Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations

Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics Jg. 49; H. 4; S. 62
Hauptverfasser: Moseley, Ben, Markham, Andrew, Nissen-Meyer, Tarje
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2023
Springer Nature B.V
Schlagworte:
ISSN:1019-7168, 1572-9044
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called finite basis physics-informed neural networks (FBPINNs) . FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems.
AbstractList Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called finite basis physics-informed neural networks (FBPINNs). FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems.
Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called finite basis physics-informed neural networks (FBPINNs) . FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems.
ArticleNumber 62
Author Markham, Andrew
Nissen-Meyer, Tarje
Moseley, Ben
Author_xml – sequence: 1
  givenname: Ben
  orcidid: 0000-0003-2238-1783
  surname: Moseley
  fullname: Moseley, Ben
  email: benjamin.moseley@ai.ethz.ch
  organization: AI Center, ETH Zürich
– sequence: 2
  givenname: Andrew
  surname: Markham
  fullname: Markham, Andrew
  organization: Department of Computer Science, University of Oxford
– sequence: 3
  givenname: Tarje
  surname: Nissen-Meyer
  fullname: Nissen-Meyer, Tarje
  organization: Department of Earth Sciences, University of Oxford
BookMark eNp9kD9PHDEQxa0IpPAnXyCVpTSkcLC96711OoJyAQkBBb019tpg2LMXzx4RPR8cwyEhUVDNjPx-b8Zvl2ylnDwh3wX_JThfHKLgbdsyLhtW504x_YXsCLWQTNeHrdpzodlCdP1Xsot4yznX3ULtkKdlTHH21AJGpNPNI0aHLKaQy8oPNPl1gbGW-X8ud0gPln8uT8_P8edvChQdjGBHT4e8gpjo4F1eTRnjHHOiME0lg7uh1YpiHh9iuqZDDMEXn-ZYXf39Gl6kuE-2A4zov73VPXK1_Ht1fMLOLv6dHh-dMdd0zcy0sg1IHqC3utM8CKWUa0PXtg66wQ4CnGp6bvtOaZDat4E7qXpnrVfc2maP_NjY1sPu1x5nc5vXJdWNppGqlVIpyatKblSuZMTig5lKXEF5NIKbl7DNJmxTwzavYRtdof4D5OL8-rm5QBw_R5sNinVPuvbl_apPqGeyVJg0
CitedBy_id crossref_primary_10_1016_j_conengprac_2025_106366
crossref_primary_10_1016_j_cma_2024_117104
crossref_primary_10_1140_epjp_s13360_023_04662_2
crossref_primary_10_3103_S0027134924702114
crossref_primary_10_1016_j_cpc_2025_109702
crossref_primary_10_3390_s25051401
crossref_primary_10_3390_lubricants13080360
crossref_primary_10_3934_mfc_2025024
crossref_primary_10_1186_s42774_024_00195_z
crossref_primary_10_1002_adts_202400589
crossref_primary_10_1016_j_est_2024_115021
crossref_primary_10_1016_j_ijheatfluidflow_2024_109651
crossref_primary_10_1063_5_0277512
crossref_primary_10_1007_s10064_025_04381_1
crossref_primary_10_1785_0220240377
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_3390_app14167002
crossref_primary_10_1137_23M1583375
crossref_primary_10_1016_j_apenergy_2024_123188
crossref_primary_10_1016_j_cma_2025_118284
crossref_primary_10_3390_cryst14070619
crossref_primary_10_1109_ACCESS_2024_3504962
crossref_primary_10_1007_s13131_024_2329_4
crossref_primary_10_1016_j_compgeo_2025_107389
crossref_primary_10_1016_j_neucom_2025_131417
crossref_primary_10_3390_a17090415
crossref_primary_10_1016_j_cma_2024_116997
crossref_primary_10_1016_j_cma_2025_117961
crossref_primary_10_1109_TCPMT_2024_3416523
crossref_primary_10_1016_j_cma_2025_118011
crossref_primary_10_1016_j_est_2025_116703
crossref_primary_10_1016_j_engappai_2025_112149
crossref_primary_10_1038_s44384_025_00021_w
crossref_primary_10_1016_j_trgeo_2025_101722
crossref_primary_10_3390_designs8020029
crossref_primary_10_1002_oca_3190
crossref_primary_10_1016_j_icheatmasstransfer_2025_109310
crossref_primary_10_1016_j_cma_2025_117732
crossref_primary_10_3934_acse_2025019
crossref_primary_10_1016_j_cpc_2025_109753
crossref_primary_10_1016_j_camwa_2025_04_001
crossref_primary_10_1016_j_cma_2024_117274
crossref_primary_10_1016_j_cpc_2025_109757
crossref_primary_10_1016_j_compositesb_2025_112935
crossref_primary_10_1109_TGRS_2025_3581638
crossref_primary_10_1016_j_camwa_2024_07_007
crossref_primary_10_1016_j_cma_2024_117706
crossref_primary_10_1016_j_neunet_2024_106886
crossref_primary_10_1109_TII_2024_3452203
crossref_primary_10_1007_s11071_025_11126_y
crossref_primary_10_1016_j_cma_2025_117784
crossref_primary_10_1016_j_engappai_2025_111084
crossref_primary_10_1016_j_renene_2025_123159
crossref_primary_10_1007_s00591_025_00399_4
crossref_primary_10_1007_s44207_024_00003_y
crossref_primary_10_1137_23M1584538
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1007_s11071_025_10871_4
crossref_primary_10_1016_j_cma_2025_118403
crossref_primary_10_1063_5_0285282
crossref_primary_10_37251_ijome_v3i1_1588
crossref_primary_10_3390_math12213315
crossref_primary_10_3390_polym15244711
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1016_j_procs_2025_02_037
crossref_primary_10_1002_jemt_24727
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126980
crossref_primary_10_1016_j_chaos_2024_115943
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1088_3049_4753_adfe73
crossref_primary_10_1093_imamat_hxae011
crossref_primary_10_1109_ACCESS_2023_3244681
crossref_primary_10_1109_LGRS_2022_3176867
crossref_primary_10_1109_TGRS_2023_3264210
crossref_primary_10_1016_j_compgeo_2025_107348
crossref_primary_10_1063_5_0276518
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_12677_app_2025_155039
crossref_primary_10_3390_math13091515
crossref_primary_10_1016_j_cnsns_2024_108544
crossref_primary_10_1016_j_ifacol_2025_03_008
crossref_primary_10_1016_j_engappai_2025_111098
crossref_primary_10_1016_j_tws_2025_113159
crossref_primary_10_1016_j_cma_2024_117116
crossref_primary_10_1016_j_cma_2025_117897
crossref_primary_10_1016_j_ijmecsci_2025_110111
crossref_primary_10_1016_j_inffus_2025_103255
crossref_primary_10_1063_5_0217991
crossref_primary_10_1016_j_compbiomed_2025_110074
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1016_j_neucom_2025_131440
crossref_primary_10_1016_j_physd_2025_134836
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104861
crossref_primary_10_1016_j_cma_2025_118184
crossref_primary_10_1109_LGRS_2023_3330774
crossref_primary_10_1016_j_tws_2025_113725
crossref_primary_10_1007_s10668_025_06396_w
crossref_primary_10_1109_TGRS_2024_3411472
crossref_primary_10_1016_j_rse_2024_114425
crossref_primary_10_3390_math13111882
crossref_primary_10_1007_s00033_025_02515_9
crossref_primary_10_1016_j_heliyon_2024_e38799
crossref_primary_10_1016_j_neucom_2025_131318
Cites_doi 10.3389/fphy.2020.00042
10.1016/j.jcp.2020.109913
10.1016/j.neucom.2020.09.006
10.5194/se-11-1527-2020
10.1029/2018JD030094
10.21105/joss.01931
10.1126/science.aaw4741
10.2478/ijnaoe-2013-0011
10.4208/CICP.OA-2020-0164
10.3390/make2010004
10.1002/2014RG000475
10.1002/gamm.202100001
10.1038/s42256-021-00302-5
10.1109/72.870037
10.1016/j.jcp.2018.10.045
10.1093/gji/ggz092
10.1016/0045-7930(86)90036-8
10.1016/j.neucom.2005.12.126
10.1190/1.2757586
10.1126/sciadv.abi8605
10.4208/cicp.oa-2020-0193
10.1016/j.jcp.2021.110683
10.1007/978-3-030-77977-1_36
10.1088/2632-2153/ac3ffa
10.1137/18M1225409
10.2172/1478744
10.4208/CICP.OA-2020-0179
10.1007/978-3-642-03413-8_12
10.1038/s42254-021-00314-5
10.1016/S0168-9002(03)01368-8
10.4208/CICP.OA-2020-0085
10.1007/978-3-030-63393-6_2
10.1109/72.712178
10.1016/j.cma.2020.113547
10.1137/20M1318043
10.1016/j.cma.2019.112732
10.48550/arxiv.2006.10739
10.1016/j.neucom.2018.06.056
10.1016/j.jcp.2019.05.024
10.1093/imanum/drab093
10.24963/ijcai.2021/304
10.1093/acprof:oso/9780198717409.001.0001
10.1073/pnas.1810286115
10.1016/j.cma.2021.114129
10.1016/j.jcp.2021.110768
10.1016/j.jcp.2020.110079
10.1109/ACCESS.2019.2957200
10.1016/j.cma.2021.113938
10.1137/18M1229845
10.1016/j.jcp.2019.07.048
10.1137/19M1274067
10.1007/s10915-022-01939-z
10.1017/jfm.2021.135
10.1016/j.jcp.2019.109056
10.3997/2214-4609.202012125
10.1038/s41467-021-26434-1
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10444-023-10065-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_023_10065_9
GrantInformation_xml – fundername: Swiss Federal Institute of Technology Zurich
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-95b3a20fa8b9690f1555c4f644ca6dbd1ac5380b8659a29e4f0c258cbbe50bb3
IEDL.DBID BENPR
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038104900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1019-7168
IngestDate Sat Sep 27 04:21:25 EDT 2025
Sat Nov 29 04:13:22 EST 2025
Tue Nov 18 22:23:57 EST 2025
Fri Feb 21 02:41:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 68T01
Parallel computing
Forward modelling
Differential equations
Multi-scale modelling
65M99
Domain decomposition
Physics-informed neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-95b3a20fa8b9690f1555c4f644ca6dbd1ac5380b8659a29e4f0c258cbbe50bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2238-1783
OpenAccessLink https://link.springer.com/10.1007/s10444-023-10065-9
PQID 3254225520
PQPubID 2043875
ParticipantIDs proquest_journals_3254225520
crossref_primary_10_1007_s10444_023_10065_9
crossref_citationtrail_10_1007_s10444_023_10065_9
springer_journals_10_1007_s10444_023_10065_9
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR39
Prein, Langhans, Fosser, Ferrone, Ban, Goergen, Keller, Tölle, Gutjahr, Feser, Brisson, Kollet, Schmidli, Van Lipzig, Leung (CR2) 2015; 53
CR38
CR37
CR36
Heinlein, Klawonn, Lanser, Weber (CR47) 2021; 44
CR34
CR33
CR32
CR31
CR30
Basdevant, Deville, Haldenwang, Lacroix, Ouazzani, Peyret, Orlandi, Patera (CR61) 1986; 14
Chen, Sondak, Protopapas, Mattheakis, Liu, Agarwal, Di Giovanni (CR35) 2020; 5
Jagtap, Karniadakis (CR48) 2020; 28
Leake, Mortari (CR59) 2020; 2
Lagaris, Likas, Papageorgiou (CR57) 2000; 11
CR3
CR6
Leng, Nissen-Meyer, van Driel, Hosseini, Al-Attar (CR5) 2019; 217
CR7
CR9
CR49
Moseley, Nissen-Meyer, Markham (CR8) 2020; 11
CR46
CR45
CR44
CR43
CR42
CR41
CR40
Huang, Zhu, Siew (CR52) 2006; 70
Lu, Jin, Pang, Zhang, Karniadakis (CR26) 2021; 3
CR19
Komatitsch, Martin (CR63) 2007; 72
CR17
CR15
CR14
CR58
CR12
Dwivedi, Parashar, Srinivasan (CR50) 2021; 420
CR56
Giorgi (CR1) 2019; 124
CR11
CR55
CR10
Yang, Meng, Karniadakis (CR21) 2021; 425
CR54
CR53
CR51
Sahli Costabal, Yang, Perdikaris, Hurtado, Kuhl (CR18) 2020; 8
CR29
CR28
Raissi, Perdikaris, Karniadakis (CR13) 2019; 378
CR27
CR25
CR24
Raissi, Yazdani, Karniadakis (CR16) 2020; 367
CR23
Jasak (CR4) 2009; 1
CR22
CR20
CR64
CR62
CR60
B Moseley (10065_CR8) 2020; 11
10065_CR34
10065_CR33
10065_CR32
10065_CR31
10065_CR30
10065_CR29
10065_CR28
10065_CR27
10065_CR25
10065_CR24
D Komatitsch (10065_CR63) 2007; 72
10065_CR23
GB Huang (10065_CR52) 2006; 70
10065_CR22
10065_CR20
10065_CR64
10065_CR62
F Chen (10065_CR35) 2020; 5
F Giorgi (10065_CR1) 2019; 124
10065_CR60
10065_CR19
10065_CR17
10065_CR15
L Lu (10065_CR26) 2021; 3
H Jasak (10065_CR4) 2009; 1
10065_CR14
10065_CR58
M Raissi (10065_CR16) 2020; 367
AF Prein (10065_CR2) 2015; 53
IE Lagaris (10065_CR57) 2000; 11
M Raissi (10065_CR13) 2019; 378
10065_CR12
10065_CR56
10065_CR11
10065_CR55
10065_CR10
10065_CR54
V Dwivedi (10065_CR50) 2021; 420
10065_CR53
10065_CR51
C Basdevant (10065_CR61) 1986; 14
K Leng (10065_CR5) 2019; 217
10065_CR49
10065_CR46
F Sahli Costabal (10065_CR18) 2020; 8
10065_CR7
AD Jagtap (10065_CR48) 2020; 28
10065_CR6
10065_CR9
C Leake (10065_CR59) 2020; 2
10065_CR45
10065_CR44
10065_CR43
10065_CR42
10065_CR3
10065_CR41
10065_CR40
L Yang (10065_CR21) 2021; 425
10065_CR39
10065_CR38
10065_CR37
10065_CR36
A Heinlein (10065_CR47) 2021; 44
References_xml – ident: CR45
– volume: 8
  start-page: 42
  year: 2020
  ident: CR18
  article-title: Physics-informed neural networks for cardiac activation mapping
  publication-title: Frontiers in Physics
  doi: 10.3389/fphy.2020.00042
– ident: CR22
– ident: CR49
– ident: CR39
– ident: CR51
– ident: CR12
– volume: 425
  year: 2021
  ident: CR21
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– volume: 420
  start-page: 299
  year: 2021
  end-page: 316
  ident: CR50
  article-title: Distributed learning machines for solving forward and inverse problems in partial differential equations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.006
– ident: CR29
– ident: CR54
– ident: CR58
– volume: 11
  start-page: 1527
  issue: 4
  year: 2020
  end-page: 1549
  ident: CR8
  article-title: Deep learning for fast simulation of seismic waves in complex media
  publication-title: Solid Earth
  doi: 10.5194/se-11-1527-2020
– ident: CR25
– ident: CR42
– volume: 124
  start-page: 5696
  issue: 11
  year: 2019
  end-page: 5723
  ident: CR1
  article-title: Thirty years of regional climate modeling: where are we and where are we going next?
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/2018JD030094
– ident: CR46
– ident: CR19
– ident: CR15
– volume: 5
  start-page: 1931
  issue: 46
  year: 2020
  ident: CR35
  article-title: NeuroDiffEq: a Python package for solving differential equations with neural networks
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01931
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR60
– ident: CR36
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  end-page: 1030
  ident: CR16
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 1
  start-page: 89
  issue: 2
  year: 2009
  end-page: 94
  ident: CR4
  article-title: OpenFOAM: open source CFD in research and industry
  publication-title: International Journal of Naval Architecture and Ocean Engineering
  doi: 10.2478/ijnaoe-2013-0011
– ident: CR64
– volume: 28
  start-page: 2002
  issue: 5
  year: 2020
  end-page: 2041
  ident: CR48
  article-title: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
  doi: 10.4208/CICP.OA-2020-0164
– volume: 2
  start-page: 37
  issue: 1
  year: 2020
  end-page: 55
  ident: CR59
  article-title: Deep theory of functional connections: a new method for estimating the solutions of partial differential equations
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.3390/make2010004
– ident: CR43
– volume: 53
  start-page: 323
  issue: 2
  year: 2015
  end-page: 361
  ident: CR2
  article-title: A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges
  publication-title: Rev. Geophys.
  doi: 10.1002/2014RG000475
– ident: CR14
– ident: CR37
– ident: CR53
– volume: 44
  start-page: 202100001
  issue: 1
  year: 2021
  ident: CR47
  article-title: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.202100001
– ident: CR30
– ident: CR10
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  end-page: 229
  ident: CR26
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00302-5
– ident: CR33
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  end-page: 1049
  ident: CR57
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.870037
– ident: CR6
– ident: CR56
– ident: CR40
– ident: CR27
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: CR13
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– ident: CR23
– ident: CR44
– volume: 217
  start-page: 2125
  issue: 3
  year: 2019
  end-page: 2146
  ident: CR5
  article-title: AxiSEM3D: broad-band seismic wavefields in 3-D global earth models with undulating discontinuities
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz092
– ident: CR3
– ident: CR38
– ident: CR17
– ident: CR31
– volume: 14
  start-page: 23
  issue: 1
  year: 1986
  end-page: 41
  ident: CR61
  article-title: Spectral and finite difference solutions of the Burgers equation
  publication-title: Computers and Fluids
  doi: 10.1016/0045-7930(86)90036-8
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR52
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: CR34
– ident: CR55
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR24
– ident: CR20
– volume: 72
  start-page: 155
  issue: 5
  year: 2007
  end-page: 167
  ident: CR63
  article-title: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation
  publication-title: Geophysics
  doi: 10.1190/1.2757586
– ident: 10065_CR27
  doi: 10.1126/sciadv.abi8605
– ident: 10065_CR38
  doi: 10.4208/cicp.oa-2020-0193
– ident: 10065_CR49
  doi: 10.1016/j.jcp.2021.110683
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  ident: 10065_CR57
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.870037
– volume: 1
  start-page: 89
  issue: 2
  year: 2009
  ident: 10065_CR4
  publication-title: International Journal of Naval Architecture and Ocean Engineering
  doi: 10.2478/ijnaoe-2013-0011
– ident: 10065_CR33
  doi: 10.1007/978-3-030-77977-1_36
– ident: 10065_CR64
– ident: 10065_CR9
  doi: 10.1088/2632-2153/ac3ffa
– ident: 10065_CR29
  doi: 10.1137/18M1225409
– ident: 10065_CR60
– ident: 10065_CR10
  doi: 10.2172/1478744
– ident: 10065_CR41
– ident: 10065_CR46
  doi: 10.4208/CICP.OA-2020-0179
– volume: 378
  start-page: 686
  year: 2019
  ident: 10065_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10065_CR52
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10065_CR6
  doi: 10.1007/978-3-642-03413-8_12
– ident: 10065_CR14
  doi: 10.1038/s42254-021-00314-5
– ident: 10065_CR3
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 44
  start-page: 202100001
  issue: 1
  year: 2021
  ident: 10065_CR47
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.202100001
– ident: 10065_CR40
  doi: 10.4208/CICP.OA-2020-0085
– ident: 10065_CR54
  doi: 10.1007/978-3-030-63393-6_2
– ident: 10065_CR12
  doi: 10.1109/72.712178
– ident: 10065_CR55
  doi: 10.1016/j.cma.2020.113547
– ident: 10065_CR36
  doi: 10.1137/20M1318043
– ident: 10065_CR42
– ident: 10065_CR22
– ident: 10065_CR17
  doi: 10.1016/j.cma.2019.112732
– ident: 10065_CR19
– ident: 10065_CR45
  doi: 10.48550/arxiv.2006.10739
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  ident: 10065_CR16
  publication-title: Science
  doi: 10.1126/science.aaw4741
– ident: 10065_CR58
  doi: 10.1016/j.neucom.2018.06.056
– ident: 10065_CR23
  doi: 10.1016/j.jcp.2019.05.024
– volume: 420
  start-page: 299
  year: 2021
  ident: 10065_CR50
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.006
– ident: 10065_CR11
– volume: 72
  start-page: 155
  issue: 5
  year: 2007
  ident: 10065_CR63
  publication-title: Geophysics
  doi: 10.1190/1.2757586
– ident: 10065_CR39
  doi: 10.1093/imanum/drab093
– ident: 10065_CR43
  doi: 10.24963/ijcai.2021/304
– ident: 10065_CR62
  doi: 10.1093/acprof:oso/9780198717409.001.0001
– volume: 53
  start-page: 323
  issue: 2
  year: 2015
  ident: 10065_CR2
  publication-title: Rev. Geophys.
  doi: 10.1002/2014RG000475
– ident: 10065_CR7
  doi: 10.1073/pnas.1810286115
– ident: 10065_CR56
– ident: 10065_CR51
  doi: 10.1016/j.cma.2021.114129
– ident: 10065_CR37
  doi: 10.1016/j.jcp.2021.110768
– ident: 10065_CR25
  doi: 10.1016/j.jcp.2020.110079
– ident: 10065_CR53
  doi: 10.1109/ACCESS.2019.2957200
– volume: 11
  start-page: 1527
  issue: 4
  year: 2020
  ident: 10065_CR8
  publication-title: Solid Earth
  doi: 10.5194/se-11-1527-2020
– ident: 10065_CR44
  doi: 10.1016/j.cma.2021.113938
– ident: 10065_CR28
  doi: 10.1137/18M1229845
– volume: 14
  start-page: 23
  issue: 1
  year: 1986
  ident: 10065_CR61
  publication-title: Computers and Fluids
  doi: 10.1016/0045-7930(86)90036-8
– volume: 425
  year: 2021
  ident: 10065_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– ident: 10065_CR30
  doi: 10.1016/j.jcp.2019.07.048
– ident: 10065_CR32
  doi: 10.1137/19M1274067
– volume: 28
  start-page: 2002
  issue: 5
  year: 2020
  ident: 10065_CR48
  publication-title: Communications in Computational Physics
  doi: 10.4208/CICP.OA-2020-0164
– ident: 10065_CR15
  doi: 10.1007/s10915-022-01939-z
– ident: 10065_CR20
  doi: 10.1017/jfm.2021.135
– ident: 10065_CR24
  doi: 10.1016/j.jcp.2019.109056
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  ident: 10065_CR26
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00302-5
– ident: 10065_CR34
  doi: 10.3997/2214-4609.202012125
– volume: 5
  start-page: 1931
  issue: 46
  year: 2020
  ident: 10065_CR35
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01931
– volume: 2
  start-page: 37
  issue: 1
  year: 2020
  ident: 10065_CR59
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.3390/make2010004
– volume: 124
  start-page: 5696
  issue: 11
  year: 2019
  ident: 10065_CR1
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/2018JD030094
– volume: 217
  start-page: 2125
  issue: 3
  year: 2019
  ident: 10065_CR5
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz092
– volume: 8
  start-page: 42
  year: 2020
  ident: 10065_CR18
  publication-title: Frontiers in Physics
  doi: 10.3389/fphy.2020.00042
– ident: 10065_CR31
  doi: 10.1038/s41467-021-26434-1
SSID ssj0009675
Score 2.6805701
Snippet Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 62
SubjectTerms Basis functions
Bias
Complexity
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Differential equations
Domain decomposition methods
Finite element method
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neural networks
Numerical methods
Optimization
Physics
Problem solving
Visualization
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fLwQxEJ5wPPDgOMRxpA8eCE32V_e23hAXEi4SIt42bbebXHL2uB5_gT_cdLfrECQ8bzvZdKYz37QzXwF2g6Cbx0JKqlQU0sjPPSrijFHmBTzSfij8isT1stvvJ_f3_No1hZm62r2-kiw99YdmtyiKKMYYdB0YOCmfhTlm2WZsjn5zN6XajUt6XbQ1TjEbSFyrzPcyPoejKcb8ci1aRpte83__uQxLDl2S48ocVmBGFy1oOqRJ3D42LVi8emdrNavw2htY5Ekwog0Mqc46DK0oVXGapbxEoUVVMG7IXu_k-qLfN_tHRBCDOrbdVyQbPYhBQTJti9RdJRipGcsJiiJo5fb0gtRvsqBvGRL9VHGNmzW47Z3dnp5T9zoDVWEcTihnMhSBl4tEckyxcwQmTEU54iuF2paZLxQ6U08mMeMi4DrKPRWwREmpmSdluA6NYlToDSCIKmWiMkRCiGd0V1nCGB1meaAE5s95tw1-raNUOeZy-4DGMJ1yLts1T3HN03LNU96Gg_c5jxVvx6-jO7XqU7eHTRpi7ozejgVeGw5rVU8__yxt82_Dt2DBvmFfVRV2oDEZP-ttmFcvk4EZ75S2_QY5A_OW
  priority: 102
  providerName: Springer Nature
Title Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
URI https://link.springer.com/article/10.1007/s10444-023-10065-9
https://www.proquest.com/docview/3254225520
Volume 49
WOSCitedRecordID wos001038104900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RFqS9rDBA6-gqP_AAAot8OYl5QRS1AoGiaq3QxEtkO45UaaQf7vYX7A_fOXGImMReePFL4lOkO9_97nL-HcDrIEjKWEhJlYpCGvmlR0VcMMq8gEfaD4XfkLj-SLIsvbzkC1dwM66tsvWJtaMuNsrWyD-EmMmg7bHA-7TdUTs1yv5ddSM0ejCwTGVo54PpLFtcdLS7cU21i3bHKWYGqbs24y7PRVFEMWahK8JATPnfoanDm_d-kdaRZz78329-CscOc5LPjZE8g0e6OoGhw5_EnW5zAk_qdlBlnsPtfG2xKMEYtzakqX4Y2pCs4hZLgokCq6aF3JA38-niW5aZtx-JIAa1bu9jkWLzW6wrUmjbtu56w0jLYU5QFEG7t_UM0k5pQW9zRfSuYR83L2A1n62-fKVuXgNVYRweKGcyFIFXilRyTLpLhCpMRSUiLoX6l4UvFLpXT6Yx4yLgOio9FbBUSamZJ2X4EvrVptKnQBBnylQViI0Q4ehEWQoZHRZloARm1GUyAr_VVK4cl7kdqXGVdyzMVrs5ajevtZvzEbz7s2fbMHk8-Pa4VWnuTrXJO32O4H1rFN3jf0s7e1jaKziyU-ybvsIx9A_7a30Oj9XNYW32E2fTE-h9T-jENqcucV2wX7heLH_eATCaATU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILhQJioYAPIIGoRWI7DyMhxGvV1S5RD3vozbIdR1qpZNt6AXHn7_AfGScOEUj01gPnxKPI-eZlz3wD8ISxosm1MdRawalIm4TqvM5oljApXMp12pO4LoqqKo-O5OEW_Bx6YUJZ5WATO0Ndr204I3_JMZNB7GUseXNySsPUqHC7OozQ6GExd9-_YcrmX88-4P99ytj04_L9AY1TBajlOd9QmRmuWdLo0khMDRt0qJkVDcYFFr_S1Km2aAQSU-aZ1Ew60SSWZaU1xmWJMRzFXoLLgpd5UKh5QUeO37zj9UWQS4ppSBl7dGKnnhCCooNEu4den8o__eAY3P51H9u5uenOf7ZBN-FGjKfJ214BbsGWa3dhJ8bWJFouvwtXu1JX62_Dj-kqxNkE_ffKk_5kx9OeQBaXBIJPFNj25fGePJu-O5xVlX_-imjiEdGh14zU68961ZLahZL8WPdGBn52gqII6nQ4qyHDBBq0pMfEnfbM6v4OLC9iU-7Cdrtu3T0gGEOb0tYY92H05gob6HEcrxtmNS95U0wgHYChbORpD-NCjtXIMB3ApBBMqgOTkhN48XvNSc9Scu7bewOCVLRYXo3wmcD-gMHx8b-l3T9f2mO4drD8tFCLWTV_ANdZUIGufnIPtjdnX9xDuGK_blb-7FGnTATUBWPzF6lHWMo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9Bh9B4oGNsovsAP-xhaFjNh5PGvPEVMW2LqlFNe4tsx5YqlbTUhb9gf_jOcbIOBEiI59inyD7f_c6--x3AURSNTCqkpEqxmLLQBFSkVUKTIOJMh7EIPYnr-agosutrPr5Xxd9ku3dPkr6mwbE01avhojLDe4VvjDGK_gbNCDpRyh_CBsNIxiV1XX65WtPupg3VLuodpxgZZG3ZzO9l_Oya1njzlyfSxvPk_f__5y142qJO8s6ryTN4oOtt6LcIlLTn227Dk4s7Flf7HG7yqUOkBD3d1BJ_B2Kpp1rFaY4KE4XWPpHckuP8_fi0KOzrt0QQi3vvqrJINf8qpjWptEtebzPESMdkTlAUQe13txqk69WCNmdG9DfPQW53YJJ_mnz4TNuuDVTFabyiPJGxiAIjMskx9DYIWBLFDOIuhVogq1AoNLKBzNKEi4hrZgIVJZmSUieBlPEu9Op5rV8AQbQpM1UhQkKco0fKEcnouDKREhhXm9EAwm6_StUymrvGGrNyzcXs1rzENS-bNS_5AE7u5iw8n8dfRx90alC2Z9uWMcbUaAWTKBjAm27b15__LG3v34a_gsfjj3l5flqc7cOma3PvEw8PoLdafteH8Ej9WE3t8mWj8rdR2_9e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+basis+physics-informed+neural+networks+%28FBPINNs%29%3A+a+scalable+domain+decomposition+approach+for+solving+differential+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Moseley%2C+Ben&rft.au=Markham%2C+Andrew&rft.au=Nissen-Meyer%2C+Tarje&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=49&rft.issue=4&rft.spage=62&rft_id=info:doi/10.1007%2Fs10444-023-10065-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon