On the Parameterized Complexity of the Expected Coverage Problem
The Maximum Covering Location Problem (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer k , the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is...
Uloženo v:
| Vydáno v: | Theory of computing systems Ročník 66; číslo 2; s. 432 - 453 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-4350, 1433-0490 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The
Maximum Covering Location Problem
(MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer
k
, the MCLP seeks to find
k
potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliability ordering (LRO) model. In this model, with every edge
e
of the network, we associate its survival probability 0 ≤
p
e
≤ 1, or equivalently, its failure probability 1 −
p
e
. The failure correlation in LRO is the following: If an edge
e
fails then every edge
e
′
with
p
e
′
≤
p
e
surely fails. The task is to identify the positions of
k
facilities that maximize the
expected
coverage. We refer to this problem as
Expected Coverage
problem. We study the
Expected Coverage
problem from the parameterized complexity perspective and obtain the following results. 1. For the parameter pathwidth, we show that the
Expected Coverage
problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of the input graph. 2. We complement the lower bound by the proof that
Expected Coverage
is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time
2
O
(
tw
log
Δ
)
n
O
(
1
)
, where
tw
is the treewidth,
Δ
is the maximum vertex degree, and
n
the number of vertices of the input graph. In particular, since
Δ
≤
n
, it means the problem is solvable in time
n
O
(
tw
)
, that is, is in XP parameterized by treewidth. |
|---|---|
| AbstractList | The Maximum Covering Location Problem (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer k, the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliability ordering (LRO) model. In this model, with every edge e of the network, we associate its survival probability 0 ≤ pe ≤ 1, or equivalently, its failure probability 1 − pe. The failure correlation in LRO is the following: If an edge e fails then every edge e′ with pe′≤pe surely fails. The task is to identify the positions of k facilities that maximize the expected coverage. We refer to this problem as Expected Coverage problem. We study the Expected Coverage problem from the parameterized complexity perspective and obtain the following results. 1. For the parameter pathwidth, we show that the Expected Coverage problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of the input graph. 2. We complement the lower bound by the proof that Expected Coverage is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time 2O(twlogΔ)nO(1), where tw is the treewidth, Δ is the maximum vertex degree, and n the number of vertices of the input graph. In particular, since Δ ≤ n, it means the problem is solvable in time nO(tw), that is, is in XP parameterized by treewidth. The Maximum Covering Location Problem (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer k , the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliability ordering (LRO) model. In this model, with every edge e of the network, we associate its survival probability 0 ≤ p e ≤ 1, or equivalently, its failure probability 1 − p e . The failure correlation in LRO is the following: If an edge e fails then every edge e ′ with p e ′ ≤ p e surely fails. The task is to identify the positions of k facilities that maximize the expected coverage. We refer to this problem as Expected Coverage problem. We study the Expected Coverage problem from the parameterized complexity perspective and obtain the following results. 1. For the parameter pathwidth, we show that the Expected Coverage problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of the input graph. 2. We complement the lower bound by the proof that Expected Coverage is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time 2 O ( tw log Δ ) n O ( 1 ) , where tw is the treewidth, Δ is the maximum vertex degree, and n the number of vertices of the input graph. In particular, since Δ ≤ n , it means the problem is solvable in time n O ( tw ) , that is, is in XP parameterized by treewidth. The Maximum Covering Location Problem (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer k , the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliability ordering (LRO) model. In this model, with every edge e of the network, we associate its survival probability 0 ≤ p e ≤ 1, or equivalently, its failure probability 1 − p e . The failure correlation in LRO is the following: If an edge e fails then every edge $e^{\prime }$ e ′ with $p_{e^{\prime }} \leq p_{e}$ p e ′ ≤ p e surely fails. The task is to identify the positions of k facilities that maximize the expected coverage. We refer to this problem as Expected Coverage problem. We study the Expected Coverage problem from the parameterized complexity perspective and obtain the following results. 1. For the parameter pathwidth, we show that the Expected Coverage problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of the input graph. 2. We complement the lower bound by the proof that Expected Coverage is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time $ 2^{{\mathcal {O}}({\textbf {tw}} \log {\varDelta })} n^{{\mathcal {O}}(1)}$ 2 O ( tw log Δ ) n O ( 1 ) , where tw is the treewidth, Δ is the maximum vertex degree, and n the number of vertices of the input graph. In particular, since Δ ≤ n , it means the problem is solvable in time $ n^{{\mathcal {O}}({\textbf {tw}})} $ n O ( tw ) , that is, is in XP parameterized by treewidth. |
| Author | Ramamoorthi, Vijayaragunathan Fomin, Fedor V. |
| Author_xml | – sequence: 1 givenname: Fedor V. surname: Fomin fullname: Fomin, Fedor V. organization: Department of Informatics, University of Bergen – sequence: 2 givenname: Vijayaragunathan orcidid: 0000-0001-8554-6392 surname: Ramamoorthi fullname: Ramamoorthi, Vijayaragunathan email: vijayr@cse.iitm.ac.in organization: Department of Computer Science and Engineering, IIT Madras |
| BookMark | eNp9kE1Lw0AQhhepYFv9A54CnqOTnaTZ3JRSP6BQD3peNttJTUmycbOV1l_vNhEED73M5_vMDDNho8Y0xNh1BLcRQHrXAXAeh96ExxxDOGPjKEYfxBmM-piHMSZwwSZdtwUAFABjdr9qAvdBwauyqiZHtvymdTA3dVvRvnSHwBR9f7FvSbu-9UVWbTxhTV5RfcnOC1V1dPXrp-z9cfE2fw6Xq6eX-cMy1DhDF2ZaZOj36zwpZlwRiYxHiiLIY618mScChc7XeZoR55igKATqFIs0XkOeIE7ZzTC3teZzR52TW7OzjV8p-SwRmUiTNPMqMai0NV1nqZC6dMqVpnFWlZWMQB7_I4d_SW_6HCV4lP9DW1vWyh5OQzhAnRc3G7J_V52gfgAPtn3G |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2025_05_017 |
| Cites_doi | 10.1145/1101821.1101823 10.1016/j.ipl.2011.05.016 10.1007/3-540-48523-6_30 10.1145/990308.990309 10.1016/S0304-3975(97)00124-2 10.1145/3155298 10.1007/s10878-017-0121-5 10.1007/BFb0045375 10.1007/978-3-319-21275-3 10.1016/j.jalgor.2004.03.005 10.1007/BF01942293 10.1111/j.1538-4632.2009.00746.x 10.1145/261342.571216 10.1002/net.3230220303 10.1007/978-3-540-69507-3_31 10.1145/2390176.2390187 10.1007/978-3-319-90530-3_23 10.1016/j.cor.2009.11.003 10.1007/978-3-030-17402-6_6 10.1016/j.tcs.2009.08.003 10.1007/978-1-4471-5559-1 10.1109/ICICIS.2011.138 10.1016/S0020-0190(99)00031-9 10.1109/WCSE.2009.31 10.1016/j.dam.2011.03.021 10.1002/(SICI)1097-0037(199605)27:3<219::AID-NET7>3.0.CO;2-L 10.1137/1.9781611973075.43 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYYUZ Q9U |
| DOI | 10.1007/s00224-022-10073-0 |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1433-0490 |
| EndPage | 453 |
| ExternalDocumentID | 10_1007_s00224_022_10073_0 |
| GrantInformation_xml | – fundername: University of Bergen (incl Haukeland University Hospital) |
| GroupedDBID | --Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- MK~ ML~ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF- PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XOL YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c363t-9c893435cb5f62aee8921ae10b4ca35c25838cbdb79e223538f83c73f74d0b533 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767080200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-4350 |
| IngestDate | Wed Nov 05 02:21:56 EST 2025 Sat Nov 29 03:28:55 EST 2025 Tue Nov 18 21:23:06 EST 2025 Fri Feb 21 02:45:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Facility location W-hard Negative demands Pathwidth Treewidth |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-9c893435cb5f62aee8921ae10b4ca35c25838cbdb79e223538f83c73f74d0b533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8554-6392 |
| OpenAccessLink | https://link.springer.com/10.1007/s00224-022-10073-0 |
| PQID | 2658987579 |
| PQPubID | 48907 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2658987579 crossref_citationtrail_10_1007_s00224_022_10073_0 crossref_primary_10_1007_s00224_022_10073_0 springer_journals_10_1007_s00224_022_10073_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20220400 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Theory of computing systems |
| PublicationTitleAbbrev | Theory Comput Syst |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness. In: Complexity Theory: Current Research, Dagstuhl Workshop, February 2-8, 1992, pp. 191–225 (1992) Ding, W.: Extended most reliable source on an unreliable general network. In: 2011 International Conference on Internet Computing and Information Services, pp. 529–533 (2011) Drange, P.G., Dregi, M.S., Fomin, F.V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Reidl, F., Villaamil, F.S., Saurabh, S., Siebertz, S., Sikdar, S.: Kernelization and sparseness: the case of dominating set. In: Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs, vol. 47, pp 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016) Kloks, T.: Treewidth, Computations and Approximations, Lecture Notes in Computer Science, vol. 842. Springer (1994) Hassin, R., Ravi, R., Salman, F.S.: Multiple facility location on a network with linear reliability order of edges. J. Comb. Optim. 1–25 (2017) ChurchRVelleCRThe maximal covering location problemPapers in Regional Science197432110111810.1007/BF01942293 Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: T-dominating set. In: Proceedings of the 33rd Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM ’07, pp 367–376. Springer, Berlin (2007) FominFVLokshtanovDSaurabhSThilikosDMKernels for (connected) dominating set on graphs with excluded topological minorsACM Trans. Algorithms20181416:16:31376365610.1145/3155298 DowneyRGFellowsMRFundamentals of parameterized complexity. Texts in computer science2013BerlinSpringer10.1007/978-1-4471-5559-1 PhilipGRamanVSikdarSPolynomial kernels for dominating set in graphs of bounded degeneracy and beyondACM Trans. Algorithms20129111300830610.1145/2390176.2390187 BermanODreznerZKrassDGeneralized coverage: New developments in covering location modelsComput. Oper. Res.2010371016751687260003810.1016/j.cor.2009.11.003 Ageev, A.A.: A criterion of polynomial-time solvability for the network location problem. In: Proceedings of the 2nd Integer Programming and Combinatorial Optimization Conference, Pittsburgh, PA, USA, May 1992, pp. 237–245 (1992) Charikar, M., Guha, S.: Improved Combinatorial Algorithms for the Facility Location and K-Median Problems. In: 40Th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pp. 378–388 (1999) Narayanaswamy, N.S., Nasre, M., Vijayaragunathan, R.: Facility Location on Planar Graphs with Unreliable Links. In: Computer Science - Theory and Applications - 13Th International Computer Science Symposium in Russia, CSR 2018, Moscow, Russia, June 6-10, 2018, Proceedings, pp. 269–281 (2018) AlberJFellowsMRNiedermeierRPolynomial-time data reduction for dominating setJ. ACM2004513363384214585910.1145/990308.990309 DingWXueGA linear time algorithm for computing a most reliable source on a tree network with faulty nodesTheoretical Computer Science20114123225232278964410.1016/j.tcs.2009.08.003Combinatorial Optimization and Applications EiseltHAGendreauMLaporteGLocation of facilities on a network subject to a single-edge failureNetworks1992223231246116117710.1002/net.3230220303 Bevern, R., Tsidulko, O.Y., Zschoche, P.: Fixed-Parameter Algorithms for Maximum-Profit Facility Location under Matroid Constraints. In: Algorithms and Complexity - 11Th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, pp. 62–74 (2019) FellowsMRFernauHFacility location problems: a parameterized viewDiscret. Appl. Math.20111591111181130279431310.1016/j.dam.2011.03.021 Ding, W.: Computing the Most Reliable Source on Stochastic Ring Networks. In: 2009 WRI World Congress on Software Engineering, vol. 1, pp. 345–347 (2009) DiestelRGraph Theory, 4th Edition, Graduate texts in mathematics, vol. 1732012BerlinSpringer BermanODreznerZWesolowskyGOThe maximal covering problem with some negative weightsGeographic. Anal.2009411304210.1111/j.1538-4632.2009.00746.x Hochbaum, D.S. (ed.): Approximation Algorithms for NP-hard Problems. PWS Publishing Co, Boston (1997) DemaineEDFominFVHajiaghayiMTThilikosDMSubexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphsJ. ACM2005526866893217955010.1145/1101821.1101823 KhullerSMossANaorJThe budgeted maximum coverage problemInf. Process. Lett.19997013945169575810.1016/S0020-0190(99)00031-9 Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer, Berlin (2015) Feldmann, A.E., Marx, D.: The Parameterized Hardness of the K-Center Problem in Transportation Networks. In: 16Th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmȯ, Sweden, vol. 101, pp. 19:1–19:13 (2018) ColbournCJXueGA linear time algorithm for computing the most reliable source on a series-parallel graph with unreliable edgesTheor. Comput. Sci.19982091331345164747110.1016/S0304-3975(97)00124-2 AlberJFernauHNiedermeierRParameterized complexity: exponential speed-up for planar graph problemsJ. Algorithms20045212656206397110.1016/j.jalgor.2004.03.005 Frick, M., Grohe, M.: Deciding First-Order Properties of Locally Tree-Decomposalbe Graphs. In: Automata, Languages and Programming, 26Th International Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, pp. 331–340 (1999) Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 503–510. SIAM (2010) MelachrinoudisEHelanderMEA single facility location problem on a tree with unreliable edgesNetworks1996274219237139387810.1002/(SICI)1097-0037(199605)27:3<219::AID-NET7>3.0.CO;2-L FominFVLokshtanovDRamanVSaurabhSSubexponential algorithms for partial cover problemsInf. Process. Lett.201111116814818284793110.1016/j.ipl.2011.05.016 HassinRRaviRSalmanFSTractable Cases of Facility Location on a Network with a Linear Reliability Order of Links2009BerlinSpringer275276 HA Eiselt (10073_CR19) 1992; 22 W Ding (10073_CR15) 2011; 412 O Berman (10073_CR5) 2009; 41 S Khuller (10073_CR29) 1999; 70 10073_CR30 10073_CR31 J Alber (10073_CR2) 2004; 51 10073_CR25 10073_CR27 10073_CR28 RG Downey (10073_CR17) 2013 10073_CR23 J Alber (10073_CR3) 2004; 52 ED Demaine (10073_CR11) 2005; 52 MR Fellows (10073_CR21) 2011; 159 R Hassin (10073_CR26) 2009 10073_CR1 10073_CR7 FV Fomin (10073_CR22) 2011; 111 G Philip (10073_CR34) 2012; 9 10073_CR6 O Berman (10073_CR4) 2010; 37 10073_CR20 FV Fomin (10073_CR24) 2018; 14 10073_CR14 10073_CR16 10073_CR10 10073_CR33 R Church (10073_CR8) 1974; 32 E Melachrinoudis (10073_CR32) 1996; 27 10073_CR13 R Diestel (10073_CR12) 2012 10073_CR18 CJ Colbourn (10073_CR9) 1998; 209 |
| References_xml | – reference: BermanODreznerZKrassDGeneralized coverage: New developments in covering location modelsComput. Oper. Res.2010371016751687260003810.1016/j.cor.2009.11.003 – reference: DemaineEDFominFVHajiaghayiMTThilikosDMSubexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphsJ. ACM2005526866893217955010.1145/1101821.1101823 – reference: Hochbaum, D.S. (ed.): Approximation Algorithms for NP-hard Problems. PWS Publishing Co, Boston (1997) – reference: Narayanaswamy, N.S., Nasre, M., Vijayaragunathan, R.: Facility Location on Planar Graphs with Unreliable Links. In: Computer Science - Theory and Applications - 13Th International Computer Science Symposium in Russia, CSR 2018, Moscow, Russia, June 6-10, 2018, Proceedings, pp. 269–281 (2018) – reference: ChurchRVelleCRThe maximal covering location problemPapers in Regional Science197432110111810.1007/BF01942293 – reference: Kloks, T.: Treewidth, Computations and Approximations, Lecture Notes in Computer Science, vol. 842. Springer (1994) – reference: ColbournCJXueGA linear time algorithm for computing the most reliable source on a series-parallel graph with unreliable edgesTheor. Comput. Sci.19982091331345164747110.1016/S0304-3975(97)00124-2 – reference: Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 503–510. SIAM (2010) – reference: KhullerSMossANaorJThe budgeted maximum coverage problemInf. Process. Lett.19997013945169575810.1016/S0020-0190(99)00031-9 – reference: BermanODreznerZWesolowskyGOThe maximal covering problem with some negative weightsGeographic. Anal.2009411304210.1111/j.1538-4632.2009.00746.x – reference: Ding, W.: Computing the Most Reliable Source on Stochastic Ring Networks. In: 2009 WRI World Congress on Software Engineering, vol. 1, pp. 345–347 (2009) – reference: AlberJFellowsMRNiedermeierRPolynomial-time data reduction for dominating setJ. ACM2004513363384214585910.1145/990308.990309 – reference: Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer, Berlin (2015) – reference: FominFVLokshtanovDRamanVSaurabhSSubexponential algorithms for partial cover problemsInf. Process. Lett.201111116814818284793110.1016/j.ipl.2011.05.016 – reference: Bevern, R., Tsidulko, O.Y., Zschoche, P.: Fixed-Parameter Algorithms for Maximum-Profit Facility Location under Matroid Constraints. In: Algorithms and Complexity - 11Th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, pp. 62–74 (2019) – reference: AlberJFernauHNiedermeierRParameterized complexity: exponential speed-up for planar graph problemsJ. Algorithms20045212656206397110.1016/j.jalgor.2004.03.005 – reference: Ding, W.: Extended most reliable source on an unreliable general network. In: 2011 International Conference on Internet Computing and Information Services, pp. 529–533 (2011) – reference: DowneyRGFellowsMRFundamentals of parameterized complexity. Texts in computer science2013BerlinSpringer10.1007/978-1-4471-5559-1 – reference: EiseltHAGendreauMLaporteGLocation of facilities on a network subject to a single-edge failureNetworks1992223231246116117710.1002/net.3230220303 – reference: HassinRRaviRSalmanFSTractable Cases of Facility Location on a Network with a Linear Reliability Order of Links2009BerlinSpringer275276 – reference: PhilipGRamanVSikdarSPolynomial kernels for dominating set in graphs of bounded degeneracy and beyondACM Trans. Algorithms20129111300830610.1145/2390176.2390187 – reference: DiestelRGraph Theory, 4th Edition, Graduate texts in mathematics, vol. 1732012BerlinSpringer – reference: Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness. In: Complexity Theory: Current Research, Dagstuhl Workshop, February 2-8, 1992, pp. 191–225 (1992) – reference: FellowsMRFernauHFacility location problems: a parameterized viewDiscret. Appl. Math.20111591111181130279431310.1016/j.dam.2011.03.021 – reference: Drange, P.G., Dregi, M.S., Fomin, F.V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Reidl, F., Villaamil, F.S., Saurabh, S., Siebertz, S., Sikdar, S.: Kernelization and sparseness: the case of dominating set. In: Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs, vol. 47, pp 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016) – reference: Hassin, R., Ravi, R., Salman, F.S.: Multiple facility location on a network with linear reliability order of edges. J. Comb. Optim. 1–25 (2017) – reference: Frick, M., Grohe, M.: Deciding First-Order Properties of Locally Tree-Decomposalbe Graphs. In: Automata, Languages and Programming, 26Th International Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, pp. 331–340 (1999) – reference: FominFVLokshtanovDSaurabhSThilikosDMKernels for (connected) dominating set on graphs with excluded topological minorsACM Trans. Algorithms20181416:16:31376365610.1145/3155298 – reference: Ageev, A.A.: A criterion of polynomial-time solvability for the network location problem. In: Proceedings of the 2nd Integer Programming and Combinatorial Optimization Conference, Pittsburgh, PA, USA, May 1992, pp. 237–245 (1992) – reference: MelachrinoudisEHelanderMEA single facility location problem on a tree with unreliable edgesNetworks1996274219237139387810.1002/(SICI)1097-0037(199605)27:3<219::AID-NET7>3.0.CO;2-L – reference: Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: T-dominating set. In: Proceedings of the 33rd Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM ’07, pp 367–376. Springer, Berlin (2007) – reference: Charikar, M., Guha, S.: Improved Combinatorial Algorithms for the Facility Location and K-Median Problems. In: 40Th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pp. 378–388 (1999) – reference: Feldmann, A.E., Marx, D.: The Parameterized Hardness of the K-Center Problem in Transportation Networks. In: 16Th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmȯ, Sweden, vol. 101, pp. 19:1–19:13 (2018) – reference: DingWXueGA linear time algorithm for computing a most reliable source on a tree network with faulty nodesTheoretical Computer Science20114123225232278964410.1016/j.tcs.2009.08.003Combinatorial Optimization and Applications – volume: 52 start-page: 866 issue: 6 year: 2005 ident: 10073_CR11 publication-title: J. ACM doi: 10.1145/1101821.1101823 – volume: 111 start-page: 814 issue: 16 year: 2011 ident: 10073_CR22 publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2011.05.016 – ident: 10073_CR25 doi: 10.1007/3-540-48523-6_30 – volume: 51 start-page: 363 issue: 3 year: 2004 ident: 10073_CR2 publication-title: J. ACM doi: 10.1145/990308.990309 – volume: 209 start-page: 331 issue: 1 year: 1998 ident: 10073_CR9 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(97)00124-2 – volume: 14 start-page: 6:1 issue: 1 year: 2018 ident: 10073_CR24 publication-title: ACM Trans. Algorithms doi: 10.1145/3155298 – ident: 10073_CR27 doi: 10.1007/s10878-017-0121-5 – ident: 10073_CR30 doi: 10.1007/BFb0045375 – ident: 10073_CR10 doi: 10.1007/978-3-319-21275-3 – volume: 52 start-page: 26 issue: 1 year: 2004 ident: 10073_CR3 publication-title: J. Algorithms doi: 10.1016/j.jalgor.2004.03.005 – ident: 10073_CR20 – volume: 32 start-page: 101 issue: 1 year: 1974 ident: 10073_CR8 publication-title: Papers in Regional Science doi: 10.1007/BF01942293 – volume: 41 start-page: 30 issue: 1 year: 2009 ident: 10073_CR5 publication-title: Geographic. Anal. doi: 10.1111/j.1538-4632.2009.00746.x – ident: 10073_CR28 doi: 10.1145/261342.571216 – ident: 10073_CR1 – ident: 10073_CR7 – volume: 22 start-page: 231 issue: 3 year: 1992 ident: 10073_CR19 publication-title: Networks doi: 10.1002/net.3230220303 – ident: 10073_CR31 doi: 10.1007/978-3-540-69507-3_31 – volume: 9 start-page: 11 issue: 1 year: 2012 ident: 10073_CR34 publication-title: ACM Trans. Algorithms doi: 10.1145/2390176.2390187 – start-page: 275 volume-title: Tractable Cases of Facility Location on a Network with a Linear Reliability Order of Links year: 2009 ident: 10073_CR26 – ident: 10073_CR33 doi: 10.1007/978-3-319-90530-3_23 – volume-title: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173 year: 2012 ident: 10073_CR12 – ident: 10073_CR16 – volume: 37 start-page: 1675 issue: 10 year: 2010 ident: 10073_CR4 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.11.003 – ident: 10073_CR18 – ident: 10073_CR6 doi: 10.1007/978-3-030-17402-6_6 – volume: 412 start-page: 225 issue: 3 year: 2011 ident: 10073_CR15 publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2009.08.003 – volume-title: Fundamentals of parameterized complexity. Texts in computer science year: 2013 ident: 10073_CR17 doi: 10.1007/978-1-4471-5559-1 – ident: 10073_CR14 doi: 10.1109/ICICIS.2011.138 – volume: 70 start-page: 39 issue: 1 year: 1999 ident: 10073_CR29 publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(99)00031-9 – ident: 10073_CR13 doi: 10.1109/WCSE.2009.31 – volume: 159 start-page: 1118 issue: 11 year: 2011 ident: 10073_CR21 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2011.03.021 – volume: 27 start-page: 219 issue: 4 year: 1996 ident: 10073_CR32 publication-title: Networks doi: 10.1002/(SICI)1097-0037(199605)27:3<219::AID-NET7>3.0.CO;2-L – ident: 10073_CR23 doi: 10.1137/1.9781611973075.43 |
| SSID | ssj0003800 |
| Score | 2.2639952 |
| Snippet | The
Maximum Covering Location Problem
(MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands... The Maximum Covering Location Problem (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 432 |
| SubjectTerms | Algorithms Apexes Complexity Computer Science Failure Graph theory Lower bounds Mathematical models Operations research Parameterization Parameters Probability Site selection Theory of Computation |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS8MwFH7o9KAHp1NxOqUHb1psk7VpTyri8OBmDyq7lTRNQJBurlXQX29elnYouIuXQpomlLzkvY-8974HcKoIpjtS9BmGId5WUTdSgrlc-YpIJqk0ibTP92w0isbjOLEXbqUNq6x1olHU-UTgHfkF0aYyRvb1-HL65mLVKPSu2hIaq7CmkY2PIV1DkjSamEYmBUVDAswMCjybNGNS54zxcjGWHdvU9X4apgXa_OUgNXZn0P7vH2_DlkWczvV8i-zAiiw60K6rOTj2cHdgc9gwuJa7cPVQOLrpJByjt5DQ-UvmDo5CBs3q05ko049UyaIyXfpQaOXkJPMSNXvwNLh9vLlzbbUFV9CQVm4sNHTRqySyQIWESxnFxOfS97K-4Po1QQeryPKMxVJjCq0oVUQFo4r1cy_TqHEfWsWkkAfgyEBQ6cucqoD3w4zHUjBBAz2U-XkQ8C749VKnwlKRY0WM17QhUTbiSfXDtGnqdeGsGTOdE3Es_bpXyyS1h7JMFwLpwnkt1UX337MdLp_tCDYIbiQTz9ODVjV7l8ewLj6ql3J2YrbkNx6u5EA priority: 102 providerName: ProQuest |
| Title | On the Parameterized Complexity of the Expected Coverage Problem |
| URI | https://link.springer.com/article/10.1007/s00224-022-10073-0 https://www.proquest.com/docview/2658987579 |
| Volume | 66 |
| WOSCitedRecordID | wos000767080200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1433-0490 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003800 issn: 1432-4350 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD9YnVWnLwpoEk22STm1oqgraG1vclJJtdEKSVJgr6653ZJimKCnoZmOyDsI-ZSWbmG4B95VC6IyOfoefR3ypm-kpwM1a2ciSXTOpE2psL3u_7d3dBWCSFZWW0e-mS1JK6SnbT6sak6HPimYkf6guo7nwq2DAY3lTyl_k68QQNAcoHcq0iVeb7OT6ro5mN-cUtqrXNaf1_77kKK4V1aRxPj8MazMnROtTLyg1GcZHXYblXobVmG3B0OTKQNcKYIrUIvPldpgaNIrTM_M0YK91OsMgi1014AVAQGeG0HM0mXJ92rzpnZlFZwRTMY7kZCDRTcG1E4irPiaX0A8eOpW0lbRHjY4ecqSJJEx5ItB9QKCqfCc4Ub6dWghbiFtRG45HcBkO6gklbpky5cdtL4kAKLpiLQ7mdum7cALtc4EgUsONU_eIpqgCT9YJFSDTPIqsBB9WY5ynoxq-9m-W-RcUFzCIHLauAwPqDBhyW-zRr_nm2nb9134Ulh7Zax_I0oZZPXuQeLIrX_DGbtGCe3963YOGk2w8HyJ1zE2nP6hB1QqJ8iDR0H1r6EH8AxYfg9A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4hQAIGCgVEoYAHmCAisZvXgAABVas-6FBQt5A4toSE2tIGUPlR_EZ8btIKJLp1YInkOLaU-PzdxXf3HcCxpJjuyNBn6Dh4WsUMT3LXCKUlqXAFEzqR9rHuNptep-O3FuAry4XBsMoMEzVQxz2OZ-TnVKlKH9nX_cv-q4FVo9C7mpXQGItFTYw-1C_b8KJ6q9b3hNLyXfumYqRVBQzOHJYYPlcqWhkJPLKlQ0MhPJ9aobDMqMRDdZuiI5FHceT6QulOBQjSY9xl0i3FZmTjAaiC_KUSMothqCBtTZCfeTrlRZkgmIlkm2mSjk7V08rSwNh5bDPD_KkIp9btL4es1nPl3H_7QhuwnlrU5Hq8BTZhQXTzkMuqVZAUvPKw1pgw1A634Oq-S1STtEKMTkPC6k8RExyFDKHJiPSk7kcqaJ7oLrXpFfiS1rgEzzY8zOWtdmCx2-uKXSDC5kxYImbSDktOFPqCu5zZaqhrxbYdFsDKljbgKdU6Vvx4CSYk0VocAnXRbRaYBTidjOmPiUZmPl3MZCBIQWcYTAWgAGeZFE27_55tb_ZsR7BSaTfqQb3arO3DKkUh1rFLRVhMBm_iAJb5e_I8HBzq7UDgad7S9Q1EBUBx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1RT9swED5VDE3sYWUFRIGBH9gTRCR2HScPE0yUaggoeQCEeAmJY0tIUws0G2I_bb9ud27SCiR444GXSI7jSInP3519d98BbFpO6Y6CfIZhSKdVwousVl5mA8uNMsK4RNqLY9XvR5eXcdKAf3UuDIVV1pjogLoYajoj3-GoKmNiX493bBUWkXR7u7d3HlWQIk9rXU5jLCJH5vEBt2-j74ddnOtvnPcOzvZ_elWFAU-LUJRerFFdo8Ggc2lDnhkTxTzITODnHZ3hbU5ORZ0XuYoN6lEEBxsJrYRVncLPJR2GIvx_ULjHpHDCRF5NtICIXPoLmiOUlST9KmHHpe05xelRHD21hec_VYpTS_eZc9bpvF7zPf-tefhcWdrsx3hpfIGGGbSgWVexYBWoteDTyYS5drQAe6cDhk2WZBS1RkTWf03BaBQxh5aPbGhdP1FE69J1IRggKLNkXJpnEc7f5KuWYGYwHJhlYEZqYQJTCCuzTphnsdFKC4lDVVBImbUhqKc51RUFO1UC-ZVOyKOdaKR4cW2R-m3Ymoy5HROQvPr0Wi0PaQVGo3QqDG3YriVq2v3y21Zef9sGfEShSo8P-0erMMdJnl1I0xrMlPe_zVeY1X_Km9H9ulsZDK7fWrj-A2VlSV0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Parameterized+Complexity+of+the+Expected+Coverage+Problem&rft.jtitle=Theory+of+computing+systems&rft.au=Fomin%2C+Fedor+V.&rft.au=Ramamoorthi%2C+Vijayaragunathan&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=1432-4350&rft.eissn=1433-0490&rft.volume=66&rft.issue=2&rft.spage=432&rft.epage=453&rft_id=info:doi/10.1007%2Fs00224-022-10073-0&rft.externalDocID=10_1007_s00224_022_10073_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-4350&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-4350&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-4350&client=summon |