Deviation maximization for rank-revealing QR factorizations

In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented i...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 91; no. 3; pp. 1047 - 1079
Main Authors: Dessole, Monica, Marcuzzi, Fabio
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2022
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented in LAPACK’s xgeqp3 routine. We show that the resulting algorithm, named QRDM, has similar rank-revealing properties of QP3 and better execution times. We present experimental results on a wide data set of numerically singular matrices, which has become a reference in the recent literature.
AbstractList In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented in LAPACK’s xgeqp3 routine. We show that the resulting algorithm, named QRDM, has similar rank-revealing properties of QP3 and better execution times. We present experimental results on a wide data set of numerically singular matrices, which has become a reference in the recent literature.
In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented in LAPACK’s routine. We show that the resulting algorithm, named QRDM, has similar rank-revealing properties of QP3 and better execution times. We present experimental results on a wide data set of numerically singular matrices, which has become a reference in the recent literature.
Author Dessole, Monica
Marcuzzi, Fabio
Author_xml – sequence: 1
  givenname: Monica
  orcidid: 0000-0002-2727-9123
  surname: Dessole
  fullname: Dessole, Monica
  email: monica.dessole.ext@leonardo.com
  organization: Department of Mathematics Tullio Levi Civita, University of Padova
– sequence: 2
  givenname: Fabio
  surname: Marcuzzi
  fullname: Marcuzzi, Fabio
  organization: Department of Mathematics Tullio Levi Civita, University of Padova
BookMark eNp9kE9LAzEQxYNUsK1-AU8Fz9GZbLLZxZPUv1AQRc8hjbMltd2tybaon97YLQgeepoZeL-ZN2_AenVTE2OnCOcIoC8iImjFQQgOKErkeMD6qLTgpchVL_WAmmNWFkdsEOMcIGFC99nlNW28bX1Tj5b20y_9dzdUTRgFW7_zQBuyC1_PRk_Po8q6tgk7TTxmh5VdRDrZ1SF7vb15Gd_zyePdw_hqwl2WZy0vSyQhoUQolNZaFskgKQlTcG8wVZhBDmVFNAUgm0ty0hVSCUdaZpXMXTZkZ93eVWg-1hRbM2_WoU4nTXq1yLFQOSRV0alcaGIMVBnn263RNli_MAjmNyrTRWVSVGYblcGEin_oKvilDV_7oayDYhLXMwp_rvZQP5WTfCc
CitedBy_id crossref_primary_10_1137_24M1644705
crossref_primary_10_1016_j_apnum_2023_07_003
crossref_primary_10_1007_s10092_024_00587_z
Cites_doi 10.1145/290200.287638
10.1137/1.9780898719604
10.14658/PUPJ-DRNA-2020-1-3
10.1016/j.laa.2017.10.014
10.1137/1029112
10.1137/S1064827595296732
10.1007/BF02139475
10.1137/13092157X
10.1007/BF01436084
10.1007/BF01436075
10.1016/0024-3795(75)90112-3
10.1137/0917055
10.1137/0727045
10.1145/290200.287637
10.1016/0024-3795(86)90115-1
10.1145/1377612.1377616
10.1137/0910005
10.3390/math8071122
10.1137/S0895479891223781
10.1145/76263.76290
10.4153/CMB-1966-083-2
10.1137/15M1044680
10.1137/1.9781611971217
10.1016/0024-3795(87)90103-0
10.1016/0024-3795(72)90013-4
10.1109/HiPC.2017.00035
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-022-01291-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1079
ExternalDocumentID 10_1007_s11075_022_01291_1
GrantInformation_xml – fundername: Università degli Studi di Padova
  grantid: BIRD192932
  funderid: https://doi.org/10.13039/501100003500
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-991e2409108577748129e540b0cd0b5130609feeb00ea64ec4c8452ce743f46c3
IEDL.DBID M7S
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779702900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 02:39:38 EST 2025
Tue Nov 18 21:29:40 EST 2025
Sat Nov 29 01:34:57 EST 2025
Fri Feb 21 02:45:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Column pivoting
Correlation
Rank revealing
Block algorithm
QR factorization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-991e2409108577748129e540b0cd0b5130609feeb00ea64ec4c8452ce743f46c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2727-9123
OpenAccessLink https://link.springer.com/10.1007/s11075-022-01291-1
PQID 2918618560
PQPubID 2043837
PageCount 33
ParticipantIDs proquest_journals_2918618560
crossref_citationtrail_10_1007_s11075_022_01291_1
crossref_primary_10_1007_s11075_022_01291_1
springer_journals_10_1007_s11075_022_01291_1
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Xiao, J., Gu, M., Langou, J.: Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-Rank Matrix Approximations. In: 2017 IEEE 24Th International Conference on High Performance Computing (HiPC), pp. 233–242, 12. https://doi.org/10.1109/HiPC.2017.00035 (2017)
SchreiberRVanLoanCA Storage-Efficient WY representation for products of householder transformationsSIAM J. Sci. Stat. Comput.1989100297616110.1137/0910005https://doi.org/10.1137/0910005
ChanTFRank revealing QR factorizationsLinear Algebra Appl.198788-89678288244110.1016/0024-3795(87)90103-0ISSN 0024-3795. https://doi.org/10.1016/0024-3795(87)90103-0. http://www.sciencedirect.com/science/article/pii/0024379587901030
DemmelJGrigoriLGuMXiangHCommunication avoiding rank revealing QR factorization with column pivotingSIAM J. Matrix Anal. Appl.2015365589, 01330259510.1137/13092157Xhttps://doi.org/10.1137/13092157X
BischofCHansenPA block algorithm for computing rank-revealing QR factorizationsNumer. Algo.19922371391,10118482210.1007/BF02139475https://doi.org/10.1007/BF02139475
ThompsonRPrincipal submatrices IX: Interlacing inequalities for singular values of submatricesLinear Algebra Appl.19725111229779110.1016/0024-3795(72)90013-4ISSN 0024-3795. https://doi.org/10.1016/0024-3795(72)90013-4. https://www.sciencedirect.com/science/article/pii/0024379572900134
Martinsson, P.G.: Blocked rank-revealing QR factorizations: How randomized sampling can be used to avoid single-vector pivoting. Report, 05. arXiv:1505.08115 (2015)
Drmač, Z., Bujanović, Z.: On the Failure of Rank-Revealing QR Factorization Software – A Case Study. ACM Trans. Math. Softw. 35(2). ISSN 0098-3500. https://doi.org/10.1145/1377612.1377616 (2008)
HansenPCRank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion1999USASociety for Industrial and Applied MathematicsISBN 0898714036
DessoleMMarcuzziFVianelloMAccelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designsDolomites Research Notes on Approximation20201320294115742ISSN 2035-6803. https://doi.org/10.14658/PUPJ-DRNA-2020-1-3. https://drna.padovauniversitypress.it/2020/1/3
HighamNJA survey of condition number estimation for triangular matricesSIAM Rev.198729457559691769610.1137/1029112ISSN 0036-1445. https://doi.org/10.1137/1029112
FosterLVRank and null space calculations using matrix decomposition without column interchangesLinear Algebra Appl.198674477182213910.1016/0024-3795(86)90115-1ISSN 0024-3795. https://doi.org/10.1016/0024-3795(86)90115-1. https://www.sciencedirect.com/science/article/pii/0024379586901151
ChandrasekaranSIpsenICFOn Rank-Revealing factorisationsSIAM J. Matrix Anal. Appl.1994152592622126660610.1137/S0895479891223781https://doi.org/10.1137/S0895479891223781
DuerschJAGuMRandomized QR with column pivotingSIAM J. Sci. Comput.2017394C263C291368137410.1137/15M1044680https://doi.org/10.1137/15M1044680
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 3rd edn. ISBN 0-89871-447-8 (paperback) (1999)
GolubGVan LoanCMatrix Computations (4th ed.). Johns Hopkins Studies in the Mathematical Sciences2013BaltimoreJohns Hopkins University PressISBN 9781421407944
MikhalevAOseledetsIRectangular maximum-volume submatrices and their applicationsLinear Algebra Appl.2018538187211372283510.1016/j.laa.2017.10.014ISSN 0024-3795. https://doi.org/10.1016/j.laa.2017.10.014. https://www.sciencedirect.com/science/article/pii/S0024379517305931
BischofCQuintana-OrtíGComputing rank-revealing QR factorizations of dense matricesACM Trans. Math. Softw.199824226253, 06166395310.1145/290200.287637https://doi.org/10.1145/290200.287637
BusingerPGolubGHLinear Least Squares Solutions by Householder TransformationsNumer. Math.19657326927617659010.1007/BF01436084ISSN 0029-599X. https://doi.org/10.1007/BF01436084
Bischof, J.R.: A block QR factorization algorithm using restricted pivoting. In: Supercomputing ’89:Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, pp. 248–256. https://doi.org/10.1145/76263.76290 (1989)
VarahJA lower bound for the smallest singular value of a matrixLinear Algebra Appl.19751113537192910.1016/0024-3795(75)90112-3ISSN 0024-3795. https://doi.org/10.1016/0024-3795(75)90112-3. http://www.sciencedirect.com/science/article/pii/0024379575901123
DessoleMMarcuzziFVianelloMDCATCH—a numerical package for d-variate near g-optimal Tchakaloff regression via fast NNLSMathematics20208710.3390/math8071122https://doi.org/10.3390/math8071122
BischofCQuintana-OrtíGAlgorithm 782: codes for Rank-Revealing QR factorizations of dense matricesACM Trans. Math. Softw.199824254257, 07166395710.1145/290200.287638https://doi.org/10.1145/290200.287638
GolubGKlemaVStewartGWRank degeneracy and least squares problems. Technical Report STAN-CS-76-5591976StanfordDepartment of Computer Science Stanford University
BarlowJDemmelJComputing accurate eigensystems of scaled diagonally dominant matricesSIAM J. Numer. Anal.19902711104126210.1137/0727045https://doi.org/10.1137/0727045
GolubGNumerical methods for solving linear least squares problemsNumer. Math.19657320621618109410.1007/BF01436075ISSN 0029-599X. https://doi.org/10.1007/BF01436075
KahanWNumerical linear algebraCan. Math. Bull.1966975780110.4153/CMB-1966-083-2
GuMEisenstatSCEfficient algorithms for computing a strong Rank-Revealing QR factorizationSIAM J. Sci. Comput.1996174848869139535110.1137/0917055https://doi.org/10.1137/0917055
HongYPPanC-TRank-revealing QR factorizations and the singular value decompositionMath. Comput.19925819721323211069700743.65037ISSN 00255718, 10886842. http://www.jstor.org/stable/2153029
Quintana-OrtíGSunXBischofCHA BLAS-3 version of the QR factorization with column pivotingSIAM J. Sci. Comput.199819514861494161879210.1137/S1064827595296732https://doi.org/10.1137/S1064827595296732
LawsonCLHansonRJSolving least squares problems, vol. 151995BangkokSIAM10.1137/1.9781611971217
LV Foster (1291_CR15) 1986; 74
G Golub (1291_CR17) 2013
CL Lawson (1291_CR24) 1995
C Bischof (1291_CR5) 1998; 24
PC Hansen (1291_CR20) 1999
JA Duersch (1291_CR14) 2017; 39
M Gu (1291_CR19) 1996; 17
J Varah (1291_CR30) 1975; 11
R Schreiber (1291_CR28) 1989; 10
J Demmel (1291_CR10) 2015; 36
G Golub (1291_CR18) 1976
M Dessole (1291_CR11) 2020; 13
S Chandrasekaran (1291_CR9) 1994; 15
1291_CR6
1291_CR13
TF Chan (1291_CR8) 1987; 88-89
1291_CR31
G Golub (1291_CR16) 1965; 7
C Bischof (1291_CR3) 1992; 2
C Bischof (1291_CR4) 1998; 24
W Kahan (1291_CR23) 1966; 9
1291_CR1
G Quintana-Ortí (1291_CR27) 1998; 19
YP Hong (1291_CR22) 1992; 58
R Thompson (1291_CR29) 1972; 5
M Dessole (1291_CR12) 2020; 8
P Businger (1291_CR7) 1965; 7
A Mikhalev (1291_CR26) 2018; 538
1291_CR25
J Barlow (1291_CR2) 1990; 27
NJ Higham (1291_CR21) 1987; 29
References_xml – reference: KahanWNumerical linear algebraCan. Math. Bull.1966975780110.4153/CMB-1966-083-2
– reference: GuMEisenstatSCEfficient algorithms for computing a strong Rank-Revealing QR factorizationSIAM J. Sci. Comput.1996174848869139535110.1137/0917055https://doi.org/10.1137/0917055
– reference: HansenPCRank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion1999USASociety for Industrial and Applied MathematicsISBN 0898714036
– reference: ChandrasekaranSIpsenICFOn Rank-Revealing factorisationsSIAM J. Matrix Anal. Appl.1994152592622126660610.1137/S0895479891223781https://doi.org/10.1137/S0895479891223781
– reference: Bischof, J.R.: A block QR factorization algorithm using restricted pivoting. In: Supercomputing ’89:Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, pp. 248–256. https://doi.org/10.1145/76263.76290 (1989)
– reference: BischofCQuintana-OrtíGComputing rank-revealing QR factorizations of dense matricesACM Trans. Math. Softw.199824226253, 06166395310.1145/290200.287637https://doi.org/10.1145/290200.287637
– reference: HongYPPanC-TRank-revealing QR factorizations and the singular value decompositionMath. Comput.19925819721323211069700743.65037ISSN 00255718, 10886842. http://www.jstor.org/stable/2153029
– reference: DuerschJAGuMRandomized QR with column pivotingSIAM J. Sci. Comput.2017394C263C291368137410.1137/15M1044680https://doi.org/10.1137/15M1044680
– reference: DessoleMMarcuzziFVianelloMAccelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designsDolomites Research Notes on Approximation20201320294115742ISSN 2035-6803. https://doi.org/10.14658/PUPJ-DRNA-2020-1-3. https://drna.padovauniversitypress.it/2020/1/3
– reference: BusingerPGolubGHLinear Least Squares Solutions by Householder TransformationsNumer. Math.19657326927617659010.1007/BF01436084ISSN 0029-599X. https://doi.org/10.1007/BF01436084
– reference: BarlowJDemmelJComputing accurate eigensystems of scaled diagonally dominant matricesSIAM J. Numer. Anal.19902711104126210.1137/0727045https://doi.org/10.1137/0727045
– reference: Quintana-OrtíGSunXBischofCHA BLAS-3 version of the QR factorization with column pivotingSIAM J. Sci. Comput.199819514861494161879210.1137/S1064827595296732https://doi.org/10.1137/S1064827595296732
– reference: BischofCHansenPA block algorithm for computing rank-revealing QR factorizationsNumer. Algo.19922371391,10118482210.1007/BF02139475https://doi.org/10.1007/BF02139475
– reference: GolubGKlemaVStewartGWRank degeneracy and least squares problems. Technical Report STAN-CS-76-5591976StanfordDepartment of Computer Science Stanford University
– reference: GolubGVan LoanCMatrix Computations (4th ed.). Johns Hopkins Studies in the Mathematical Sciences2013BaltimoreJohns Hopkins University PressISBN 9781421407944
– reference: LawsonCLHansonRJSolving least squares problems, vol. 151995BangkokSIAM10.1137/1.9781611971217
– reference: DessoleMMarcuzziFVianelloMDCATCH—a numerical package for d-variate near g-optimal Tchakaloff regression via fast NNLSMathematics20208710.3390/math8071122https://doi.org/10.3390/math8071122
– reference: DemmelJGrigoriLGuMXiangHCommunication avoiding rank revealing QR factorization with column pivotingSIAM J. Matrix Anal. Appl.2015365589, 01330259510.1137/13092157Xhttps://doi.org/10.1137/13092157X
– reference: FosterLVRank and null space calculations using matrix decomposition without column interchangesLinear Algebra Appl.198674477182213910.1016/0024-3795(86)90115-1ISSN 0024-3795. https://doi.org/10.1016/0024-3795(86)90115-1. https://www.sciencedirect.com/science/article/pii/0024379586901151
– reference: MikhalevAOseledetsIRectangular maximum-volume submatrices and their applicationsLinear Algebra Appl.2018538187211372283510.1016/j.laa.2017.10.014ISSN 0024-3795. https://doi.org/10.1016/j.laa.2017.10.014. https://www.sciencedirect.com/science/article/pii/S0024379517305931
– reference: Drmač, Z., Bujanović, Z.: On the Failure of Rank-Revealing QR Factorization Software – A Case Study. ACM Trans. Math. Softw. 35(2). ISSN 0098-3500. https://doi.org/10.1145/1377612.1377616 (2008)
– reference: SchreiberRVanLoanCA Storage-Efficient WY representation for products of householder transformationsSIAM J. Sci. Stat. Comput.1989100297616110.1137/0910005https://doi.org/10.1137/0910005
– reference: Martinsson, P.G.: Blocked rank-revealing QR factorizations: How randomized sampling can be used to avoid single-vector pivoting. Report, 05. arXiv:1505.08115 (2015)
– reference: BischofCQuintana-OrtíGAlgorithm 782: codes for Rank-Revealing QR factorizations of dense matricesACM Trans. Math. Softw.199824254257, 07166395710.1145/290200.287638https://doi.org/10.1145/290200.287638
– reference: ChanTFRank revealing QR factorizationsLinear Algebra Appl.198788-89678288244110.1016/0024-3795(87)90103-0ISSN 0024-3795. https://doi.org/10.1016/0024-3795(87)90103-0. http://www.sciencedirect.com/science/article/pii/0024379587901030
– reference: GolubGNumerical methods for solving linear least squares problemsNumer. Math.19657320621618109410.1007/BF01436075ISSN 0029-599X. https://doi.org/10.1007/BF01436075
– reference: VarahJA lower bound for the smallest singular value of a matrixLinear Algebra Appl.19751113537192910.1016/0024-3795(75)90112-3ISSN 0024-3795. https://doi.org/10.1016/0024-3795(75)90112-3. http://www.sciencedirect.com/science/article/pii/0024379575901123
– reference: Xiao, J., Gu, M., Langou, J.: Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-Rank Matrix Approximations. In: 2017 IEEE 24Th International Conference on High Performance Computing (HiPC), pp. 233–242, 12. https://doi.org/10.1109/HiPC.2017.00035 (2017)
– reference: Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 3rd edn. ISBN 0-89871-447-8 (paperback) (1999)
– reference: HighamNJA survey of condition number estimation for triangular matricesSIAM Rev.198729457559691769610.1137/1029112ISSN 0036-1445. https://doi.org/10.1137/1029112
– reference: ThompsonRPrincipal submatrices IX: Interlacing inequalities for singular values of submatricesLinear Algebra Appl.19725111229779110.1016/0024-3795(72)90013-4ISSN 0024-3795. https://doi.org/10.1016/0024-3795(72)90013-4. https://www.sciencedirect.com/science/article/pii/0024379572900134
– volume: 24
  start-page: 254
  year: 1998
  ident: 1291_CR5
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/290200.287638
– ident: 1291_CR1
  doi: 10.1137/1.9780898719604
– volume: 13
  start-page: 20
  year: 2020
  ident: 1291_CR11
  publication-title: Dolomites Research Notes on Approximation
  doi: 10.14658/PUPJ-DRNA-2020-1-3
– ident: 1291_CR25
– volume: 538
  start-page: 187
  year: 2018
  ident: 1291_CR26
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2017.10.014
– volume: 29
  start-page: 575
  issue: 4
  year: 1987
  ident: 1291_CR21
  publication-title: SIAM Rev.
  doi: 10.1137/1029112
– volume: 19
  start-page: 1486
  issue: 5
  year: 1998
  ident: 1291_CR27
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595296732
– volume-title: Rank degeneracy and least squares problems. Technical Report STAN-CS-76-559
  year: 1976
  ident: 1291_CR18
– volume: 2
  start-page: 371
  year: 1992
  ident: 1291_CR3
  publication-title: Numer. Algo.
  doi: 10.1007/BF02139475
– volume: 36
  start-page: 55
  year: 2015
  ident: 1291_CR10
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/13092157X
– volume: 7
  start-page: 269
  issue: 3
  year: 1965
  ident: 1291_CR7
  publication-title: Numer. Math.
  doi: 10.1007/BF01436084
– volume: 7
  start-page: 206
  issue: 3
  year: 1965
  ident: 1291_CR16
  publication-title: Numer. Math.
  doi: 10.1007/BF01436075
– volume: 11
  start-page: 3
  issue: 1
  year: 1975
  ident: 1291_CR30
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(75)90112-3
– volume: 17
  start-page: 848
  issue: 4
  year: 1996
  ident: 1291_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0917055
– volume: 27
  start-page: 11
  year: 1990
  ident: 1291_CR2
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727045
– volume: 24
  start-page: 226
  year: 1998
  ident: 1291_CR4
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/290200.287637
– volume: 74
  start-page: 47
  year: 1986
  ident: 1291_CR15
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(86)90115-1
– ident: 1291_CR13
  doi: 10.1145/1377612.1377616
– volume: 10
  start-page: 02
  year: 1989
  ident: 1291_CR28
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910005
– volume: 58
  start-page: 213
  issue: 197
  year: 1992
  ident: 1291_CR22
  publication-title: Math. Comput.
– volume-title: Matrix Computations (4th ed.). Johns Hopkins Studies in the Mathematical Sciences
  year: 2013
  ident: 1291_CR17
– volume-title: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
  year: 1999
  ident: 1291_CR20
– volume: 8
  start-page: 7
  year: 2020
  ident: 1291_CR12
  publication-title: Mathematics
  doi: 10.3390/math8071122
– volume: 15
  start-page: 592
  issue: 2
  year: 1994
  ident: 1291_CR9
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479891223781
– ident: 1291_CR6
  doi: 10.1145/76263.76290
– volume: 9
  start-page: 757
  year: 1966
  ident: 1291_CR23
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-1966-083-2
– volume: 39
  start-page: C263
  issue: 4
  year: 2017
  ident: 1291_CR14
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1044680
– volume-title: Solving least squares problems, vol. 15
  year: 1995
  ident: 1291_CR24
  doi: 10.1137/1.9781611971217
– volume: 88-89
  start-page: 67
  year: 1987
  ident: 1291_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(87)90103-0
– volume: 5
  start-page: 1
  issue: 1
  year: 1972
  ident: 1291_CR29
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(72)90013-4
– ident: 1291_CR31
  doi: 10.1109/HiPC.2017.00035
SSID ssj0010027
Score 2.38162
Snippet In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1047
SubjectTerms Algebra
Algorithms
Computer Science
Decomposition
Deviation
Eigenvalues
Linear algebra
Maximization
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6ketCD1apYrZKDNw3sI00TPIlavFi0Puht2U0TKNgq3Sr-fCdp0kVRQa-bB8tMkvnC5JsP4ChHECJMmlIb_CjL24YKIznNCxWpJC1ilSgnNtHp9cRgIG88KawMr91DStKd1BXZDW8qlk1snxIkMqZ451nGcCesYEP_7nGRO7A3LZfjxPMX8Y3wVJnv5_gcjiqM-SUt6qJNt_6__9yAdY8uydl8OWzCkp40oO6RJvH7uMRPQcwhfGvA2vWigGu5BacXGDCd08g4fx-NPVuTIMQlVuad2spPuaWyk9s-mYv2BEbnNjx0L-_Pr6jXWaAq5emMIkTUGNilJSJ0EA5izJcakVwRqWFUtDHK8UgabVWGdM6ZVkwJ1k6URvRhGFfpDtQmzxO9CwThBYuNkiIxjHU4jh6aSA7TXAuNYI03IQ7mzpQvQm61MJ6yqnyyNV-G5suc-bK4CceLMS_zEhy_9m4FL2Z-O5YZtgiOyIRHTTgJXquaf55t72_d92E1sY53XMUW1GbTV30AK-ptNiqnh26ZfgAPON27
  priority: 102
  providerName: Springer Nature
Title Deviation maximization for rank-revealing QR factorizations
URI https://link.springer.com/article/10.1007/s11075-022-01291-1
https://www.proquest.com/docview/2918618560
Volume 91
WOSCitedRecordID wos000779702900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o5kEPTqfidI4cvGmwv5a2eBB_bAjimJvKbqVLExi4H65T_PN9SdMVBXfx0kubUPqSfF_68r0P4DRGEhJI16UK_KgXNyUNZMhoPOQWd9yhzR2uzSb8TicYDMKu-eGWmmOV-ZqoF-pkytU_8gsntAOG4MKsq9k7Va5RKrtqLDTWoayqJNj66F5_mUVQey6d7cSVGJlOYEQzmXQO9z1Km6wOJmDf1P4JTAXb_JUg1bjTrvz3jXdg2zBOcp0NkV1YE5MqVAz7JGZup1XYelxWcE334PIOEVNHjYzjr9HYyDUJclyifN6pKv0UKy07eeqRzLUnl3Tuw0u79Xx7T43RAuUucxcUOaJAZA-VEsFHPoigHwqkckOLJ9awiTDHrFAKZTMkYuYJ7vHAazpcIP2QHuPuAZQm04k4BIL8wrMlDwNHep7PsHUirTBxYxEIZGusBnb-lSNuqpArM4y3qKifrCITYWQiHZnIrsHZss0sq8Gx8ul6Ho7IzMc0KmJRg_M8oMXtv3s7Wt3bMWw6agxpcWIdSov5hziBDf65GKXzBpRvWp1urwHrDz5t6LGJ117_9RsSTOUv
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZS8QwEB68QH3wFtczD_qkwR7ZNEVERF2UPVBR2LfaTVNY0PXoev0pf6MzPbYo6JsPPrcJpPNl5ksn3wzAZogkRMWuyyn4cRFWY65iX_Kwoy3tuB1bOzptNuG1Wqrd9s-H4KPQwtC1ysInpo46utf0j3zX8W0lMbhI6-DhkVPXKMquFi00MljUzfsrHtmS_bNjtO-W49ROro5Oed5VgGtXun2OhMhgGPPp2r2H5AcjnG-Qt3QsHVmdKvp0afmxoZ46JpTCaKGVqDraYKyNhdQuzjsMo8JVHu2ruscHWQs646XZVfT8yKxULtLJpHp4ziItNF2EwLVw-2sgLNntt4RsGudq0__tC83AVM6o2WG2BWZhyPTmYDpn1yz3XckcTDYHFWqTedg7RkaQopLdhW_du1yOypDDM-pjz6m0VUhafXZxybKuRIVkdQGu_2RBizDSu--ZJWDIn4Qda185sRCexNFRbPmRGxplkI3KCtiFVQOdV1mnZh-3QVkfmpAQIBKCFAmBXYHtwZiHrMbIr2-vFuYPcn-TBKXtK7BTAKh8_PNsy7_PtgHjp1fNRtA4a9VXYMIh_KZCzFUY6T89mzUY0y_9bvK0nu4EBjd_DaxPpY07MQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IFNEHp1NxOrUPvmlYL1mW4pM4h6KOeWVvpUsTGLg61ir-fE_SdlVRQXzNjXKS9HyHk-98AAchghCuPI9o50do2FKEK5-RcChs4XpDR7jCiE20ez0-GPj9Dyx-89q9SElmnAZdpSlOm5NINUviG0YtmlmsnxW4vkMw_pmn-iG9jtfvHmd5BB11mXwn_osR6_CcNvP9Gp9dU4k3v6RIjefpVv__zauwkqNO6yQ7JmswJ-MaVHMEauX3O8GmQuShaKvB8vWssGuyDscddKRmM61x-DYa5yxOC6GvpeXfia4IFWqKu3Vza2ViPgXTcwMeumf3p-ck118gwmNeShA6SnT4vrZrG2EiYgFfIsIb2iKyhy30fsz2ldTqQzJkVAoqOG25QiIqUZQJbxMq8XMst8BC2EEdJXzuKkrbDGdHyvYjL5RcIohjdXAK0wciL06uNTKegrKssjZfgOYLjPkCpw6HszmTrDTHr6MbxY4G-TVNAuzhDBELs-twVOxg2f3zatt_G74Pi_1ON7i66F3uwJKrz4ChMzagkk5f5C4siNd0lEz3zOl9B1MV6YM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deviation+maximization+for+rank-revealing+QR+factorizations&rft.jtitle=Numerical+algorithms&rft.au=Dessole%2C+Monica&rft.au=Marcuzzi%2C+Fabio&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=91&rft.issue=3&rft.spage=1047&rft.epage=1079&rft_id=info:doi/10.1007%2Fs11075-022-01291-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon