Two Relaxed Inertial Forward–Reflected–Backward Splitting Algorithms With Momentum Terms

In this paper, to solve the monotone inclusion problem consisting of the sum of two monotone operators in Hilbert spaces, we propose and study two modifications of Malitsky–Tam’s forward–reflection–backward splitting methods with double momentum terms. Meanwhile, we consider a relaxed inertial versi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematics Jg. 2025; H. 1
Hauptverfasser: Zhang, Binbin, Guan, Ximeng, Yin, Chenhao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: John Wiley & Sons, Inc 01.01.2025
Wiley
Schlagworte:
ISSN:2314-4629, 2314-4785
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, to solve the monotone inclusion problem consisting of the sum of two monotone operators in Hilbert spaces, we propose and study two modifications of Malitsky–Tam’s forward–reflection–backward splitting methods with double momentum terms. Meanwhile, we consider a relaxed inertial version to expand the range of allowable step sizes. Under the same assumptions as the Malitsky–Tam’s method (i.e., the set‐valued operator is maximally monotone, and the single‐valued operator is Lipschitz continuous and monotone), we prove the weak convergence and linear convergence of the proposed methods, respectively. Numerical results show that the relaxed inertial version effectively improves the convergence performance compared to the Malitsky–Tam’s splitting algorithm and its inertial version.
ISSN:2314-4629
2314-4785
DOI:10.1155/jom/7014819