Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization

In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digital signal processing Ročník 23; číslo 4; s. 1303 - 1313
Hlavní autoři: Majhi, Babita, Panda, Ganapati
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.07.2013
Témata:
ISSN:1051-2004, 1095-4333
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation using the data collected from sensor nodes. But these algorithms, being derivative based, have a tendency of providing local minima solution particularly for minimization of multimodal cost function. Hence for problems like distributed parameters estimation of IIR systems, alternative distributed algorithms are required to be developed. Keeping this in view the present paper proposes two population based incremental particle swarm optimization (IPSO) algorithms for estimation of parameters of noisy IIR systems. But the proposed IPSO algorithms provide poor performance when the measured data is contaminated with outliers in the training samples. To alleviate this problem the paper has proposed a robust distributed algorithm (RDIPSO) for IIR system identification task. The simulation results of benchmark IIR systems demonstrate that the proposed algorithms provide excellent identification performance in all cases even when the training samples are contaminated with outliers. ► Proposes a novel distributed population based learning algorithm IPSO. ► Estimates global IIR parameters using IPSO. ► Computes robust distributed IIR parameters using Wilcoxon norm.
AbstractList In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation using the data collected from sensor nodes. But these algorithms, being derivative based, have a tendency of providing local minima solution particularly for minimization of multimodal cost function. Hence for problems like distributed parameters estimation of IIR systems, alternative distributed algorithms are required to be developed. Keeping this in view the present paper proposes two population based incremental particle swarm optimization (IPSO) algorithms for estimation of parameters of noisy IIR systems. But the proposed IPSO algorithms provide poor performance when the measured data is contaminated with outliers in the training samples. To alleviate this problem the paper has proposed a robust distributed algorithm (RDIPSO) for IIR system identification task. The simulation results of benchmark IIR systems demonstrate that the proposed algorithms provide excellent identification performance in all cases even when the training samples are contaminated with outliers.
In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular learning algorithms: incremental least mean square (ILMS) and diffusion least mean square (DLMS) have been reported for distributed estimation using the data collected from sensor nodes. But these algorithms, being derivative based, have a tendency of providing local minima solution particularly for minimization of multimodal cost function. Hence for problems like distributed parameters estimation of IIR systems, alternative distributed algorithms are required to be developed. Keeping this in view the present paper proposes two population based incremental particle swarm optimization (IPSO) algorithms for estimation of parameters of noisy IIR systems. But the proposed IPSO algorithms provide poor performance when the measured data is contaminated with outliers in the training samples. To alleviate this problem the paper has proposed a robust distributed algorithm (RDIPSO) for IIR system identification task. The simulation results of benchmark IIR systems demonstrate that the proposed algorithms provide excellent identification performance in all cases even when the training samples are contaminated with outliers. ► Proposes a novel distributed population based learning algorithm IPSO. ► Estimates global IIR parameters using IPSO. ► Computes robust distributed IIR parameters using Wilcoxon norm.
Author Panda, Ganapati
Majhi, Babita
Author_xml – sequence: 1
  givenname: Babita
  surname: Majhi
  fullname: Majhi, Babita
  email: babita.majhi@gmail.com
  organization: Dept. of Automatic Control and System Engineering, University of Sheffield, UK
– sequence: 2
  givenname: Ganapati
  surname: Panda
  fullname: Panda, Ganapati
  email: gpanda@iitbbs.ac.in
  organization: School of Electrical Sciences, Indian Institute of Technology, Bhubaneswar, India
BookMark eNqNkT1PHDEQhi0EEh_hB9C5pNnN2D7vnkWFSEhOQooUQW357HHi06692N5E8Ouzx6VKgVLNFO8zGr3POTmOKSIhVwxaBqz7uGtdmVoOTLTAW2DyiJwxULJZCSGO97tkDQdYnZLzUnYA0K94d0Z-fgql5rCdKzpqoqM5bedS6WSyGbFiplhqGE0NKdLk6WbznZaXUnEsdC4h_qAh2owjxmqGPVWDHZCW3yaPNE0LGl7f4A_kxJuh4OXfeUGe7j8_3n1tHr592dzdPjRWdKI2CtesV9uuByWgN8KAM53yxoBED84yJ5TzW9F3Spm18mvJpAPle2a495yLC3J9uDvl9Dwvz-sxFIvDYCKmuWgmmVhxybv_iIqed4JLsV6i7BC1OZWS0espL63kF81A7wXonV4E6L0ADVwvAham_4exob51UbMJw7vkzYHEpahfAbMuNmC06EJGW7VL4R36Dw_-o_A
CitedBy_id crossref_primary_10_1016_j_dsp_2018_01_011
crossref_primary_10_1016_j_swevo_2016_06_007
crossref_primary_10_1049_iet_spr_2014_0188
crossref_primary_10_4018_IJCINI_2020100102
crossref_primary_10_1049_ccs_2019_0030
crossref_primary_10_1016_j_dsp_2014_05_008
crossref_primary_10_1007_s00034_016_0370_z
crossref_primary_10_1007_s12652_018_0839_7
crossref_primary_10_1016_j_eswa_2014_10_040
crossref_primary_10_1016_j_jksues_2017_11_002
crossref_primary_10_1016_j_simpat_2015_01_007
crossref_primary_10_3390_en16041706
Cites_doi 10.1109/IPDPS.2007.370434
10.1109/79.543974
10.1109/ICASSP.2004.1326696
10.1109/ACSSC.2008.5074397
10.1109/TASSP.1985.1164706
10.1109/SUPERGEN.2009.5347938
10.1109/TAC.1985.1103972
10.1016/j.micpro.2010.11.001
10.1109/IPSN.2006.244160
10.1109/EEM.2011.5953070
10.1145/1120725.1120990
10.1109/TAC.1982.1103019
10.1109/TSP.2010.2051429
10.1016/j.eswa.2010.11.037
10.1109/MSP.2002.985672
10.1109/IPSN.2005.1440896
10.1016/j.parco.2006.11.005
10.1016/j.ins.2010.08.045
10.1109/ICASSP.2001.940390
10.1109/WCSP.2009.5371429
10.1049/cp.2010.0667
10.1109/ICASSP.2007.366830
10.1109/ICNC.2008.63
10.1109/TNN.2007.904035
10.1109/SIS.2007.368026
10.1109/ICWMC.2010.33
10.1109/ICMSAO.2011.5775570
10.1016/S0165-1684(00)00101-8
10.1109/MCOM.2002.1024422
10.1109/JSAC.2005.843546
10.1109/MC.2004.93
10.1109/21.21597
10.1109/ICASSP.2009.4960216
10.1109/CAMSAP.2011.6136004
10.1109/29.17533
10.1109/TSP.2007.896034
10.1109/SUPERGEN.2009.5348246
10.1109/53.29644
10.1109/TSP.2008.917383
10.1109/CEC.2009.4983197
10.1109/ICASSP.2006.1660721
10.1016/j.parco.2010.09.003
10.1109/IPDPSW.2010.5470706
10.1109/TAC.1979.1101973
10.1016/S1389-1286(01)00302-4
10.1109/ISCAS.2007.378747
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dsp.2013.02.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-4333
EndPage 1313
ExternalDocumentID 10_1016_j_dsp_2013_02_015
S1051200413000389
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-9e8179b6709307a3a0da69faa05ef0dc1d39dfb37699a89f8515d09f71a2ff223
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319180200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Thu Oct 02 06:56:16 EDT 2025
Sat Sep 27 17:46:55 EDT 2025
Sat Nov 29 07:57:46 EST 2025
Tue Nov 18 21:01:47 EST 2025
Fri Feb 23 02:28:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Robust distributed parameter estimation
Distributed parameter estimation
Incremental particle swarm optimization (IPSO)
IIR system identification
Particle swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-9e8179b6709307a3a0da69faa05ef0dc1d39dfb37699a89f8515d09f71a2ff223
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1372632538
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1513425262
proquest_miscellaneous_1372632538
crossref_primary_10_1016_j_dsp_2013_02_015
crossref_citationtrail_10_1016_j_dsp_2013_02_015
elsevier_sciencedirect_doi_10_1016_j_dsp_2013_02_015
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Digital signal processing
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References C.G. Lopes, A.H. Sayed, Diffusion least mean squares over adaptive networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Honolulu, HI, 2007, pp. 917–920.
Hsieh, Lin, Jeng (br0440) 2008; 19
R. Abdolee, B. Champagne, Distributed blind adaptive algorithms based on constant modulus for wireless sensor networks, in: IEEE 6th International Conf. on Wireless and Mobile Communications (ICWMC), Valencia, Spain, 20–25 September 2010, pp. 303–308.
M.G. Rabbat, R.D. Nowak, Decentralized source localization and tracking, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Montreal, QC, Canada, 2004, pp. 921–924.
Ng, Leung, Chung, Luk, Lau (br0460) 1996
Castanon, Teneketzis (br0080) 1985; AC-30
Takahashi, Yamada, Sayed (br0240) 2010; 58
C.Y. Chong, Hierarchical estimation, in: 2nd MIT/ONR Workshop on C3, Monterey, CA, July 1979.
Mussi, Daolio, Cagnoni (br0400) 2011; 181
Lopes, Sayed (br0220) 2008; 56
P. Wannakarn, S. Khamsawang, S. Pothiya, S. Jiriwibhakorn, Optimal power flow problem solved by using distributed Sobol particle swarm optimization, in: IEEE International Conf. on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Thailand, 19–21 May 2010, pp. 445–449.
Kumar, Zhao, Shepherd (br0050) 2002; 19
D. Estrin, G. Pottie, M. Srivastava, Instrumenting the worlds with wireless sensor networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Salt Lake City, UT, 2001, pp. 2033–2036.
J. Chen, S.-Y. Tu, A.H. Sayed, Distributed optimization via diffusion adaptation, in: IEEE 4th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto Rico, 13–16 December, pp. 281–284.
N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Taiwan, April 19–24, 2009, pp. 2845–2848.
X. Tang, G. Tang, Risk distribution network planning including distributed generation based on particle swarm optimization algorithm with immunity, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5.
Speyer (br0110) 1979; AC-24
H. Prasain, G. Kumar Jha, P. Thulasiraman, R. Thulasiram, A parallel particle swarm optimization algorithm for option pricing, in: IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), April 19–23, 2010, pp. 1–7.
S.A. White, An adaptive recursive digital filter, in: Proc. 9th Asilomar Conf. Circuits Systems Computing, 1975, p. 21.
S. Golestani, M. Tadayon, Optimal switch placement in distribution power system using linear fragmented particle swarm optimization algorithm preprocessed by GA, in: IEEE 8th International Conf. on European Energy Market (EEM), Zagreb, Croatia, 25–27 May 2011, pp. 537–542.
Shynk (br0470) 1989; 37
S.L. Goh, Z. Babic, D.P. Mandic, An adaptive amplitude learning algorithm for nonlinear adaptive IIR filters, in: Proc. of TELSIKS, 2003, pp. 313–316.
S. Tang, Y. Qian, M. Chen, Improved particle swarm optimization algorithm based cross-layer power allocation scheme in distributed antenna systems, in: IEEE International Conf. on Wireless Communications and Signal Processing, China, November 13–15, 2009.
M. Chu, D.J. Allstot, An elitist distributed particle swarm algorithm for RF IC optimization, in: Asia and South Pacific Design Automation Conference, vol. 2, 2005, pp. 671–674.
Shi, Eberhart (br0530) 1998; vol. 1447
Culler, Estrin, Srivastava (br0070) 2004; 37
B. Wang, Z. He, Distributed optimization over wireless sensor networks using swarm intelligence, in: IEEE Int. Symposium on Circuits & Systems, 2007, pp. 2502–2505.
Akyildiz, Su, Sankarasubramaniam, Cayirci (br0060) 2002; 40
Stearns (br0480) 1981; CAS-28
C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Toulouse, France, 2006, pp. 584–587.
X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: IEEE International Conference on Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007, pp. 1–7.
Akyildiz, Su, Sankarasubramaniam, Cayirci (br0010) 2002; 38
L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in: Proc. 4th Int. Symp. Information Processing in Sensor Networks, Los Angeles, CA, 2005, pp. 63–70.
Q. Kang, H. He, H. Wang, C. Jiang, A novel discrete particle swarm optimization algorithm for job scheduling in grids, in: IEEE Fourth International Conference on Natural Computation, Jinan, Shandong, China, 18–20 October 2008, pp. 401–405.
Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: IEEE Congress on Computational Intelligence, 1998, pp. 69–73.
Rabbat, Nowak (br0030) 2005; 23
Willsky, Bello, Castanon, Levy, Verghese (br0090) 1982; AC-27
M.A. Tinati, A. Rastegarnia, A. Khalili, An incremental least-mean square algorithm with adaptive combiner, in: IET 3rd International Conf. on Wireless, Mobile and Multimedia Networks (ICWMNN 2010), Beijing, China, 26–29 September 2010, pp. 266–269.
Mandic, Chambers (br0510) 2000; 80
Li, Wada (br0370) 2011; 37
L. Xiao, S. Boyd, S. Lall, A space–time diffusion scheme for peer-to-peer least-squares estimation, in: Proc. 5th Int. Symp. Information Processing in Sensor Networks, Nashville, TN, 2006.
Sahin, Çetin Yavuz, Arnavut, Uluyol (br0360) 2007; 33
Tu, Liang (br0420) 2011; 38
J.M. Hereford, A distributed particle swarm optimization algorithm for swarm robotic applications, in: IEEE Congress on Evolutionary Computation, Canada, 2006, pp. 1678–1685.
Shynk (br0450) 1989
Lopes, Sayed (br0180) 2007; 55
M.R. AlRashidi, M.F. AlHajri, Proper planning of multiple distributed generation sources using heuristic approach, in: IEEE 4th International Conf. on Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, 19–21 April 2011, pp. 1–5.
Kang, He (br0410) 2011; 35
Chair, Varshney (br0100) 1988; 18
B. Majhi, G. Panda, B. Mulgrew, Distributed identification of nonlinear processes using incremental and diffusion type PSO algorithms, in: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009, pp. 2076–2082.
L. Li, Y. Zhang, J.A. Chambers, Variable length adaptive filtering within incremental learning algorithms for distributed networks, in: IEEE 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 26–29 October 2008, pp. 225–229.
L. Lu, J. Liu, J. Wang, A distributed hierarchical structure optimization algorithm based poly-particle swarm for reconfiguration of distribution network, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5.
R.A. David, S.D. Stearns, Adaptive IIR algorithms based on gradient search, in: Proc. 24th Midwest Symp. Circuits Systems, 1981.
Wax, Kailath (br0040) 1985; ASSP-33
10.1016/j.dsp.2013.02.015_br0190
Shi (10.1016/j.dsp.2013.02.015_br0530) 1998; vol. 1447
10.1016/j.dsp.2013.02.015_br0500
Chair (10.1016/j.dsp.2013.02.015_br0100) 1988; 18
10.1016/j.dsp.2013.02.015_br0300
10.1016/j.dsp.2013.02.015_br0540
Willsky (10.1016/j.dsp.2013.02.015_br0090) 1982; AC-27
10.1016/j.dsp.2013.02.015_br0340
10.1016/j.dsp.2013.02.015_br0020
10.1016/j.dsp.2013.02.015_br0140
10.1016/j.dsp.2013.02.015_br0260
10.1016/j.dsp.2013.02.015_br0380
Kumar (10.1016/j.dsp.2013.02.015_br0050) 2002; 19
Mussi (10.1016/j.dsp.2013.02.015_br0400) 2011; 181
10.1016/j.dsp.2013.02.015_br0210
10.1016/j.dsp.2013.02.015_br0330
10.1016/j.dsp.2013.02.015_br0130
10.1016/j.dsp.2013.02.015_br0250
Akyildiz (10.1016/j.dsp.2013.02.015_br0060) 2002; 40
Speyer (10.1016/j.dsp.2013.02.015_br0110) 1979; AC-24
10.1016/j.dsp.2013.02.015_br0490
10.1016/j.dsp.2013.02.015_br0170
10.1016/j.dsp.2013.02.015_br0290
Rabbat (10.1016/j.dsp.2013.02.015_br0030) 2005; 23
Stearns (10.1016/j.dsp.2013.02.015_br0480) 1981; CAS-28
Takahashi (10.1016/j.dsp.2013.02.015_br0240) 2010; 58
Shynk (10.1016/j.dsp.2013.02.015_br0470) 1989; 37
Kang (10.1016/j.dsp.2013.02.015_br0410) 2011; 35
Lopes (10.1016/j.dsp.2013.02.015_br0180) 2007; 55
Hsieh (10.1016/j.dsp.2013.02.015_br0440) 2008; 19
10.1016/j.dsp.2013.02.015_br0520
Akyildiz (10.1016/j.dsp.2013.02.015_br0010) 2002; 38
10.1016/j.dsp.2013.02.015_br0200
10.1016/j.dsp.2013.02.015_br0320
10.1016/j.dsp.2013.02.015_br0120
Sahin (10.1016/j.dsp.2013.02.015_br0360) 2007; 33
Wax (10.1016/j.dsp.2013.02.015_br0040) 1985; ASSP-33
10.1016/j.dsp.2013.02.015_br0160
10.1016/j.dsp.2013.02.015_br0280
Ng (10.1016/j.dsp.2013.02.015_br0460) 1996
Mandic (10.1016/j.dsp.2013.02.015_br0510) 2000; 80
Tu (10.1016/j.dsp.2013.02.015_br0420) 2011; 38
Lopes (10.1016/j.dsp.2013.02.015_br0220) 2008; 56
Shynk (10.1016/j.dsp.2013.02.015_br0450) 1989
Li (10.1016/j.dsp.2013.02.015_br0370) 2011; 37
Culler (10.1016/j.dsp.2013.02.015_br0070) 2004; 37
10.1016/j.dsp.2013.02.015_br0310
10.1016/j.dsp.2013.02.015_br0430
10.1016/j.dsp.2013.02.015_br0230
10.1016/j.dsp.2013.02.015_br0350
10.1016/j.dsp.2013.02.015_br0150
Castanon (10.1016/j.dsp.2013.02.015_br0080) 1985; AC-30
10.1016/j.dsp.2013.02.015_br0270
10.1016/j.dsp.2013.02.015_br0390
References_xml – reference: L. Xiao, S. Boyd, S. Lall, A space–time diffusion scheme for peer-to-peer least-squares estimation, in: Proc. 5th Int. Symp. Information Processing in Sensor Networks, Nashville, TN, 2006.
– volume: 80
  start-page: 1909
  year: 2000
  end-page: 1916
  ident: br0510
  article-title: A normalised real time recurrent learning algorithm
  publication-title: Signal Process.
– volume: 19
  start-page: 13
  year: 2002
  end-page: 14
  ident: br0050
  article-title: Special issue on collaborative information processing
  publication-title: IEEE Signal Process. Mag.
– reference: Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: IEEE Congress on Computational Intelligence, 1998, pp. 69–73.
– reference: D. Estrin, G. Pottie, M. Srivastava, Instrumenting the worlds with wireless sensor networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Salt Lake City, UT, 2001, pp. 2033–2036.
– volume: vol. 1447
  start-page: 591
  year: 1998
  end-page: 600
  ident: br0530
  article-title: Parameter selection in particle swarm optimization, evolutionary programming VII
  publication-title: Lecture Notes in Comput. Sci.
– reference: P. Wannakarn, S. Khamsawang, S. Pothiya, S. Jiriwibhakorn, Optimal power flow problem solved by using distributed Sobol particle swarm optimization, in: IEEE International Conf. on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Thailand, 19–21 May 2010, pp. 445–449.
– volume: AC-30
  start-page: 418
  year: 1985
  end-page: 425
  ident: br0080
  article-title: Distributed estimation algorithms for nonlinear systems
  publication-title: IEEE Trans. Automat. Control
– reference: M.A. Tinati, A. Rastegarnia, A. Khalili, An incremental least-mean square algorithm with adaptive combiner, in: IET 3rd International Conf. on Wireless, Mobile and Multimedia Networks (ICWMNN 2010), Beijing, China, 26–29 September 2010, pp. 266–269.
– reference: J. Chen, S.-Y. Tu, A.H. Sayed, Distributed optimization via diffusion adaptation, in: IEEE 4th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto Rico, 13–16 December, pp. 281–284.
– volume: CAS-28
  year: 1981
  ident: br0480
  article-title: Error surfaces of recursive adaptive filters
  publication-title: IEEE Trans. Circuits Systems, Special Issue on Adaptive Systems
– volume: 38
  start-page: 393
  year: 2002
  end-page: 422
  ident: br0010
  article-title: Wireless sensor networks: A survey
  publication-title: Comput. Netw.
– volume: 37
  start-page: 519
  year: 1989
  end-page: 533
  ident: br0470
  article-title: Adaptive IIR filtering using parallel form realization
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– reference: L. Lu, J. Liu, J. Wang, A distributed hierarchical structure optimization algorithm based poly-particle swarm for reconfiguration of distribution network, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5.
– reference: L. Li, Y. Zhang, J.A. Chambers, Variable length adaptive filtering within incremental learning algorithms for distributed networks, in: IEEE 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 26–29 October 2008, pp. 225–229.
– volume: 35
  start-page: 10
  year: 2011
  end-page: 17
  ident: br0410
  article-title: A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems
  publication-title: Microprocess. Microsyst.
– reference: L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in: Proc. 4th Int. Symp. Information Processing in Sensor Networks, Los Angeles, CA, 2005, pp. 63–70.
– volume: 40
  start-page: 102
  year: 2002
  end-page: 114
  ident: br0060
  article-title: A survey on sensor networks
  publication-title: IEEE Commun. Mag.
– reference: M. Chu, D.J. Allstot, An elitist distributed particle swarm algorithm for RF IC optimization, in: Asia and South Pacific Design Automation Conference, vol. 2, 2005, pp. 671–674.
– reference: J.M. Hereford, A distributed particle swarm optimization algorithm for swarm robotic applications, in: IEEE Congress on Evolutionary Computation, Canada, 2006, pp. 1678–1685.
– volume: AC-24
  start-page: 266
  year: 1979
  end-page: 269
  ident: br0110
  article-title: Computation and transmission requirements for a decentralized linear-quadratic Gaussian control system
  publication-title: IEEE Trans. Automat. Control
– volume: ASSP-33
  start-page: 1123
  year: 1985
  end-page: 1129
  ident: br0040
  article-title: Decentralized processing in sensor arrays
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– reference: S. Tang, Y. Qian, M. Chen, Improved particle swarm optimization algorithm based cross-layer power allocation scheme in distributed antenna systems, in: IEEE International Conf. on Wireless Communications and Signal Processing, China, November 13–15, 2009.
– volume: 19
  start-page: 201
  year: 2008
  end-page: 211
  ident: br0440
  article-title: Preliminary study on Wilcoxon learning machines
  publication-title: IEEE Trans. Neural Netw.
– volume: 33
  start-page: 124
  year: 2007
  end-page: 143
  ident: br0360
  article-title: Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization
  publication-title: Parallel Comput.
– volume: 37
  start-page: 1
  year: 2011
  end-page: 10
  ident: br0370
  article-title: Communication latency tolerant parallel algorithm for particle swarm optimization
  publication-title: Parallel Comput.
– volume: 181
  start-page: 4642
  year: 2011
  end-page: 4657
  ident: br0400
  article-title: Evaluation of parallel particle swarm optimization algorithms within the CUDA
  publication-title: Inform. Sci.
– reference: B. Majhi, G. Panda, B. Mulgrew, Distributed identification of nonlinear processes using incremental and diffusion type PSO algorithms, in: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009, pp. 2076–2082.
– reference: R.A. David, S.D. Stearns, Adaptive IIR algorithms based on gradient search, in: Proc. 24th Midwest Symp. Circuits Systems, 1981.
– reference: S.A. White, An adaptive recursive digital filter, in: Proc. 9th Asilomar Conf. Circuits Systems Computing, 1975, p. 21.
– reference: B. Wang, Z. He, Distributed optimization over wireless sensor networks using swarm intelligence, in: IEEE Int. Symposium on Circuits & Systems, 2007, pp. 2502–2505.
– reference: Q. Kang, H. He, H. Wang, C. Jiang, A novel discrete particle swarm optimization algorithm for job scheduling in grids, in: IEEE Fourth International Conference on Natural Computation, Jinan, Shandong, China, 18–20 October 2008, pp. 401–405.
– volume: 55
  start-page: 4064
  year: 2007
  end-page: 4077
  ident: br0180
  article-title: Incremental adaptive strategies over distributed networks
  publication-title: IEEE Trans. Signal Process.
– reference: C.G. Lopes, A.H. Sayed, Diffusion least mean squares over adaptive networks, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Honolulu, HI, 2007, pp. 917–920.
– start-page: 4
  year: 1989
  end-page: 21
  ident: br0450
  article-title: Adaptive IIR filtering
  publication-title: IEEE ASSP Mag.
– reference: R. Abdolee, B. Champagne, Distributed blind adaptive algorithms based on constant modulus for wireless sensor networks, in: IEEE 6th International Conf. on Wireless and Mobile Communications (ICWMC), Valencia, Spain, 20–25 September 2010, pp. 303–308.
– reference: C.Y. Chong, Hierarchical estimation, in: 2nd MIT/ONR Workshop on C3, Monterey, CA, July 1979.
– reference: H. Prasain, G. Kumar Jha, P. Thulasiraman, R. Thulasiram, A parallel particle swarm optimization algorithm for option pricing, in: IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), April 19–23, 2010, pp. 1–7.
– volume: 23
  start-page: 798
  year: 2005
  end-page: 808
  ident: br0030
  article-title: Quantized incremental algorithms for distributed optimization
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 38
  start-page: 5858
  year: 2011
  end-page: 5866
  ident: br0420
  article-title: Parallel computation models of particle swarm optimization implemented by multiple threads
  publication-title: Expert Syst. Appl.
– reference: M.G. Rabbat, R.D. Nowak, Decentralized source localization and tracking, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Montreal, QC, Canada, 2004, pp. 921–924.
– reference: X. Tang, G. Tang, Risk distribution network planning including distributed generation based on particle swarm optimization algorithm with immunity, in: IEEE International Conference on Sustainable Power Generation and Supply, China, April 6–7, 2009, pp. 1–5.
– reference: X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: IEEE International Conference on Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007, pp. 1–7.
– volume: 58
  start-page: 4795
  year: 2010
  end-page: 4810
  ident: br0240
  article-title: Diffusion least-mean squares with adaptive combiners: formulation and performance analysis
  publication-title: IEEE Trans. Signal Process.
– reference: M.R. AlRashidi, M.F. AlHajri, Proper planning of multiple distributed generation sources using heuristic approach, in: IEEE 4th International Conf. on Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, 19–21 April 2011, pp. 1–5.
– volume: 18
  start-page: 695
  year: 1988
  end-page: 699
  ident: br0100
  article-title: Distributed Bayesian hypothesis testing with distributed data fusion
  publication-title: IEEE Trans. Syst. Man Cybern.
– reference: C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis, in: Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 3, Toulouse, France, 2006, pp. 584–587.
– volume: 56
  start-page: 3122
  year: 2008
  end-page: 3136
  ident: br0220
  article-title: Diffusion least mean squares over adaptive networks: Formulation and performance analysis
  publication-title: IEEE Trans. Signal Process.
– start-page: 38
  year: 1996
  end-page: 46
  ident: br0460
  article-title: The genetic search approach
  publication-title: IEEE Signal Process. Mag.
– volume: 37
  start-page: 41
  year: 2004
  end-page: 49
  ident: br0070
  article-title: Overview of sensor networks
  publication-title: Computer
– reference: N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Taiwan, April 19–24, 2009, pp. 2845–2848.
– volume: AC-27
  start-page: 799
  year: 1982
  end-page: 813
  ident: br0090
  article-title: Combining and updating of local estimates and regional maps along sets of one-dimensional tracks
  publication-title: IEEE Trans. Automat. Control
– reference: S. Golestani, M. Tadayon, Optimal switch placement in distribution power system using linear fragmented particle swarm optimization algorithm preprocessed by GA, in: IEEE 8th International Conf. on European Energy Market (EEM), Zagreb, Croatia, 25–27 May 2011, pp. 537–542.
– reference: S.L. Goh, Z. Babic, D.P. Mandic, An adaptive amplitude learning algorithm for nonlinear adaptive IIR filters, in: Proc. of TELSIKS, 2003, pp. 313–316.
– ident: 10.1016/j.dsp.2013.02.015_br0290
  doi: 10.1109/IPDPS.2007.370434
– start-page: 38
  year: 1996
  ident: 10.1016/j.dsp.2013.02.015_br0460
  article-title: The genetic search approach
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543974
– ident: 10.1016/j.dsp.2013.02.015_br0490
– ident: 10.1016/j.dsp.2013.02.015_br0130
  doi: 10.1109/ICASSP.2004.1326696
– ident: 10.1016/j.dsp.2013.02.015_br0190
  doi: 10.1109/ACSSC.2008.5074397
– volume: ASSP-33
  start-page: 1123
  issue: 4
  year: 1985
  ident: 10.1016/j.dsp.2013.02.015_br0040
  article-title: Decentralized processing in sensor arrays
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1985.1164706
– ident: 10.1016/j.dsp.2013.02.015_br0310
  doi: 10.1109/SUPERGEN.2009.5347938
– volume: AC-30
  start-page: 418
  year: 1985
  ident: 10.1016/j.dsp.2013.02.015_br0080
  article-title: Distributed estimation algorithms for nonlinear systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1985.1103972
– volume: 35
  start-page: 10
  issue: 1
  year: 2011
  ident: 10.1016/j.dsp.2013.02.015_br0410
  article-title: A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2010.11.001
– ident: 10.1016/j.dsp.2013.02.015_br0160
  doi: 10.1109/IPSN.2006.244160
– ident: 10.1016/j.dsp.2013.02.015_br0390
  doi: 10.1109/EEM.2011.5953070
– ident: 10.1016/j.dsp.2013.02.015_br0280
  doi: 10.1145/1120725.1120990
– volume: vol. 1447
  start-page: 591
  year: 1998
  ident: 10.1016/j.dsp.2013.02.015_br0530
  article-title: Parameter selection in particle swarm optimization, evolutionary programming VII
– volume: AC-27
  start-page: 799
  year: 1982
  ident: 10.1016/j.dsp.2013.02.015_br0090
  article-title: Combining and updating of local estimates and regional maps along sets of one-dimensional tracks
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1982.1103019
– ident: 10.1016/j.dsp.2013.02.015_br0120
– volume: 58
  start-page: 4795
  issue: 9
  year: 2010
  ident: 10.1016/j.dsp.2013.02.015_br0240
  article-title: Diffusion least-mean squares with adaptive combiners: formulation and performance analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2051429
– volume: 38
  start-page: 5858
  issue: 5
  year: 2011
  ident: 10.1016/j.dsp.2013.02.015_br0420
  article-title: Parallel computation models of particle swarm optimization implemented by multiple threads
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.037
– volume: 19
  start-page: 13
  issue: 2
  year: 2002
  ident: 10.1016/j.dsp.2013.02.015_br0050
  article-title: Special issue on collaborative information processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2002.985672
– ident: 10.1016/j.dsp.2013.02.015_br0150
  doi: 10.1109/IPSN.2005.1440896
– volume: 33
  start-page: 124
  issue: 2
  year: 2007
  ident: 10.1016/j.dsp.2013.02.015_br0360
  article-title: Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2006.11.005
– volume: 181
  start-page: 4642
  issue: 20
  year: 2011
  ident: 10.1016/j.dsp.2013.02.015_br0400
  article-title: Evaluation of parallel particle swarm optimization algorithms within the CUDA™ architecture
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.08.045
– ident: 10.1016/j.dsp.2013.02.015_br0020
  doi: 10.1109/ICASSP.2001.940390
– ident: 10.1016/j.dsp.2013.02.015_br0330
  doi: 10.1109/WCSP.2009.5371429
– ident: 10.1016/j.dsp.2013.02.015_br0200
  doi: 10.1049/cp.2010.0667
– ident: 10.1016/j.dsp.2013.02.015_br0170
  doi: 10.1109/ICASSP.2007.366830
– ident: 10.1016/j.dsp.2013.02.015_br0300
  doi: 10.1109/ICNC.2008.63
– volume: 19
  start-page: 201
  issue: 2
  year: 2008
  ident: 10.1016/j.dsp.2013.02.015_br0440
  article-title: Preliminary study on Wilcoxon learning machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.904035
– ident: 10.1016/j.dsp.2013.02.015_br0270
  doi: 10.1109/SIS.2007.368026
– ident: 10.1016/j.dsp.2013.02.015_br0210
  doi: 10.1109/ICWMC.2010.33
– ident: 10.1016/j.dsp.2013.02.015_br0320
  doi: 10.1109/ICMSAO.2011.5775570
– volume: 80
  start-page: 1909
  year: 2000
  ident: 10.1016/j.dsp.2013.02.015_br0510
  article-title: A normalised real time recurrent learning algorithm
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(00)00101-8
– volume: 40
  start-page: 102
  issue: 8
  year: 2002
  ident: 10.1016/j.dsp.2013.02.015_br0060
  article-title: A survey on sensor networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2002.1024422
– volume: 23
  start-page: 798
  issue: 4
  year: 2005
  ident: 10.1016/j.dsp.2013.02.015_br0030
  article-title: Quantized incremental algorithms for distributed optimization
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2005.843546
– volume: 37
  start-page: 41
  issue: 8
  year: 2004
  ident: 10.1016/j.dsp.2013.02.015_br0070
  article-title: Overview of sensor networks
  publication-title: Computer
  doi: 10.1109/MC.2004.93
– volume: 18
  start-page: 695
  year: 1988
  ident: 10.1016/j.dsp.2013.02.015_br0100
  article-title: Distributed Bayesian hypothesis testing with distributed data fusion
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.21597
– ident: 10.1016/j.dsp.2013.02.015_br0230
  doi: 10.1109/ICASSP.2009.4960216
– ident: 10.1016/j.dsp.2013.02.015_br0250
  doi: 10.1109/CAMSAP.2011.6136004
– volume: 37
  start-page: 519
  issue: 4
  year: 1989
  ident: 10.1016/j.dsp.2013.02.015_br0470
  article-title: Adaptive IIR filtering using parallel form realization
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.17533
– ident: 10.1016/j.dsp.2013.02.015_br0540
– volume: 55
  start-page: 4064
  issue: 8
  year: 2007
  ident: 10.1016/j.dsp.2013.02.015_br0180
  article-title: Incremental adaptive strategies over distributed networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.896034
– ident: 10.1016/j.dsp.2013.02.015_br0350
  doi: 10.1109/SUPERGEN.2009.5348246
– start-page: 4
  year: 1989
  ident: 10.1016/j.dsp.2013.02.015_br0450
  article-title: Adaptive IIR filtering
  publication-title: IEEE ASSP Mag.
  doi: 10.1109/53.29644
– ident: 10.1016/j.dsp.2013.02.015_br0500
– volume: 56
  start-page: 3122
  issue: 7
  year: 2008
  ident: 10.1016/j.dsp.2013.02.015_br0220
  article-title: Diffusion least mean squares over adaptive networks: Formulation and performance analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.917383
– ident: 10.1016/j.dsp.2013.02.015_br0430
  doi: 10.1109/CEC.2009.4983197
– ident: 10.1016/j.dsp.2013.02.015_br0140
  doi: 10.1109/ICASSP.2006.1660721
– volume: CAS-28
  year: 1981
  ident: 10.1016/j.dsp.2013.02.015_br0480
  article-title: Error surfaces of recursive adaptive filters
  publication-title: IEEE Trans. Circuits Systems, Special Issue on Adaptive Systems
– volume: 37
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.dsp.2013.02.015_br0370
  article-title: Communication latency tolerant parallel algorithm for particle swarm optimization
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2010.09.003
– ident: 10.1016/j.dsp.2013.02.015_br0340
– ident: 10.1016/j.dsp.2013.02.015_br0380
  doi: 10.1109/IPDPSW.2010.5470706
– ident: 10.1016/j.dsp.2013.02.015_br0520
– volume: AC-24
  start-page: 266
  year: 1979
  ident: 10.1016/j.dsp.2013.02.015_br0110
  article-title: Computation and transmission requirements for a decentralized linear-quadratic Gaussian control system
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1979.1101973
– volume: 38
  start-page: 393
  year: 2002
  ident: 10.1016/j.dsp.2013.02.015_br0010
  article-title: Wireless sensor networks: A survey
  publication-title: Comput. Netw.
  doi: 10.1016/S1389-1286(01)00302-4
– ident: 10.1016/j.dsp.2013.02.015_br0260
  doi: 10.1109/ISCAS.2007.378747
SSID ssj0007426
Score 2.0674822
Snippet In recent years because of substantial use of wireless sensor network the distributed estimation has attracted the attention of many researchers. Two popular...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1303
SubjectTerms Algorithms
Contamination
Digital signal processing
Distributed parameter estimation
IIR system identification
Incremental particle swarm optimization (IPSO)
Least mean squares
Least mean squares algorithm
Optimization
Parameter estimation
Particle swarm optimization
Robust distributed parameter estimation
Swarm intelligence
Training
Title Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization
URI https://dx.doi.org/10.1016/j.dsp.2013.02.015
https://www.proquest.com/docview/1372632538
https://www.proquest.com/docview/1513425262
Volume 23
WOSCitedRecordID wos000319180200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RCshInIiCkjgvHwstYjlUFRRpb5Fjx3RX3aTaZEv775mxnTQsYgVIXKKVlawTz5eZz5N5EPJahloEsmS-qlLuxyBYv0yE8oNMcsU17DmUNM0msuPjfDbjJ5PJdZ8Lc3me1XV-dcUv_quoYQyEjamzfyHu4U9hAH6D0OEIYofjHwn-EEvhYherStng8aZct52HNb6XGPviYV2N5cAUp9PPrpxz661bm-EirdMQk7TcBF77XayWXgMKZukyN8e09nD-DZuPeBgNglfZ7IPeKhqH98J0D_beiXLeDabgBP0YxjUvaoGx3WMnBDaEyMZOiCE75qfgTaBuoRWNsTVujCeYpcXGGthmHDukxSN1igZ2ZJpDZvNWf1H71gOxeKtaLEEaMlOG1aaJblTT_oI3hfeEn_GwuOAtshtlCQeFuHswPZp9Gsx4FptefcND9J_ETXDgxkS_IzUb5t1wltP75J7bbNADK8MHZFLVD8ndUQnKR-RsBBcK0qAWLnSAC72BC200BbhQBxdq4EJHcKE9XKiBCx3D5TH5-uHo9P1H33Xf8CVLWefzKgdlXWJ9P7ADgolAiZRrIYKk0oGSoWJc6RIMFOci5xqoe6ICeL1DEWkNrPMJ2ambunpKaCw57JQzlQFZjTPY8POSa-CKSvKKpXm0R4J--QrpStNjh5Tzoo9BXBSw4gWueBFEBaz4HnkzXHJh67JsOznuZVI4YmkJYwEA2nbZq15-BShd_JIm6qpZt0XIMuxzAGRhyzlJyMAgRmn07N-m3yd3bl6152SnW62rF-S2vOzm7eqlg-sP8U64FA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+and+robust+parameter+estimation+of+IIR+systems+using+incremental+particle+swarm+optimization&rft.jtitle=Digital+signal+processing&rft.au=Majhi%2C+Babita&rft.au=Panda%2C+Ganapati&rft.date=2013-07-01&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.eissn=1095-4333&rft.volume=23&rft.issue=4&rft.spage=1303&rft.epage=1313&rft_id=info:doi/10.1016%2Fj.dsp.2013.02.015&rft.externalDocID=S1051200413000389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon