Deviation maximization for rank-revealing QR factorizations
In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented i...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 91; číslo 3; s. 1047 - 1079 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented in LAPACK’s xgeqp3 routine. We show that the resulting algorithm, named QRDM, has similar rank-revealing properties of QP3 and better execution times. We present experimental results on a wide data set of numerically singular matrices, which has become a reference in the recent literature. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-022-01291-1 |