Learning to Generate Video Game Maps Using Markov Models

Procedural content generation has become a popular research topic in recent years. However, most content generation systems are specialized to a single game. We are interested in methods that can generate content for a wide variety of games without a game-specific algorithm design. Statistical appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational intelligence and AI in games. Jg. 9; H. 4; S. 410 - 422
Hauptverfasser: Snodgrass, Sam, Ontanon, Santiago
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2017
Schlagworte:
ISSN:1943-068X, 1943-0698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Procedural content generation has become a popular research topic in recent years. However, most content generation systems are specialized to a single game. We are interested in methods that can generate content for a wide variety of games without a game-specific algorithm design. Statistical approaches are a promising avenue for such generators and, more specifically, map generators. In this paper, we explore Markov models as a means of modeling and generating content for multiple domains. We apply our Markov models to Super Mario Bros., Loderunner , and Kid Icarus in order to determine how well our models perform in terms of the playability of the content generated, the expressive ranges of the models, and the effects of training data on those expressive ranges.
AbstractList Procedural content generation has become a popular research topic in recent years. However, most content generation systems are specialized to a single game. We are interested in methods that can generate content for a wide variety of games without a game-specific algorithm design. Statistical approaches are a promising avenue for such generators and, more specifically, map generators. In this paper, we explore Markov models as a means of modeling and generating content for multiple domains. We apply our Markov models to Super Mario Bros., Loderunner , and Kid Icarus in order to determine how well our models perform in terms of the playability of the content generated, the expressive ranges of the models, and the effects of training data on those expressive ranges.
Author Snodgrass, Sam
Ontanon, Santiago
Author_xml – sequence: 1
  givenname: Sam
  surname: Snodgrass
  fullname: Snodgrass, Sam
  email: sam.psnodgrass@gmail.com
  organization: Dept. of Comput. Sci., Drexel Univ., Philadelphia, PA, USA
– sequence: 2
  givenname: Santiago
  surname: Ontanon
  fullname: Ontanon, Santiago
  email: santi.ontanon@gmail.com
  organization: Dept. of Comput. Sci., Drexel Univ., Philadelphia, PA, USA
BookMark eNqFkMFKw0AQhhepYK19gl7yAqmzO-lm91iK1kCLlyrewiSZyGqblN0g-PYmtPTQi3OZ_4f55vDdi1HTNizETMJcSrCPu1W2zNZzBVLPlVa40HAjxtImGIO2ZnTJ5uNOTEP4gn4QUSs9FmbD5BvXfEZdG625YU8dR--u4r7SgaMtHUP0FoaLLfnv9ifathXvw4O4rWkfeHreE7F7ftqtXuLN6zpbLTdxiRq72NpCUpoYWiCntS1UgUoqgERXhhRgJeuElKwYNbDR2OdEFymjWZSKASfCnt6Wvg3Bc52XrqPOtU3nye1zCfkgIT9JyAcJ-VlCz-IVe_TuQP73H2p2ohwzX4g0VQaUxD-6pmh_
CODEN TCIARR
CitedBy_id crossref_primary_10_1016_j_eswa_2022_118491
crossref_primary_10_1109_TG_2022_3223527
crossref_primary_10_3390_computers13110304
crossref_primary_10_1007_s10710_022_09442_y
crossref_primary_10_1109_TG_2021_3086215
crossref_primary_10_1109_TG_2018_2846639
crossref_primary_10_1109_TG_2025_3543135
crossref_primary_10_1007_s00521_020_05383_8
crossref_primary_10_1109_TG_2024_3404001
crossref_primary_10_3390_a17070307
crossref_primary_10_1109_TG_2021_3060005
crossref_primary_10_1587_transinf_2019EDP7295
crossref_primary_10_1109_TG_2023_3270422
Cites_doi 10.1109/TASSP.1987.1165125
10.1145/1536513.1536548
10.2307/1575226
10.1109/ITW.2010.5593333
10.1109/5.18626
10.1007/978-1-4614-6312-2_6
10.1109/TCIAIG.2011.2166267
10.1214/009053606000000588
10.1016/j.eswa.2008.01.039
10.1109/TCIAIG.2011.2148116
10.1145/1814256.1814260
10.1109/TPAMI.1983.4767341
10.1145/2676467.2676506
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCIAIG.2016.2623560
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1943-0698
EndPage 422
ExternalDocumentID 10_1109_TCIAIG_2016_2623560
7728021
Genre orig-research
GroupedDBID 0R~
29F
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c363t-99b1a748a53e7f9b2b32120046d8a203d1f4a21de360e863a2146b7e385c2e03
IEDL.DBID RIE
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418422900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1943-068X
IngestDate Sat Nov 29 03:28:49 EST 2025
Tue Nov 18 22:35:34 EST 2025
Tue Aug 26 16:43:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-99b1a748a53e7f9b2b32120046d8a203d1f4a21de360e863a2146b7e385c2e03
ORCID 0000-0002-9616-2981
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCIAIG_2016_2623560
ieee_primary_7728021
crossref_primary_10_1109_TCIAIG_2016_2623560
PublicationCentury 2000
PublicationDate 2017-Dec.
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle IEEE transactions on computational intelligence and AI in games.
PublicationTitleAbbrev TCIAIG
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref14
snodgrass (ref23) 0
snodgrass (ref24) 0
ref22
ref10
shaker (ref3) 2015
snodgrass (ref7) 0
ref2
snodgrass (ref8) 0
ref1
ref17
ref16
clifford (ref12) 1990
ref19
ref18
summerville (ref21) 0
ref9
markov (ref11) 1971; i
ref4
korc (ref20) 0
summerville (ref6) 2016
guzdial (ref5) 0
References_xml – ident: ref19
  doi: 10.1109/TASSP.1987.1165125
– start-page: 59
  year: 0
  ident: ref8
  article-title: A hierarchical approach to generating maps using Markov chains
  publication-title: Proc 4th Artif Intell Interactive Digit Entertain Conf
– ident: ref9
  doi: 10.1145/1536513.1536548
– start-page: 19
  year: 1990
  ident: ref12
  article-title: Markov random fields in statistics
  publication-title: Disorder in Physical Systems a Volume in Honour of John M Hammersley
– ident: ref13
  doi: 10.2307/1575226
– year: 2016
  ident: ref6
  article-title: Super Mario as a string: Platformer level generation via LSTMS
  publication-title: arXiv preprint arXiv 1603 02895
– ident: ref10
  doi: 10.1109/ITW.2010.5593333
– year: 2015
  ident: ref3
  publication-title: Procedural Content Generation in Games A Textbook and an Overview of Current Research
– ident: ref14
  doi: 10.1109/5.18626
– ident: ref16
  doi: 10.1007/978-1-4614-6312-2_6
– year: 0
  ident: ref7
  article-title: Experiments in map generation using Markov chains
  publication-title: Proc Int Conf Found Digit Games
– ident: ref2
  doi: 10.1109/TCIAIG.2011.2166267
– start-page: 79
  year: 0
  ident: ref24
  article-title: An approach to domain transfer in procedural content generation of two-dimensional videogame levels
  publication-title: Proc 4th Artif Intell Interactive Digit Entertain Conf
– ident: ref17
  doi: 10.1214/009053606000000588
– ident: ref18
  doi: 10.1016/j.eswa.2008.01.039
– start-page: 68
  year: 0
  ident: ref21
  article-title: MCMCTS PCG 4 SMB: Monte carlo tree search to guide platformer level generation
  publication-title: Proc 4th Artif Intell Interactive Digit Entertain Conf
– ident: ref1
  doi: 10.1109/TCIAIG.2011.2148116
– volume: i
  start-page: 552
  year: 1971
  ident: ref11
  article-title: Extension of the limit theorems of probability theory to a sum of variables connected in a chain
  publication-title: Dynamic Probabilistic Systems
– start-page: 261
  year: 0
  ident: ref20
  article-title: On nonparametric Markov random field estimation for fast automatic segmentation of MRI knee data
  publication-title: MICCAI Grand Challenge
– ident: ref22
  doi: 10.1145/1814256.1814260
– start-page: 780
  year: 0
  ident: ref23
  article-title: Controllable procedural content generation via constrained multi-dimensional Markov chain sampling
  publication-title: Proc Int Joint Conf Artif Intell
– year: 0
  ident: ref5
  article-title: Toward game level generation from gameplay videos
  publication-title: Proc of the FDG workshop on Procedural Content Generation in Games
– ident: ref15
  doi: 10.1109/TPAMI.1983.4767341
– ident: ref4
  doi: 10.1145/2676467.2676506
SSID ssj0000333626
Score 2.393434
Snippet Procedural content generation has become a popular research topic in recent years. However, most content generation systems are specialized to a single game....
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 410
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Loderunner
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Super Mario Bros
Algorithm design and analysis
Computational modeling
Data models
Games
Markov models
Markov processes
procedural content generation
Training
Training data
Title Learning to Generate Video Game Maps Using Markov Models
URI https://ieeexplore.ieee.org/document/7728021
Volume 9
WOSCitedRecordID wos000418422900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1943-0698
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000333626
  issn: 1943-068X
  databaseCode: RIE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QePAiKhrxV3rwyGBrt7U9EiLKQeKBGG5Lf82QIBAY_P3u68r0YEy8bUuXLK9b3trvfe8h9KiVNCTnKuBGJEEcQZFQg0xMacaF4VHCtQubYJMJn83EWwN1614Ya60Tn9keHLpavlnpHWyV9RlkKUHX-BFjadWrVe-nhJSCs4orIscQWMBn3mQoCkV_OhwPxs-g5Ep7pGT8xFlSfhPRj2QVRyyj1v8e6Qyd-h9IPKhm_Bw17PICtQ7hDNh_q23EvXPqBy5WuDKXLix-nxtbnspPi1_leoudYgBDw85qjyEXbbG9RNPR03T4EviYhEDTlBaBECqSLOYyoZblQhFFSz6Cha_hkoTURHksSWQsTUPLUyohy1sxS3miiQ3pFWouV0t7jbDgLC85nGiweZOachUZTVSYaxlZztMOIgfIMu0txCHJYpG5pUQosgrnDHDOPM4d1K1vWlcOGn8PbwPK9VAP8M3vl2_RCQGedfqSO9QsNjt7j471vphvNw_uDfkCpDS1OA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2ImuhFVDTizx48MthatrVHQkSIQDwshtvSXzMkCAQGf7_7uoIejIm3bemS5XXLW_u97z2EnpQUmmRMekzz0GsHUCRUIBOTKmZcsyBkyoZNxOMxm0z4WwU19r0wxhgrPjNNOLS1fL1QG9gqa8WQpQRd44eQnOW6tfY7Kj6l4K1iy8htiCxgE2czFPi8lXQHncELaLmiJik4P7SmlN9U9CNbxVJLr_q_hzpDp-4XEnfKOT9HFTO_QNVdPAN2X2sNMeed-oHzBS7tpXOD36faFKfi0-CRWK6x1QxgaNlZbDEko83WlyjpPSfdvueCEjxFI5p7nMtAxG0mQmrijEsiacFIsPTVTBCf6iBrCxJoQyPfsIgKSPOWsaEsVMT49AodzBdzc40wZ3FWsDhRYPQmFGUy0IpIP1MiMIxFdUR2kKXKmYhDlsUstYsJn6clzingnDqc66ixv2lZemj8PbwGKO-HOoBvfr_8iI77yWiYDgfj11t0QoB1rdrkDh3kq425R0dqm0_Xqwf7tnwBSIu4gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Generate+Video+Game+Maps+Using+Markov+Models&rft.jtitle=IEEE+transactions+on+computational+intelligence+and+AI+in+games.&rft.au=Snodgrass%2C+Sam&rft.au=Ontanon%2C+Santiago&rft.date=2017-12-01&rft.pub=IEEE&rft.issn=1943-068X&rft.volume=9&rft.issue=4&rft.spage=410&rft.epage=422&rft_id=info:doi/10.1109%2FTCIAIG.2016.2623560&rft.externalDocID=7728021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-068X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-068X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-068X&client=summon