Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations...
Gespeichert in:
| Veröffentlicht in: | Advances in computational mathematics Jg. 49; H. 4; S. 62 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1019-7168, 1572-9044 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called
finite basis physics-informed neural networks (FBPINNs)
. FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems. |
|---|---|
| AbstractList | Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called finite basis physics-informed neural networks (FBPINNs). FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems. Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called finite basis physics-informed neural networks (FBPINNs) . FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems. |
| ArticleNumber | 62 |
| Author | Markham, Andrew Nissen-Meyer, Tarje Moseley, Ben |
| Author_xml | – sequence: 1 givenname: Ben orcidid: 0000-0003-2238-1783 surname: Moseley fullname: Moseley, Ben email: benjamin.moseley@ai.ethz.ch organization: AI Center, ETH Zürich – sequence: 2 givenname: Andrew surname: Markham fullname: Markham, Andrew organization: Department of Computer Science, University of Oxford – sequence: 3 givenname: Tarje surname: Nissen-Meyer fullname: Nissen-Meyer, Tarje organization: Department of Earth Sciences, University of Oxford |
| BookMark | eNp9kD9PHDEQxa0IpPAnXyCVpTSkcLC96711OoJyAQkBBb019tpg2LMXzx4RPR8cwyEhUVDNjPx-b8Zvl2ylnDwh3wX_JThfHKLgbdsyLhtW504x_YXsCLWQTNeHrdpzodlCdP1Xsot4yznX3ULtkKdlTHH21AJGpNPNI0aHLKaQy8oPNPl1gbGW-X8ud0gPln8uT8_P8edvChQdjGBHT4e8gpjo4F1eTRnjHHOiME0lg7uh1YpiHh9iuqZDDMEXn-ZYXf39Gl6kuE-2A4zov73VPXK1_Ht1fMLOLv6dHh-dMdd0zcy0sg1IHqC3utM8CKWUa0PXtg66wQ4CnGp6bvtOaZDat4E7qXpnrVfc2maP_NjY1sPu1x5nc5vXJdWNppGqlVIpyatKblSuZMTig5lKXEF5NIKbl7DNJmxTwzavYRtdof4D5OL8-rm5QBw_R5sNinVPuvbl_apPqGeyVJg0 |
| CitedBy_id | crossref_primary_10_1016_j_conengprac_2025_106366 crossref_primary_10_1016_j_cma_2024_117104 crossref_primary_10_1140_epjp_s13360_023_04662_2 crossref_primary_10_3103_S0027134924702114 crossref_primary_10_1016_j_cpc_2025_109702 crossref_primary_10_3390_s25051401 crossref_primary_10_3390_lubricants13080360 crossref_primary_10_3934_mfc_2025024 crossref_primary_10_1186_s42774_024_00195_z crossref_primary_10_1002_adts_202400589 crossref_primary_10_1016_j_est_2024_115021 crossref_primary_10_1016_j_ijheatfluidflow_2024_109651 crossref_primary_10_1063_5_0277512 crossref_primary_10_1007_s10064_025_04381_1 crossref_primary_10_1785_0220240377 crossref_primary_10_1016_j_cma_2024_117691 crossref_primary_10_3390_app14167002 crossref_primary_10_1137_23M1583375 crossref_primary_10_1016_j_apenergy_2024_123188 crossref_primary_10_1016_j_cma_2025_118284 crossref_primary_10_3390_cryst14070619 crossref_primary_10_1109_ACCESS_2024_3504962 crossref_primary_10_1007_s13131_024_2329_4 crossref_primary_10_1016_j_compgeo_2025_107389 crossref_primary_10_1016_j_neucom_2025_131417 crossref_primary_10_3390_a17090415 crossref_primary_10_1016_j_cma_2024_116997 crossref_primary_10_1016_j_cma_2025_117961 crossref_primary_10_1109_TCPMT_2024_3416523 crossref_primary_10_1016_j_cma_2025_118011 crossref_primary_10_1016_j_est_2025_116703 crossref_primary_10_1016_j_engappai_2025_112149 crossref_primary_10_1038_s44384_025_00021_w crossref_primary_10_1016_j_trgeo_2025_101722 crossref_primary_10_3390_designs8020029 crossref_primary_10_1002_oca_3190 crossref_primary_10_1016_j_icheatmasstransfer_2025_109310 crossref_primary_10_1016_j_cma_2025_117732 crossref_primary_10_3934_acse_2025019 crossref_primary_10_1016_j_cpc_2025_109753 crossref_primary_10_1016_j_camwa_2025_04_001 crossref_primary_10_1016_j_cma_2024_117274 crossref_primary_10_1016_j_cpc_2025_109757 crossref_primary_10_1016_j_compositesb_2025_112935 crossref_primary_10_1109_TGRS_2025_3581638 crossref_primary_10_1016_j_camwa_2024_07_007 crossref_primary_10_1016_j_cma_2024_117706 crossref_primary_10_1016_j_neunet_2024_106886 crossref_primary_10_1109_TII_2024_3452203 crossref_primary_10_1007_s11071_025_11126_y crossref_primary_10_1016_j_cma_2025_117784 crossref_primary_10_1016_j_engappai_2025_111084 crossref_primary_10_1016_j_renene_2025_123159 crossref_primary_10_1007_s00591_025_00399_4 crossref_primary_10_1007_s44207_024_00003_y crossref_primary_10_1137_23M1584538 crossref_primary_10_1016_j_engappai_2025_112044 crossref_primary_10_1007_s11071_025_10871_4 crossref_primary_10_1016_j_cma_2025_118403 crossref_primary_10_1063_5_0285282 crossref_primary_10_37251_ijome_v3i1_1588 crossref_primary_10_3390_math12213315 crossref_primary_10_3390_polym15244711 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_1016_j_procs_2025_02_037 crossref_primary_10_1002_jemt_24727 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126980 crossref_primary_10_1016_j_chaos_2024_115943 crossref_primary_10_1016_j_compfluid_2023_106164 crossref_primary_10_1016_j_eswa_2025_127500 crossref_primary_10_1088_3049_4753_adfe73 crossref_primary_10_1093_imamat_hxae011 crossref_primary_10_1109_ACCESS_2023_3244681 crossref_primary_10_1109_LGRS_2022_3176867 crossref_primary_10_1109_TGRS_2023_3264210 crossref_primary_10_1016_j_compgeo_2025_107348 crossref_primary_10_1063_5_0276518 crossref_primary_10_59717_j_xinn_energy_2025_100087 crossref_primary_10_12677_app_2025_155039 crossref_primary_10_3390_math13091515 crossref_primary_10_1016_j_cnsns_2024_108544 crossref_primary_10_1016_j_ifacol_2025_03_008 crossref_primary_10_1016_j_engappai_2025_111098 crossref_primary_10_1016_j_tws_2025_113159 crossref_primary_10_1016_j_cma_2024_117116 crossref_primary_10_1016_j_cma_2025_117897 crossref_primary_10_1016_j_ijmecsci_2025_110111 crossref_primary_10_1016_j_inffus_2025_103255 crossref_primary_10_1063_5_0217991 crossref_primary_10_1016_j_compbiomed_2025_110074 crossref_primary_10_1080_17486025_2025_2502029 crossref_primary_10_1016_j_neucom_2025_131440 crossref_primary_10_1016_j_physd_2025_134836 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104861 crossref_primary_10_1016_j_cma_2025_118184 crossref_primary_10_1109_LGRS_2023_3330774 crossref_primary_10_1016_j_tws_2025_113725 crossref_primary_10_1007_s10668_025_06396_w crossref_primary_10_1109_TGRS_2024_3411472 crossref_primary_10_1016_j_rse_2024_114425 crossref_primary_10_3390_math13111882 crossref_primary_10_1007_s00033_025_02515_9 crossref_primary_10_1016_j_heliyon_2024_e38799 crossref_primary_10_1016_j_neucom_2025_131318 |
| Cites_doi | 10.3389/fphy.2020.00042 10.1016/j.jcp.2020.109913 10.1016/j.neucom.2020.09.006 10.5194/se-11-1527-2020 10.1029/2018JD030094 10.21105/joss.01931 10.1126/science.aaw4741 10.2478/ijnaoe-2013-0011 10.4208/CICP.OA-2020-0164 10.3390/make2010004 10.1002/2014RG000475 10.1002/gamm.202100001 10.1038/s42256-021-00302-5 10.1109/72.870037 10.1016/j.jcp.2018.10.045 10.1093/gji/ggz092 10.1016/0045-7930(86)90036-8 10.1016/j.neucom.2005.12.126 10.1190/1.2757586 10.1126/sciadv.abi8605 10.4208/cicp.oa-2020-0193 10.1016/j.jcp.2021.110683 10.1007/978-3-030-77977-1_36 10.1088/2632-2153/ac3ffa 10.1137/18M1225409 10.2172/1478744 10.4208/CICP.OA-2020-0179 10.1007/978-3-642-03413-8_12 10.1038/s42254-021-00314-5 10.1016/S0168-9002(03)01368-8 10.4208/CICP.OA-2020-0085 10.1007/978-3-030-63393-6_2 10.1109/72.712178 10.1016/j.cma.2020.113547 10.1137/20M1318043 10.1016/j.cma.2019.112732 10.48550/arxiv.2006.10739 10.1016/j.neucom.2018.06.056 10.1016/j.jcp.2019.05.024 10.1093/imanum/drab093 10.24963/ijcai.2021/304 10.1093/acprof:oso/9780198717409.001.0001 10.1073/pnas.1810286115 10.1016/j.cma.2021.114129 10.1016/j.jcp.2021.110768 10.1016/j.jcp.2020.110079 10.1109/ACCESS.2019.2957200 10.1016/j.cma.2021.113938 10.1137/18M1229845 10.1016/j.jcp.2019.07.048 10.1137/19M1274067 10.1007/s10915-022-01939-z 10.1017/jfm.2021.135 10.1016/j.jcp.2019.109056 10.3997/2214-4609.202012125 10.1038/s41467-021-26434-1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10444-023-10065-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| EISSN | 1572-9044 |
| ExternalDocumentID | 10_1007_s10444_023_10065_9 |
| GrantInformation_xml | – fundername: Swiss Federal Institute of Technology Zurich |
| GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-95b3a20fa8b9690f1555c4f644ca6dbd1ac5380b8659a29e4f0c258cbbe50bb3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038104900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1019-7168 |
| IngestDate | Sat Sep 27 04:21:25 EDT 2025 Sat Nov 29 04:13:22 EST 2025 Tue Nov 18 22:23:57 EST 2025 Fri Feb 21 02:41:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 68T01 Parallel computing Forward modelling Differential equations Multi-scale modelling 65M99 Domain decomposition Physics-informed neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-95b3a20fa8b9690f1555c4f644ca6dbd1ac5380b8659a29e4f0c258cbbe50bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2238-1783 |
| OpenAccessLink | https://link.springer.com/10.1007/s10444-023-10065-9 |
| PQID | 3254225520 |
| PQPubID | 2043875 |
| ParticipantIDs | proquest_journals_3254225520 crossref_primary_10_1007_s10444_023_10065_9 crossref_citationtrail_10_1007_s10444_023_10065_9 springer_journals_10_1007_s10444_023_10065_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20230800 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Advances in computational mathematics |
| PublicationTitleAbbrev | Adv Comput Math |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CR39 Prein, Langhans, Fosser, Ferrone, Ban, Goergen, Keller, Tölle, Gutjahr, Feser, Brisson, Kollet, Schmidli, Van Lipzig, Leung (CR2) 2015; 53 CR38 CR37 CR36 Heinlein, Klawonn, Lanser, Weber (CR47) 2021; 44 CR34 CR33 CR32 CR31 CR30 Basdevant, Deville, Haldenwang, Lacroix, Ouazzani, Peyret, Orlandi, Patera (CR61) 1986; 14 Chen, Sondak, Protopapas, Mattheakis, Liu, Agarwal, Di Giovanni (CR35) 2020; 5 Jagtap, Karniadakis (CR48) 2020; 28 Leake, Mortari (CR59) 2020; 2 Lagaris, Likas, Papageorgiou (CR57) 2000; 11 CR3 CR6 Leng, Nissen-Meyer, van Driel, Hosseini, Al-Attar (CR5) 2019; 217 CR7 CR9 CR49 Moseley, Nissen-Meyer, Markham (CR8) 2020; 11 CR46 CR45 CR44 CR43 CR42 CR41 CR40 Huang, Zhu, Siew (CR52) 2006; 70 Lu, Jin, Pang, Zhang, Karniadakis (CR26) 2021; 3 CR19 Komatitsch, Martin (CR63) 2007; 72 CR17 CR15 CR14 CR58 CR12 Dwivedi, Parashar, Srinivasan (CR50) 2021; 420 CR56 Giorgi (CR1) 2019; 124 CR11 CR55 CR10 Yang, Meng, Karniadakis (CR21) 2021; 425 CR54 CR53 CR51 Sahli Costabal, Yang, Perdikaris, Hurtado, Kuhl (CR18) 2020; 8 CR29 CR28 Raissi, Perdikaris, Karniadakis (CR13) 2019; 378 CR27 CR25 CR24 Raissi, Yazdani, Karniadakis (CR16) 2020; 367 CR23 Jasak (CR4) 2009; 1 CR22 CR20 CR64 CR62 CR60 B Moseley (10065_CR8) 2020; 11 10065_CR34 10065_CR33 10065_CR32 10065_CR31 10065_CR30 10065_CR29 10065_CR28 10065_CR27 10065_CR25 10065_CR24 D Komatitsch (10065_CR63) 2007; 72 10065_CR23 GB Huang (10065_CR52) 2006; 70 10065_CR22 10065_CR20 10065_CR64 10065_CR62 F Chen (10065_CR35) 2020; 5 F Giorgi (10065_CR1) 2019; 124 10065_CR60 10065_CR19 10065_CR17 10065_CR15 L Lu (10065_CR26) 2021; 3 H Jasak (10065_CR4) 2009; 1 10065_CR14 10065_CR58 M Raissi (10065_CR16) 2020; 367 AF Prein (10065_CR2) 2015; 53 IE Lagaris (10065_CR57) 2000; 11 M Raissi (10065_CR13) 2019; 378 10065_CR12 10065_CR56 10065_CR11 10065_CR55 10065_CR10 10065_CR54 V Dwivedi (10065_CR50) 2021; 420 10065_CR53 10065_CR51 C Basdevant (10065_CR61) 1986; 14 K Leng (10065_CR5) 2019; 217 10065_CR49 10065_CR46 F Sahli Costabal (10065_CR18) 2020; 8 10065_CR7 AD Jagtap (10065_CR48) 2020; 28 10065_CR6 10065_CR9 C Leake (10065_CR59) 2020; 2 10065_CR45 10065_CR44 10065_CR43 10065_CR42 10065_CR3 10065_CR41 10065_CR40 L Yang (10065_CR21) 2021; 425 10065_CR39 10065_CR38 10065_CR37 10065_CR36 A Heinlein (10065_CR47) 2021; 44 |
| References_xml | – ident: CR45 – volume: 8 start-page: 42 year: 2020 ident: CR18 article-title: Physics-informed neural networks for cardiac activation mapping publication-title: Frontiers in Physics doi: 10.3389/fphy.2020.00042 – ident: CR22 – ident: CR49 – ident: CR39 – ident: CR51 – ident: CR12 – volume: 425 year: 2021 ident: CR21 article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – volume: 420 start-page: 299 year: 2021 end-page: 316 ident: CR50 article-title: Distributed learning machines for solving forward and inverse problems in partial differential equations publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.006 – ident: CR29 – ident: CR54 – ident: CR58 – volume: 11 start-page: 1527 issue: 4 year: 2020 end-page: 1549 ident: CR8 article-title: Deep learning for fast simulation of seismic waves in complex media publication-title: Solid Earth doi: 10.5194/se-11-1527-2020 – ident: CR25 – ident: CR42 – volume: 124 start-page: 5696 issue: 11 year: 2019 end-page: 5723 ident: CR1 article-title: Thirty years of regional climate modeling: where are we and where are we going next? publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1029/2018JD030094 – ident: CR46 – ident: CR19 – ident: CR15 – volume: 5 start-page: 1931 issue: 46 year: 2020 ident: CR35 article-title: NeuroDiffEq: a Python package for solving differential equations with neural networks publication-title: Journal of Open Source Software doi: 10.21105/joss.01931 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR60 – ident: CR36 – volume: 367 start-page: 1026 issue: 6481 year: 2020 end-page: 1030 ident: CR16 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: 1 start-page: 89 issue: 2 year: 2009 end-page: 94 ident: CR4 article-title: OpenFOAM: open source CFD in research and industry publication-title: International Journal of Naval Architecture and Ocean Engineering doi: 10.2478/ijnaoe-2013-0011 – ident: CR64 – volume: 28 start-page: 2002 issue: 5 year: 2020 end-page: 2041 ident: CR48 article-title: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Communications in Computational Physics doi: 10.4208/CICP.OA-2020-0164 – volume: 2 start-page: 37 issue: 1 year: 2020 end-page: 55 ident: CR59 article-title: Deep theory of functional connections: a new method for estimating the solutions of partial differential equations publication-title: Machine Learning and Knowledge Extraction doi: 10.3390/make2010004 – ident: CR43 – volume: 53 start-page: 323 issue: 2 year: 2015 end-page: 361 ident: CR2 article-title: A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges publication-title: Rev. Geophys. doi: 10.1002/2014RG000475 – ident: CR14 – ident: CR37 – ident: CR53 – volume: 44 start-page: 202100001 issue: 1 year: 2021 ident: CR47 article-title: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.202100001 – ident: CR30 – ident: CR10 – volume: 3 start-page: 218 issue: 3 year: 2021 end-page: 229 ident: CR26 article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00302-5 – ident: CR33 – volume: 11 start-page: 1041 issue: 5 year: 2000 end-page: 1049 ident: CR57 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.870037 – ident: CR6 – ident: CR56 – ident: CR40 – ident: CR27 – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: CR13 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – ident: CR23 – ident: CR44 – volume: 217 start-page: 2125 issue: 3 year: 2019 end-page: 2146 ident: CR5 article-title: AxiSEM3D: broad-band seismic wavefields in 3-D global earth models with undulating discontinuities publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz092 – ident: CR3 – ident: CR38 – ident: CR17 – ident: CR31 – volume: 14 start-page: 23 issue: 1 year: 1986 end-page: 41 ident: CR61 article-title: Spectral and finite difference solutions of the Burgers equation publication-title: Computers and Fluids doi: 10.1016/0045-7930(86)90036-8 – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR52 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: CR34 – ident: CR55 – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR24 – ident: CR20 – volume: 72 start-page: 155 issue: 5 year: 2007 end-page: 167 ident: CR63 article-title: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation publication-title: Geophysics doi: 10.1190/1.2757586 – ident: 10065_CR27 doi: 10.1126/sciadv.abi8605 – ident: 10065_CR38 doi: 10.4208/cicp.oa-2020-0193 – ident: 10065_CR49 doi: 10.1016/j.jcp.2021.110683 – volume: 11 start-page: 1041 issue: 5 year: 2000 ident: 10065_CR57 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.870037 – volume: 1 start-page: 89 issue: 2 year: 2009 ident: 10065_CR4 publication-title: International Journal of Naval Architecture and Ocean Engineering doi: 10.2478/ijnaoe-2013-0011 – ident: 10065_CR33 doi: 10.1007/978-3-030-77977-1_36 – ident: 10065_CR64 – ident: 10065_CR9 doi: 10.1088/2632-2153/ac3ffa – ident: 10065_CR29 doi: 10.1137/18M1225409 – ident: 10065_CR60 – ident: 10065_CR10 doi: 10.2172/1478744 – ident: 10065_CR41 – ident: 10065_CR46 doi: 10.4208/CICP.OA-2020-0179 – volume: 378 start-page: 686 year: 2019 ident: 10065_CR13 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10065_CR52 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10065_CR6 doi: 10.1007/978-3-642-03413-8_12 – ident: 10065_CR14 doi: 10.1038/s42254-021-00314-5 – ident: 10065_CR3 doi: 10.1016/S0168-9002(03)01368-8 – volume: 44 start-page: 202100001 issue: 1 year: 2021 ident: 10065_CR47 publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.202100001 – ident: 10065_CR40 doi: 10.4208/CICP.OA-2020-0085 – ident: 10065_CR54 doi: 10.1007/978-3-030-63393-6_2 – ident: 10065_CR12 doi: 10.1109/72.712178 – ident: 10065_CR55 doi: 10.1016/j.cma.2020.113547 – ident: 10065_CR36 doi: 10.1137/20M1318043 – ident: 10065_CR42 – ident: 10065_CR22 – ident: 10065_CR17 doi: 10.1016/j.cma.2019.112732 – ident: 10065_CR19 – ident: 10065_CR45 doi: 10.48550/arxiv.2006.10739 – volume: 367 start-page: 1026 issue: 6481 year: 2020 ident: 10065_CR16 publication-title: Science doi: 10.1126/science.aaw4741 – ident: 10065_CR58 doi: 10.1016/j.neucom.2018.06.056 – ident: 10065_CR23 doi: 10.1016/j.jcp.2019.05.024 – volume: 420 start-page: 299 year: 2021 ident: 10065_CR50 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.006 – ident: 10065_CR11 – volume: 72 start-page: 155 issue: 5 year: 2007 ident: 10065_CR63 publication-title: Geophysics doi: 10.1190/1.2757586 – ident: 10065_CR39 doi: 10.1093/imanum/drab093 – ident: 10065_CR43 doi: 10.24963/ijcai.2021/304 – ident: 10065_CR62 doi: 10.1093/acprof:oso/9780198717409.001.0001 – volume: 53 start-page: 323 issue: 2 year: 2015 ident: 10065_CR2 publication-title: Rev. Geophys. doi: 10.1002/2014RG000475 – ident: 10065_CR7 doi: 10.1073/pnas.1810286115 – ident: 10065_CR56 – ident: 10065_CR51 doi: 10.1016/j.cma.2021.114129 – ident: 10065_CR37 doi: 10.1016/j.jcp.2021.110768 – ident: 10065_CR25 doi: 10.1016/j.jcp.2020.110079 – ident: 10065_CR53 doi: 10.1109/ACCESS.2019.2957200 – volume: 11 start-page: 1527 issue: 4 year: 2020 ident: 10065_CR8 publication-title: Solid Earth doi: 10.5194/se-11-1527-2020 – ident: 10065_CR44 doi: 10.1016/j.cma.2021.113938 – ident: 10065_CR28 doi: 10.1137/18M1229845 – volume: 14 start-page: 23 issue: 1 year: 1986 ident: 10065_CR61 publication-title: Computers and Fluids doi: 10.1016/0045-7930(86)90036-8 – volume: 425 year: 2021 ident: 10065_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – ident: 10065_CR30 doi: 10.1016/j.jcp.2019.07.048 – ident: 10065_CR32 doi: 10.1137/19M1274067 – volume: 28 start-page: 2002 issue: 5 year: 2020 ident: 10065_CR48 publication-title: Communications in Computational Physics doi: 10.4208/CICP.OA-2020-0164 – ident: 10065_CR15 doi: 10.1007/s10915-022-01939-z – ident: 10065_CR20 doi: 10.1017/jfm.2021.135 – ident: 10065_CR24 doi: 10.1016/j.jcp.2019.109056 – volume: 3 start-page: 218 issue: 3 year: 2021 ident: 10065_CR26 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00302-5 – ident: 10065_CR34 doi: 10.3997/2214-4609.202012125 – volume: 5 start-page: 1931 issue: 46 year: 2020 ident: 10065_CR35 publication-title: Journal of Open Source Software doi: 10.21105/joss.01931 – volume: 2 start-page: 37 issue: 1 year: 2020 ident: 10065_CR59 publication-title: Machine Learning and Knowledge Extraction doi: 10.3390/make2010004 – volume: 124 start-page: 5696 issue: 11 year: 2019 ident: 10065_CR1 publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1029/2018JD030094 – volume: 217 start-page: 2125 issue: 3 year: 2019 ident: 10065_CR5 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz092 – volume: 8 start-page: 42 year: 2020 ident: 10065_CR18 publication-title: Frontiers in Physics doi: 10.3389/fphy.2020.00042 – ident: 10065_CR31 doi: 10.1038/s41467-021-26434-1 |
| SSID | ssj0009675 |
| Score | 2.6805701 |
| Snippet | Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 62 |
| SubjectTerms | Basis functions Bias Complexity Computational Mathematics and Numerical Analysis Computational Science and Engineering Differential equations Domain decomposition methods Finite element method Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neural networks Numerical methods Optimization Physics Problem solving Visualization |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fLwQxEJ5wPPDgOMRxpA8eCE32V_e23hAXEi4SIt42bbebXHL2uB5_gT_cdLfrECQ8bzvZdKYz37QzXwF2g6Cbx0JKqlQU0sjPPSrijFHmBTzSfij8isT1stvvJ_f3_No1hZm62r2-kiw99YdmtyiKKMYYdB0YOCmfhTlm2WZsjn5zN6XajUt6XbQ1TjEbSFyrzPcyPoejKcb8ci1aRpte83__uQxLDl2S48ocVmBGFy1oOqRJ3D42LVi8emdrNavw2htY5Ekwog0Mqc46DK0oVXGapbxEoUVVMG7IXu_k-qLfN_tHRBCDOrbdVyQbPYhBQTJti9RdJRipGcsJiiJo5fb0gtRvsqBvGRL9VHGNmzW47Z3dnp5T9zoDVWEcTihnMhSBl4tEckyxcwQmTEU54iuF2paZLxQ6U08mMeMi4DrKPRWwREmpmSdluA6NYlToDSCIKmWiMkRCiGd0V1nCGB1meaAE5s95tw1-raNUOeZy-4DGMJ1yLts1T3HN03LNU96Gg_c5jxVvx6-jO7XqU7eHTRpi7ozejgVeGw5rVU8__yxt82_Dt2DBvmFfVRV2oDEZP-ttmFcvk4EZ75S2_QY5A_OW priority: 102 providerName: Springer Nature |
| Title | Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations |
| URI | https://link.springer.com/article/10.1007/s10444-023-10065-9 https://www.proquest.com/docview/3254225520 |
| Volume | 49 |
| WOSCitedRecordID | wos001038104900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9044 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RFqS9rDBA6-gqP_AAAot8OYl5QRS1AoGiaq3QxEtkO45UaaQf7vYX7A_fOXGImMReePFL4lOkO9_97nL-HcDrIEjKWEhJlYpCGvmlR0VcMMq8gEfaD4XfkLj-SLIsvbzkC1dwM66tsvWJtaMuNsrWyD-EmMmg7bHA-7TdUTs1yv5ddSM0ejCwTGVo54PpLFtcdLS7cU21i3bHKWYGqbs24y7PRVFEMWahK8JATPnfoanDm_d-kdaRZz78329-CscOc5LPjZE8g0e6OoGhw5_EnW5zAk_qdlBlnsPtfG2xKMEYtzakqX4Y2pCs4hZLgokCq6aF3JA38-niW5aZtx-JIAa1bu9jkWLzW6wrUmjbtu56w0jLYU5QFEG7t_UM0k5pQW9zRfSuYR83L2A1n62-fKVuXgNVYRweKGcyFIFXilRyTLpLhCpMRSUiLoX6l4UvFLpXT6Yx4yLgOio9FbBUSamZJ2X4EvrVptKnQBBnylQViI0Q4ehEWQoZHRZloARm1GUyAr_VVK4cl7kdqXGVdyzMVrs5ajevtZvzEbz7s2fbMHk8-Pa4VWnuTrXJO32O4H1rFN3jf0s7e1jaKziyU-ybvsIx9A_7a30Oj9XNYW32E2fTE-h9T-jENqcucV2wX7heLH_eATCaATU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILhQJioYAPIIGoRWI7DyMhxGvV1S5RD3vozbIdR1qpZNt6AXHn7_AfGScOEUj01gPnxKPI-eZlz3wD8ISxosm1MdRawalIm4TqvM5oljApXMp12pO4LoqqKo-O5OEW_Bx6YUJZ5WATO0Ndr204I3_JMZNB7GUseXNySsPUqHC7OozQ6GExd9-_YcrmX88-4P99ytj04_L9AY1TBajlOd9QmRmuWdLo0khMDRt0qJkVDcYFFr_S1Km2aAQSU-aZ1Ew60SSWZaU1xmWJMRzFXoLLgpd5UKh5QUeO37zj9UWQS4ppSBl7dGKnnhCCooNEu4den8o__eAY3P51H9u5uenOf7ZBN-FGjKfJ214BbsGWa3dhJ8bWJFouvwtXu1JX62_Dj-kqxNkE_ffKk_5kx9OeQBaXBIJPFNj25fGePJu-O5xVlX_-imjiEdGh14zU68961ZLahZL8WPdGBn52gqII6nQ4qyHDBBq0pMfEnfbM6v4OLC9iU-7Cdrtu3T0gGEOb0tYY92H05gob6HEcrxtmNS95U0wgHYChbORpD-NCjtXIMB3ApBBMqgOTkhN48XvNSc9Scu7bewOCVLRYXo3wmcD-gMHx8b-l3T9f2mO4drD8tFCLWTV_ANdZUIGufnIPtjdnX9xDuGK_blb-7FGnTATUBWPzF6lHWMo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9Bh9B4oGNsovsAP-xhaFjNh5PGvPEVMW2LqlFNe4tsx5YqlbTUhb9gf_jOcbIOBEiI59inyD7f_c6--x3AURSNTCqkpEqxmLLQBFSkVUKTIOJMh7EIPYnr-agosutrPr5Xxd9ku3dPkr6mwbE01avhojLDe4VvjDGK_gbNCDpRyh_CBsNIxiV1XX65WtPupg3VLuodpxgZZG3ZzO9l_Oya1njzlyfSxvPk_f__5y142qJO8s6ryTN4oOtt6LcIlLTn227Dk4s7Flf7HG7yqUOkBD3d1BJ_B2Kpp1rFaY4KE4XWPpHckuP8_fi0KOzrt0QQi3vvqrJINf8qpjWptEtebzPESMdkTlAUQe13txqk69WCNmdG9DfPQW53YJJ_mnz4TNuuDVTFabyiPJGxiAIjMskx9DYIWBLFDOIuhVogq1AoNLKBzNKEi4hrZgIVJZmSUieBlPEu9Op5rV8AQbQpM1UhQkKco0fKEcnouDKREhhXm9EAwm6_StUymrvGGrNyzcXs1rzENS-bNS_5AE7u5iw8n8dfRx90alC2Z9uWMcbUaAWTKBjAm27b15__LG3v34a_gsfjj3l5flqc7cOma3PvEw8PoLdafteH8Ej9WE3t8mWj8rdR2_9e |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+basis+physics-informed+neural+networks+%28FBPINNs%29%3A+a+scalable+domain+decomposition+approach+for+solving+differential+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Moseley%2C+Ben&rft.au=Markham%2C+Andrew&rft.au=Nissen-Meyer%2C+Tarje&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=49&rft.issue=4&rft.spage=62&rft_id=info:doi/10.1007%2Fs10444-023-10065-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |