A distributed and energy-efficient KNN for EEG classification with dynamic money-saving policy in heterogeneous clusters

Due to energy consumption’s increasing importance in recent years, energy-time efficiency is a highly relevant objective to address in High-Performance Computing (HPC) systems, where cost significantly impacts the tasks executed. Among these tasks, classification problems are considered due to their...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computing Ročník 105; číslo 11; s. 2487 - 2510
Hlavní autoři: Escobar, Juan José, Rodríguez, Francisco, Prieto, Beatriz, Kimovski, Dragi, Ortiz, Andrés, Damas, Miguel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.11.2023
Springer Nature B.V
Témata:
ISSN:0010-485X, 1436-5057
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to energy consumption’s increasing importance in recent years, energy-time efficiency is a highly relevant objective to address in High-Performance Computing (HPC) systems, where cost significantly impacts the tasks executed. Among these tasks, classification problems are considered due to their great computational complexity, which is sometimes aggravated when processing high-dimensional datasets. In addition, implementing efficient applications for high-performance systems is not an easy task since hardware must be considered to maximize performance, especially on heterogeneous platforms with multi-core CPUs. Thus, this article proposes an efficient distributed K -Nearest Neighbors (KNN) for Electroencephalogram (EEG) classification that uses minimum Redundancy Maximum Relevance (mRMR) as a feature selection technique to reduce the dimensionality of the dataset. The approach implements an energy policy that can stop or resume the execution of the program based on the cost per Megawatt. Since the procedure is based on the master-worker scheme, the performance of three different workload distributions is also analyzed to identify which one is more suitable according to the experimental conditions. The proposed approach outperforms the classification results obtained by previous works that use the same dataset. It achieves a speedup of 74.53 when running on a multi-node heterogeneous cluster, consuming only 13.38% of the energy consumed by the sequential version. Moreover, the results show that financial costs can be reduced when energy policy is activated and the importance of developing efficient methods, proving that energy-aware computing is necessary for sustainable computing.
AbstractList Due to energy consumption’s increasing importance in recent years, energy-time efficiency is a highly relevant objective to address in High-Performance Computing (HPC) systems, where cost significantly impacts the tasks executed. Among these tasks, classification problems are considered due to their great computational complexity, which is sometimes aggravated when processing high-dimensional datasets. In addition, implementing efficient applications for high-performance systems is not an easy task since hardware must be considered to maximize performance, especially on heterogeneous platforms with multi-core CPUs. Thus, this article proposes an efficient distributed K-Nearest Neighbors (KNN) for Electroencephalogram (EEG) classification that uses minimum Redundancy Maximum Relevance (mRMR) as a feature selection technique to reduce the dimensionality of the dataset. The approach implements an energy policy that can stop or resume the execution of the program based on the cost per Megawatt. Since the procedure is based on the master-worker scheme, the performance of three different workload distributions is also analyzed to identify which one is more suitable according to the experimental conditions. The proposed approach outperforms the classification results obtained by previous works that use the same dataset. It achieves a speedup of 74.53 when running on a multi-node heterogeneous cluster, consuming only 13.38% of the energy consumed by the sequential version. Moreover, the results show that financial costs can be reduced when energy policy is activated and the importance of developing efficient methods, proving that energy-aware computing is necessary for sustainable computing.
Due to energy consumption’s increasing importance in recent years, energy-time efficiency is a highly relevant objective to address in High-Performance Computing (HPC) systems, where cost significantly impacts the tasks executed. Among these tasks, classification problems are considered due to their great computational complexity, which is sometimes aggravated when processing high-dimensional datasets. In addition, implementing efficient applications for high-performance systems is not an easy task since hardware must be considered to maximize performance, especially on heterogeneous platforms with multi-core CPUs. Thus, this article proposes an efficient distributed K -Nearest Neighbors (KNN) for Electroencephalogram (EEG) classification that uses minimum Redundancy Maximum Relevance (mRMR) as a feature selection technique to reduce the dimensionality of the dataset. The approach implements an energy policy that can stop or resume the execution of the program based on the cost per Megawatt. Since the procedure is based on the master-worker scheme, the performance of three different workload distributions is also analyzed to identify which one is more suitable according to the experimental conditions. The proposed approach outperforms the classification results obtained by previous works that use the same dataset. It achieves a speedup of 74.53 when running on a multi-node heterogeneous cluster, consuming only 13.38% of the energy consumed by the sequential version. Moreover, the results show that financial costs can be reduced when energy policy is activated and the importance of developing efficient methods, proving that energy-aware computing is necessary for sustainable computing.
Author Ortiz, Andrés
Damas, Miguel
Kimovski, Dragi
Prieto, Beatriz
Escobar, Juan José
Rodríguez, Francisco
Author_xml – sequence: 1
  givenname: Juan José
  orcidid: 0000-0002-4258-0264
  surname: Escobar
  fullname: Escobar, Juan José
  email: jjescobar@ugr.es
  organization: Department of Software Engineering, CITIC, University of Granada
– sequence: 2
  givenname: Francisco
  surname: Rodríguez
  fullname: Rodríguez, Francisco
  organization: Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada
– sequence: 3
  givenname: Beatriz
  surname: Prieto
  fullname: Prieto, Beatriz
  organization: Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada
– sequence: 4
  givenname: Dragi
  surname: Kimovski
  fullname: Kimovski, Dragi
  organization: Institute of Information Technology, University of Klagenfurt
– sequence: 5
  givenname: Andrés
  surname: Ortiz
  fullname: Ortiz, Andrés
  organization: Department of Communications Engineering, University of Málaga
– sequence: 6
  givenname: Miguel
  surname: Damas
  fullname: Damas, Miguel
  organization: Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada
BookMark eNp9kE9PGzEQxa0KpIY_X6AnSz27Ha93194jQilURXApEjfLeMeJUWIH29uy375ugoTEgctYI7_fm5l3Qo5CDEjIFw7fOID8ngF6kAwawYDzQTD5iSx4K3rWQSePyAKAA2tV9_CZnOT8BFClaliQlws6-lySf5wKjtSEkWLAtJoZOuetx1Dor9tb6mKiy-UVtRuTs68_pvgY6F9f1nScg9l6S7d1p5ll88eHFd3Fjbcz9YGusWCKq2obp1wNplz7fEaOndlkPH99T8n9j-Xvy2t2c3f18_LihlnRi8IGO3QGHIpO1aK4QNEKtNiPvGlaB9z1xjWy6yUH0xsF7WCFbOp5CgzKTpySrwffXYrPE-ain-KUQh2pG9UPUoHkqqrUQWVTzDmh09aX_YklGb_RHPT_nPUhZ13D0_uctaxo8w7dJb81af4YEgcoV3FYYXrb6gPqHzKokuk
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108528
crossref_primary_10_1007_s42979_024_03396_x
crossref_primary_10_3390_s25030846
Cites_doi 10.1002/hbm.23730
10.1002/asjc.2983
10.18201/ijisae.75836
10.1088/1741-2552/aace8c
10.1007/s13246-020-00897-w
10.3390/s21062096
10.1007/s11227-021-03740-5
10.1016/j.jphysparis.2006.03.012
10.1016/j.neucom.2016.09.123
10.1093/comjnl/bxm099
10.1007/s10586-007-0045-4
10.1504/IJAACS.2015.073191
10.1155/2019/8348791
10.1016/j.neucom.2015.08.112
10.3390/su13116114
10.1016/j.neunet.2018.04.018
10.3233/THC-174836
10.3390/challe6010117
10.1016/j.bspc.2021.102917
10.1016/j.future.2018.09.039
10.1016/j.cmpb.2004.10.009
10.1088/1741-2560/10/4/046014
10.1109/TGCN.2021.3107915
10.1371/journal.pone.0234178
10.1109/34.75512
10.1016/j.eswa.2006.02.005
10.1016/j.compbiomed.2016.08.012
10.1016/j.eswa.2018.03.053
10.1109/TSG.2015.2508443
10.1016/j.neucom.2021.08.003
10.1007/s11760-020-01767-4
10.1038/s42254-020-0208-2
10.1016/j.bbe.2017.08.006
10.1109/MC.2010.98
10.3390/computers8020042
10.1038/d41586-020-02503-1
10.1007/3-540-56602-3_152
10.1109/ISPA.2008.68
10.1007/978-3-642-15646-5_24
10.1109/CSB.2003.1227396
10.1007/978-3-319-16483-0_35
10.1109/CLOUD.2012.50
10.1007/978-3-319-58943-5_30
10.1007/978-94-017-8996-7_2
10.1109/IPDPS.2006.1639597
10.1109/CarpathianCC.2019.8765944
10.1166/asl.2018.10758
10.1109/INFCOM.2011.5934885
10.1007/978-3-319-59153-7_3
10.1109/CADSM.2019.8779312
10.1186/s13638-019-1497-y
10.1007/978-3-319-59153-7_2
10.1007/978-3-319-19258-1_12
10.1016/j.patter.2021.100340
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s00607-023-01193-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 2510
ExternalDocumentID 10_1007_s00607_023_01193_7
GrantInformation_xml – fundername: European Regional Development Fund
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: Universidad de Granada
– fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: PGC2018-098813-B-C31; PGC2018-098813-B-C32
  funderid: http://dx.doi.org/10.13039/100014440
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-9c95a0fe358fe3813e343ece6d1224f01f6af2756710a6a8049c37200280ae753
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017581100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Wed Nov 26 13:51:57 EST 2025
Sat Nov 29 03:51:40 EST 2025
Tue Nov 18 22:20:39 EST 2025
Fri Feb 21 02:41:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Heterogeneous clusters
Energy-aware computing
EEG classification
KNN
68W15
Parallel and distributed programming
Money-saving
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9c95a0fe358fe3813e343ece6d1224f01f6af2756710a6a8049c37200280ae753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4258-0264
OpenAccessLink https://link.springer.com/10.1007/s00607-023-01193-7
PQID 2869780718
PQPubID 48322
PageCount 24
ParticipantIDs proquest_journals_2869780718
crossref_citationtrail_10_1007_s00607_023_01193_7
crossref_primary_10_1007_s00607_023_01193_7
springer_journals_10_1007_s00607_023_01193_7
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2023
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Sabancı, Koklu (CR25) 2015; 3
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (CR40) 2018; 15
Judith, Priya, Mahendran, Gadekallu, Ambati (CR53) 2022
Richhariya, Tanveer (CR23) 2018; 106
CR37
Lotze, Halsband (CR29) 2006; 99
CR33
CR32
CR31
Czarnul, Proficz, Krzywaniak (CR4) 2019
Raudys, Jain (CR46) 1991; 13
Truong, Nguyen, Kuhlmann, Bonyadi, Yang, Ippolito, Kavehei (CR24) 2018; 105
Tushar, Yuen, Smith, Poor (CR3) 2017; 8
CR2
Kumar, Lu (CR14) 2010; 43
Tripathi, Sivaraman, Tamarapalli (CR56) 2021; 6
CR9
CR49
Subasi (CR22) 2007; 32
CR48
CR47
Andrae, Edler (CR1) 2015; 6
CR43
CR42
Sharma, Sharma (CR19) 2016; 77
Aquino-Brítez, Ortiz, Ortega, León, Formoso, Gan, Escobar (CR39) 2021; 21
Jo, Lee, Oh (CR44) 2019; 8
Manganelli, Soldati, Martirano, Ramakrishna (CR7) 2021; 13
Ortega, Asensio-Cubero, Gan, Ortiz (CR35) 2016; 15
Ding, Wienke, Zhang (CR50) 2015; 8
Asensio-Cubero, Gan, Palaniappan (CR30) 2013; 10
Akbari, Ghofrani, Zakalvand, Tariq Sadiq (CR15) 2021; 69
CR16
Subasi, Erçelebi (CR21) 2005; 78
Wang, Wang, Zhao, Cheng (CR5) 2019; 92
CR12
CR11
CR10
CR54
Lefurgy, Wang, Ware (CR13) 2008; 11
CR52
CR51
González, Ortega, Escobar, Damas (CR36) 2021; 463
Hassaballah, Omran, Mahdy (CR55) 2008; 51
Choubey, Pandey (CR20) 2021; 15
Li, Wei, Xiong, Ma, Tian (CR6) 2021; 77
Ibrahim, Djemal, Alsuwailem (CR18) 2018; 38
CR28
Marković, Mizrahi, Querlioz, Grollier (CR8) 2020; 2
CR27
Li, Xu, Liu, Lu (CR26) 2018; 26
León, Escobar, Ortiz, Ortega, González, Martín-Smith, Gan, Damas (CR38) 2020; 15
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (CR41) 2017; 38
Deng, Zhu, Cheng, Zong, Zhang (CR45) 2016; 195
Saeedi, Saeedi, Maghsoudi (CR17) 2020; 43
Martín-Smith, Ortega, Asensio-Cubero, Gan, Ortiz (CR34) 2017; 250
M Li (1193_CR26) 2018; 26
SJ Raudys (1193_CR46) 1991; 13
H Akbari (1193_CR15) 2021; 69
P Martín-Smith (1193_CR34) 2017; 250
S Ibrahim (1193_CR18) 2018; 38
1193_CR28
1193_CR27
C Lefurgy (1193_CR13) 2008; 11
J González (1193_CR36) 2021; 463
Z Deng (1193_CR45) 2016; 195
J Asensio-Cubero (1193_CR30) 2013; 10
ND Truong (1193_CR24) 2018; 105
J Ortega (1193_CR35) 2016; 15
K Sabancı (1193_CR25) 2015; 3
1193_CR33
1193_CR32
1193_CR31
RT Schirrmeister (1193_CR41) 2017; 38
M Manganelli (1193_CR7) 2021; 13
A Subasi (1193_CR21) 2005; 78
ASG Andrae (1193_CR1) 2015; 6
D Aquino-Brítez (1193_CR39) 2021; 21
J León (1193_CR38) 2020; 15
1193_CR37
R Tripathi (1193_CR56) 2021; 6
D Marković (1193_CR8) 2020; 2
B Richhariya (1193_CR23) 2018; 106
1193_CR47
M Hassaballah (1193_CR55) 2008; 51
1193_CR43
1193_CR42
Z Wang (1193_CR5) 2019; 92
I Jo (1193_CR44) 2019; 8
P Czarnul (1193_CR4) 2019
M Lotze (1193_CR29) 2006; 99
H Sharma (1193_CR19) 2016; 77
1193_CR49
1193_CR9
1193_CR48
VJ Lawhern (1193_CR40) 2018; 15
M Saeedi (1193_CR17) 2020; 43
W Tushar (1193_CR3) 2017; 8
1193_CR12
1193_CR11
K Kumar (1193_CR14) 2010; 43
1193_CR10
1193_CR54
1193_CR52
1193_CR51
AM Judith (1193_CR53) 2022
A Subasi (1193_CR22) 2007; 32
1193_CR16
F Ding (1193_CR50) 2015; 8
1193_CR2
H Choubey (1193_CR20) 2021; 15
H Li (1193_CR6) 2021; 77
References_xml – volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  end-page: 5420
  ident: CR41
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23730
– ident: CR49
– year: 2022
  ident: CR53
  article-title: Two-phase classification: ANN and A-SVM classifiers on motor imagery BCI
  publication-title: Asian J Control
  doi: 10.1002/asjc.2983
– ident: CR16
– volume: 3
  start-page: 127
  issue: 4
  year: 2015
  end-page: 130
  ident: CR25
  article-title: The classification of eye state by using kNN and MLP classification models according to the EEG signals
  publication-title: Int J Intell Syst Appl Eng
  doi: 10.18201/ijisae.75836
– ident: CR51
– ident: CR12
– volume: 15
  issue: 5
  year: 2018
  ident: CR40
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
– ident: CR54
– volume: 43
  start-page: 1007
  issue: 3
  year: 2020
  end-page: 1018
  ident: CR17
  article-title: Major depressive disorder assessment via enhanced K-nearest neighbor method and EEG signals
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00897-w
– ident: CR42
– volume: 21
  start-page: 2096
  issue: 6
  year: 2021
  ident: CR39
  article-title: Optimization of deep architectures for eeg signal classification: An automl approach using evolutionary algorithms
  publication-title: Sensors
  doi: 10.3390/s21062096
– volume: 77
  start-page: 11575
  issue: 10
  year: 2021
  end-page: 11596
  ident: CR6
  article-title: A frequency-aware and energy-saving strategy based on DVFS for spark
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03740-5
– volume: 15
  start-page: 149
  issue: 1
  year: 2016
  end-page: 164
  ident: CR35
  article-title: Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection
  publication-title: BioMedical Eng OnLine
– volume: 99
  start-page: 386
  issue: 4
  year: 2006
  end-page: 395
  ident: CR29
  article-title: Motor imagery
  publication-title: J Physiol Paris
  doi: 10.1016/j.jphysparis.2006.03.012
– volume: 250
  start-page: 45
  year: 2017
  end-page: 56
  ident: CR34
  article-title: A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.123
– volume: 51
  start-page: 630
  issue: 6
  year: 2008
  end-page: 649
  ident: CR55
  article-title: A review of SIMD multimedia extensions and their usage in scientific and engineering applications
  publication-title: Comput J
  doi: 10.1093/comjnl/bxm099
– volume: 11
  start-page: 183
  issue: 1
  year: 2008
  end-page: 195
  ident: CR13
  article-title: Power capping: a prelude to power shifting
  publication-title: Clust Comput
  doi: 10.1007/s10586-007-0045-4
– volume: 8
  start-page: 424
  issue: 4
  year: 2015
  end-page: 438
  ident: CR50
  article-title: Dynamic MPI parallel task scheduling based on a master-worker pattern in cloud computing
  publication-title: Int J Auton Adapt Commun Syst
  doi: 10.1504/IJAACS.2015.073191
– year: 2019
  ident: CR4
  article-title: Energy-aware high-performance computing: Survey of state-of-the-art tools, techniques, and environments
  publication-title: Sci Progr
  doi: 10.1155/2019/8348791
– ident: CR11
– ident: CR9
– volume: 195
  start-page: 143
  year: 2016
  end-page: 148
  ident: CR45
  article-title: Efficient kNN classification algorithm for big data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.112
– volume: 13
  start-page: 6114
  issue: 11
  year: 2021
  ident: CR7
  article-title: Strategies for improving the sustainability of data centers via energy mix, energy conservation, and circular energy
  publication-title: Sustainability
  doi: 10.3390/su13116114
– ident: CR32
– volume: 105
  start-page: 104
  year: 2018
  end-page: 111
  ident: CR24
  article-title: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.04.018
– volume: 26
  start-page: 509
  issue: S1
  year: 2018
  end-page: 519
  ident: CR26
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol Health Care
  doi: 10.3233/THC-174836
– volume: 6
  start-page: 117
  issue: 1
  year: 2015
  end-page: 157
  ident: CR1
  article-title: On global electricity usage of communication technology: Trends to 2030
  publication-title: Challenges
  doi: 10.3390/challe6010117
– volume: 69
  year: 2021
  ident: CR15
  article-title: Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102917
– ident: CR43
– ident: CR47
– volume: 92
  start-page: 198
  year: 2019
  end-page: 209
  ident: CR5
  article-title: Energy optimization of parallel programs in a heterogeneous system by combining processor core-shutdown and dynamic voltage scaling
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.09.039
– ident: CR2
– volume: 78
  start-page: 87
  issue: 2
  year: 2005
  end-page: 99
  ident: CR21
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput Method Programs Biomed
  doi: 10.1016/j.cmpb.2004.10.009
– ident: CR37
– ident: CR10
– ident: CR33
– volume: 10
  start-page: 21
  issue: 4
  year: 2013
  end-page: 26
  ident: CR30
  article-title: Multiresolution analysis over simple graphs for brain computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/4/046014
– volume: 6
  start-page: 472
  issue: 1
  year: 2021
  end-page: 483
  ident: CR56
  article-title: Distributed cost-aware fault-tolerant load balancing in geo-distributed data centers
  publication-title: IEEE Trans Green Commun Netw
  doi: 10.1109/TGCN.2021.3107915
– volume: 15
  issue: 6
  year: 2020
  ident: CR38
  article-title: Deep learning for eeg-based motor imagery classification: accuracy-cost trade-off
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0234178
– volume: 13
  start-page: 252
  issue: 3
  year: 1991
  end-page: 264
  ident: CR46
  article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.75512
– ident: CR27
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  end-page: 1093
  ident: CR22
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.02.005
– ident: CR48
– volume: 77
  start-page: 116
  year: 2016
  end-page: 124
  ident: CR19
  article-title: An algorithm for sleep apnea detection from single-lead ECG using hermite basis functions
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.08.012
– volume: 106
  start-page: 169
  year: 2018
  end-page: 182
  ident: CR23
  article-title: EEG signal classification using universum support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.053
– volume: 8
  start-page: 1790
  issue: 4
  year: 2017
  end-page: 1801
  ident: CR3
  article-title: Price discrimination for energy trading in smart grid: a game theoretic approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2508443
– volume: 463
  start-page: 59
  year: 2021
  end-page: 76
  ident: CR36
  article-title: A lexicographic cooperative co-evolutionary approach for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.003
– ident: CR52
– ident: CR31
– volume: 15
  start-page: 475
  issue: 3
  year: 2021
  end-page: 483
  ident: CR20
  article-title: A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier
  publication-title: SIViP
  doi: 10.1007/s11760-020-01767-4
– volume: 2
  start-page: 499
  issue: 9
  year: 2020
  end-page: 510
  ident: CR8
  article-title: Physics for neuromorphic computing
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-020-0208-2
– ident: CR28
– volume: 38
  start-page: 16
  issue: 1
  year: 2018
  end-page: 26
  ident: CR18
  article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2017.08.006
– volume: 43
  start-page: 51
  issue: 4
  year: 2010
  end-page: 56
  ident: CR14
  article-title: Cloud computing for mobile users: Can offloading computation save energy?
  publication-title: Computer
  doi: 10.1109/MC.2010.98
– volume: 8
  start-page: 42
  issue: 2
  year: 2019
  ident: CR44
  article-title: Improved measures of redundancy and relevance for mRMR feature selection
  publication-title: Computers
  doi: 10.3390/computers8020042
– volume: 105
  start-page: 104
  year: 2018
  ident: 1193_CR24
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.04.018
– volume: 8
  start-page: 424
  issue: 4
  year: 2015
  ident: 1193_CR50
  publication-title: Int J Auton Adapt Commun Syst
  doi: 10.1504/IJAACS.2015.073191
– volume: 77
  start-page: 116
  year: 2016
  ident: 1193_CR19
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.08.012
– volume: 250
  start-page: 45
  year: 2017
  ident: 1193_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.123
– ident: 1193_CR9
  doi: 10.1038/d41586-020-02503-1
– ident: 1193_CR27
  doi: 10.1007/3-540-56602-3_152
– volume: 38
  start-page: 16
  issue: 1
  year: 2018
  ident: 1193_CR18
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2017.08.006
– volume: 26
  start-page: 509
  issue: S1
  year: 2018
  ident: 1193_CR26
  publication-title: Technol Health Care
  doi: 10.3233/THC-174836
– volume: 2
  start-page: 499
  issue: 9
  year: 2020
  ident: 1193_CR8
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-020-0208-2
– volume: 78
  start-page: 87
  issue: 2
  year: 2005
  ident: 1193_CR21
  publication-title: Comput Method Programs Biomed
  doi: 10.1016/j.cmpb.2004.10.009
– ident: 1193_CR54
  doi: 10.1109/ISPA.2008.68
– volume: 43
  start-page: 51
  issue: 4
  year: 2010
  ident: 1193_CR14
  publication-title: Computer
  doi: 10.1109/MC.2010.98
– volume: 99
  start-page: 386
  issue: 4
  year: 2006
  ident: 1193_CR29
  publication-title: J Physiol Paris
  doi: 10.1016/j.jphysparis.2006.03.012
– ident: 1193_CR49
  doi: 10.1007/978-3-642-15646-5_24
– ident: 1193_CR48
– volume: 15
  issue: 6
  year: 2020
  ident: 1193_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0234178
– volume: 8
  start-page: 42
  issue: 2
  year: 2019
  ident: 1193_CR44
  publication-title: Computers
  doi: 10.3390/computers8020042
– volume: 13
  start-page: 252
  issue: 3
  year: 1991
  ident: 1193_CR46
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.75512
– ident: 1193_CR43
  doi: 10.1109/CSB.2003.1227396
– volume: 8
  start-page: 1790
  issue: 4
  year: 2017
  ident: 1193_CR3
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2508443
– volume: 51
  start-page: 630
  issue: 6
  year: 2008
  ident: 1193_CR55
  publication-title: Comput J
  doi: 10.1093/comjnl/bxm099
– volume: 10
  start-page: 21
  issue: 4
  year: 2013
  ident: 1193_CR30
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/4/046014
– ident: 1193_CR32
  doi: 10.1007/978-3-319-16483-0_35
– volume: 43
  start-page: 1007
  issue: 3
  year: 2020
  ident: 1193_CR17
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00897-w
– volume: 6
  start-page: 117
  issue: 1
  year: 2015
  ident: 1193_CR1
  publication-title: Challenges
  doi: 10.3390/challe6010117
– ident: 1193_CR10
  doi: 10.1109/CLOUD.2012.50
– volume: 463
  start-page: 59
  year: 2021
  ident: 1193_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.003
– volume: 21
  start-page: 2096
  issue: 6
  year: 2021
  ident: 1193_CR39
  publication-title: Sensors
  doi: 10.3390/s21062096
– ident: 1193_CR47
  doi: 10.1007/978-3-319-58943-5_30
– volume: 69
  year: 2021
  ident: 1193_CR15
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102917
– volume: 15
  start-page: 149
  issue: 1
  year: 2016
  ident: 1193_CR35
  publication-title: BioMedical Eng OnLine
– ident: 1193_CR28
  doi: 10.1007/978-94-017-8996-7_2
– year: 2022
  ident: 1193_CR53
  publication-title: Asian J Control
  doi: 10.1002/asjc.2983
– ident: 1193_CR11
  doi: 10.1109/IPDPS.2006.1639597
– ident: 1193_CR52
  doi: 10.1109/CarpathianCC.2019.8765944
– ident: 1193_CR16
  doi: 10.1166/asl.2018.10758
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  ident: 1193_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.02.005
– volume: 6
  start-page: 472
  issue: 1
  year: 2021
  ident: 1193_CR56
  publication-title: IEEE Trans Green Commun Netw
  doi: 10.1109/TGCN.2021.3107915
– ident: 1193_CR12
  doi: 10.1109/INFCOM.2011.5934885
– ident: 1193_CR37
  doi: 10.1007/978-3-319-59153-7_3
– volume: 13
  start-page: 6114
  issue: 11
  year: 2021
  ident: 1193_CR7
  publication-title: Sustainability
  doi: 10.3390/su13116114
– year: 2019
  ident: 1193_CR4
  publication-title: Sci Progr
  doi: 10.1155/2019/8348791
– volume: 92
  start-page: 198
  year: 2019
  ident: 1193_CR5
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.09.039
– volume: 77
  start-page: 11575
  issue: 10
  year: 2021
  ident: 1193_CR6
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03740-5
– volume: 3
  start-page: 127
  issue: 4
  year: 2015
  ident: 1193_CR25
  publication-title: Int J Intell Syst Appl Eng
  doi: 10.18201/ijisae.75836
– volume: 106
  start-page: 169
  year: 2018
  ident: 1193_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.053
– volume: 195
  start-page: 143
  year: 2016
  ident: 1193_CR45
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.112
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 1193_CR41
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23730
– ident: 1193_CR51
  doi: 10.1109/CADSM.2019.8779312
– volume: 15
  start-page: 475
  issue: 3
  year: 2021
  ident: 1193_CR20
  publication-title: SIViP
  doi: 10.1007/s11760-020-01767-4
– ident: 1193_CR42
  doi: 10.1186/s13638-019-1497-y
– ident: 1193_CR31
  doi: 10.1007/978-3-319-59153-7_2
– ident: 1193_CR33
  doi: 10.1007/978-3-319-19258-1_12
– ident: 1193_CR2
  doi: 10.1016/j.patter.2021.100340
– volume: 11
  start-page: 183
  issue: 1
  year: 2008
  ident: 1193_CR13
  publication-title: Clust Comput
  doi: 10.1007/s10586-007-0045-4
– volume: 15
  issue: 5
  year: 2018
  ident: 1193_CR40
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
SSID ssj0002389
Score 2.3733838
Snippet Due to energy consumption’s increasing importance in recent years, energy-time efficiency is a highly relevant objective to address in High-Performance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2487
SubjectTerms Artificial Intelligence
Classification
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Datasets
Electroencephalography
Energy consumption
Energy management
Energy policy
High performance systems
Information Systems Applications (incl.Internet)
K-nearest neighbors algorithm
Parallel programming
Redundancy
Regular Paper
Software Engineering
Sustainability
Task complexity
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcIADgwFiMFAO3CCi78cJTWgDaVBxAGm3KkpTgYS6sW4I_j12mnYCiV249NLUimrHcez4-wDOfenkylMZdyUuN8_3BY-tTHC0J2HHuYjDCl3_PkySaDyOH03CrTTXKmufqB11NpGUI79yooDActCVXk_fObFGUXXVUGisw4btODbZ-SjkjSfG7agKf9HXeJE_Nk0zunWOgEhCjkM4oZ65PPy5MS2jzV8FUr3vDNv_nfEu7JiIk_UrE9mDNVV0oF2zOTCzuDuw_dAguJb78NlnGWHqEh2WypgoMqZ0myBXGnQC9yo2ShKGMS8bDG6ZpCicrh1pTTNK77KsYrtnOBH1xUtBuQs21UDE7LVgL3QTZ4IGrCaLEgUsCLOhPIDn4eDp5o4blgYu3cCd81jGvrBy5foRPiLKqnqukirIqGiXW3YeiJxA5jGWEYGI8EgiiRqHarpC4WnpEFoFzuMIWCyDWFjKym0VoYxI4GlQuk7uYZCJ_1F2wa5VlEoDYU5MGm9pA76s1ZqiWlOt1jTswkXzzbQC8Fg5ulfrMjWLuUyXiuzCZW0Ny9d_SzteLe0Etoi8vups7EFrPluoU9iUH_PXcnamTfkbCQ_4WQ
  priority: 102
  providerName: ProQuest
Title A distributed and energy-efficient KNN for EEG classification with dynamic money-saving policy in heterogeneous clusters
URI https://link.springer.com/article/10.1007/s00607-023-01193-7
https://www.proquest.com/docview/2869780718
Volume 105
WOSCitedRecordID wos001017581100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4AAH3ojxmHLgBpG69ZUeYdpAGpRpvAaXKkpTMQkNtG4I_j12-phAgAQXS1VTq4rt2InjzwAHrmom2tExtxWam-O6kgdWLDnqk2wEiQz8DF3_3A9DMRgEvbwoLC1uuxcpSbNSl8VuBB3ic_QxnHDKbO5XYB7dnSBz7F_dlusvOqEs6MUVxhHuIC-V-Z7HZ3c0izG_pEWNt-ms_O8_V2E5jy7ZcaYOazCnR-uwUnRuYLkhr8PSRYnWmm7A2zGLCT-XWl_pmMlRzLQpCeTaAEygX2LdMGQY37J2-5QpirjpipGRKqOjXBZnne0ZarV-56mkcwr2YkCH2XDEHunWzTMqq36epshgSvgM6SbcdNrXrTOed2TgyvbsCQ9U4Eor0bYrkAg6QXVsrbQXU4IusRqJJxMClMe4RXpS4PZDURscyt9KjTujLaiO8D-2gQXKC6SlraShBfIQEnd-ym4mDgaUGPaoGjQKwUQqhyunrhlPUQm0bCY6womOzERHfg0Oy29eMrCOX0fvFfKOcsNNo6bwCJMJPXYNjgr5zl7_zG3nb8N3YZEa12dVjXtQnYyneh8W1OtkmI7rUPHv7uswf9IOe3186voc6YXVItq8RNpzH-pG7T8Afjr0qg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VAYn20EIpakqBOcCJrur344BQVRJSJbU4pFJuZrVei0jghDgB8qf4jcysHxFI5JZDL77YHtm73zx2ducbgNe-cnLt6Uy4itTN830pYiuTgvAk7TiXcVix64_CJIkmk_jTHvxuamH4WGVjE42hzmaKc-SXThQwWQ6Z0vfz74K7RvHuatNCo4LFUK9_0pKtfHfzgeb3jeP0e-Prgai7CgjlBu5SxCr2pZVr14_oEnEW0HO10kHGm0y5ZeeBzJkUnXyvDGREIbTiVi68Byl1yF0iyOQ_8DxSBz4qaF23lp_cXxVuk23zIn9SF-mYUj0mPgkFPSKYZc0V4d-OcBPd_rMha_xc_-i-jdBjOKwjaryqVOAJ7OniGI6abhVYG69jOLhtGWrLp_DrCjPmDOZ2XzpDWWSoTRmk0IZUg3wxDpMEKabHXu8jKl5l8LEqg2Tk9DVm60J-myqkH9drUUrOzeDcEC3jtMAvfNJoRgqqZ6uSBKyYk6I8gbudjMYz6BT0HaeAsQpiaWkrt3VEMiJJq13lOrlHQTTNm-qC3UAiVTVFO3cK-Zq25NIGRinBKDUwSsMuvG3fmVcEJVufPm-wk9bGqkw3wOnCRYO-ze3_SzvbLu0VPBqMb0fp6CYZPod9h8FvqjjPobNcrPQLeKh-LKfl4qVRI4TPu0blH3nPUs4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4hQIgegPIQKZTOoZzKCsdvH6oKlYSigMWBSrmZ1XpXRAInxUnb_DV-XWfWdqIiwY0DF19sj-zdbx47u_MNwOdAuUb7OheeInXzg0CKxMmlIDzJdmJkElXs-hdRmsb9fnK1AI9NLQwfq2xsojXU-VBxjvzYjUMmyyFTemzqYxFXp91vo1-CO0jxTmvTTqOCSE9P_9Dyrfx6fkpzfei63c719x-i7jAglBd6Y5GoJJCO0V4Q0yXmjKDvaaXDnDecjNM2oTRMkE5-WIYypnBacVsX3o-UOuKOEWT-l8gLB6xjvUjMvAC5wir0Jjvnx0G_LtixZXtMghIJekQw45onov-d4jzSfbI5a31ed_0tj9YGrNWRNp5UqvEeFnSxCetNFwusjdomvLucMdeWW_D3BHPmEuY2YDpHWeSobXmk0JZsg3w09tIUKdbHTucMFa8--LiVRThyWhvzaSHvBwrpx_VUlJJzNjiyBMw4KPCWTyANSXH1cFKSgAlzVZTb8PNVRmMHFgv6jl3ARIWJdLRj2jomGbGkVbDyXONTcE1zqFrQbuCRqZq6nTuI3GUz0mkLqYwglVlIZVELvszeGVXEJS8-vd_gKKuNWJnNQdSCowaJ89vPS_vwsrRPsEJgzC7O094erLqsB7a4cx8Wxw8T_RGW1e_xoHw4sBqFcPPaoPwH-ulbdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+and+energy-efficient+KNN+for+EEG+classification+with+dynamic+money-saving+policy+in+heterogeneous+clusters&rft.jtitle=Computing&rft.au=Escobar%2C+Juan+Jos%C3%A9&rft.au=Rodr%C3%ADguez%2C+Francisco&rft.au=Prieto%2C+Beatriz&rft.au=Kimovski%2C+Dragi&rft.date=2023-11-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=105&rft.issue=11&rft.spage=2487&rft.epage=2510&rft_id=info:doi/10.1007%2Fs00607-023-01193-7&rft.externalDocID=10_1007_s00607_023_01193_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon