident: 10.1016/j.dsp.2013.02.015_br0430 doi: 10.1109/CEC.2009.4983197 – ident: 10.1016/j.dsp.2013.02.015_br0140 doi: 10.1109/ICASSP.2006.1660721 – volume: CAS-28 year: 1981 ident: 10.1016/j.dsp.2013.02.015_br0480 article-title: Error surfaces of recursive adaptive filters publication-title: IEEE Trans. Circuits Systems, Special Issue on Adaptive Systems – volume: 37 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.dsp.2013.02.015_br0370 article-title: Communication latency tolerant parallel algorithm for particle swarm optimization publication-title: Parallel Comput. doi: 10.1016/j.parco.2010.09.003 – ident: 10.1016/j.dsp.2013.02.015_br0340 – ident: 10.1016/j.dsp.2013.02.015_br0380 doi: 10.1109/IPDPSW.2010.5470706 – ident: 10.1016/j.dsp.2013.02.015_br0520 – volume: AC-24 start-page: 266 year: 1979 ident: 10.1016/j.dsp.2013.02.015_br0110 article-title: Computation and transmission requirements for a decentralized linear-quadratic Gaussian control system publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1979.1101973 – volume: 38 start-page: 393 year: 2002 ident: 10.1016/j.dsp.2013.02.015_br0010 article-title: Wireless sensor networks: A survey publication-title: Comput. Netw. doi: 10.1016/S1389-1286(01)00302-4 – ident: 10.1016/j.dsp.2013.02.015_br0260 doi: 10.1109/ISCAS.2007.378747 |
| SSID | ssj0007426 |
| Score | 2.0674822 |
| Snippet | In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1303 |
| SubjectTerms | Algorithms Contamination Digital signal processing Distributed parameter estimation IIR system identification Incremental particle swarm optimization (IPSO) Least mean squares Least mean squares algorithm Optimization Parameter estimation Particle swarm optimization Robust distributed parameter estimation Swarm intelligence Training |
| Title | Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization |
| URI | https://dx.doi.org/10.1016/j.dsp.2013.02.015 https://www.proquest.com/docview/1372632538 https://www.proquest.com/docview/1513425262 |
| Volume | 23 |
| WOSCitedRecordID | wos000319180200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1095-4333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007426 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RCshInIiCkjgvHwstYjlUFRRpb5Fjx3RX3aTaZEv775mxnTQsYgVIXKKVlawTz5eZz5N5EPJahloEsmS-qlLuxyBYv0yE8oNMcsU17DmUNM0msuPjfDbjJ5PJdZ8Lc3me1XV-dcUv_quoYQyEjamzfyHu4U9hAH6D0OEIYofjHwn-EEvhYherStng8aZct52HNb6XGPviYV2N5cAUp9PPrpxz661bm-EirdMQk7TcBF77XayWXgMKZukyN8e09nD-DZuPeBgNglfZ7IPeKhqH98J0D_beiXLeDabgBP0YxjUvaoGx3WMnBDaEyMZOiCE75qfgTaBuoRWNsTVujCeYpcXGGthmHDukxSN1igZ2ZJpDZvNWf1H71gOxeKtaLEEaMlOG1aaJblTT_oI3hfeEn_GwuOAtshtlCQeFuHswPZp9Gsx4FptefcND9J_ETXDgxkS_IzUb5t1wltP75J7bbNADK8MHZFLVD8ndUQnKR-RsBBcK0qAWLnSAC72BC200BbhQBxdq4EJHcKE9XKiBCx3D5TH5-uHo9P1H33Xf8CVLWefzKgdlXWJ9P7ADgolAiZRrIYKk0oGSoWJc6RIMFOci5xqoe6ICeL1DEWkNrPMJ2ambunpKaCw57JQzlQFZjTPY8POSa-CKSvKKpXm0R4J--QrpStNjh5Tzoo9BXBSw4gWueBFEBaz4HnkzXHJh67JsOznuZVI4YmkJYwEA2nbZq15-BShd_JIm6qpZt0XIMuxzAGRhyzlJyMAgRmn07N-m3yd3bl6152SnW62rF-S2vOzm7eqlg-sP8U64FA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+and+robust+parameter+estimation+of+IIR+systems+using+incremental+particle+swarm+optimization&rft.jtitle=Digital+signal+processing&rft.au=Majhi%2C+Babita&rft.au=Panda%2C+Ganapati&rft.date=2013-07-01&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.eissn=1095-4333&rft.volume=23&rft.issue=4&rft.spage=1303&rft.epage=1313&rft_id=info:doi/10.1016%2Fj.dsp.2013.02.015&rft.externalDocID=S1051200413000389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |