An improved YOLO-based road traffic monitoring system
The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent mon...
Uloženo v:
| Vydáno v: | Computing Ročník 103; číslo 2; s. 211 - 230 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.02.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0010-485X, 1436-5057 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent monitoring of traffic involves the detection and tracking of vehicles on roads and highways. There are various sensors for collecting motion information, such as transport video detectors, microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and others. In this paper, we present an intelligent video surveillance-based vehicle tracking system. The proposed system uses a combination of the neural network, image-based tracking, and You Only Look Once (YOLOv3) to track vehicles. We train the proposed system with different datasets. Moreover, we use real video sequences of road traffic to test the performance of the proposed system. The evaluation outcomes showed that the proposed system can detect, track, and count the vehicles with acceptable results in changing scenarios. |
|---|---|
| AbstractList | The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent monitoring of traffic involves the detection and tracking of vehicles on roads and highways. There are various sensors for collecting motion information, such as transport video detectors, microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and others. In this paper, we present an intelligent video surveillance-based vehicle tracking system. The proposed system uses a combination of the neural network, image-based tracking, and You Only Look Once (YOLOv3) to track vehicles. We train the proposed system with different datasets. Moreover, we use real video sequences of road traffic to test the performance of the proposed system. The evaluation outcomes showed that the proposed system can detect, track, and count the vehicles with acceptable results in changing scenarios. |
| Author | Alsamhi, Saeed H. Abbasi, Aaqif Afzaal Ibrahim, Rehab Ali Al-qaness, Mohammed A. A. Fan, Hong Hawbani, Ammar |
| Author_xml | – sequence: 1 givenname: Mohammed A. A. orcidid: 0000-0002-6956-7641 surname: Al-qaness fullname: Al-qaness, Mohammed A. A. email: alqaness@whu.edu.cn organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University – sequence: 2 givenname: Aaqif Afzaal surname: Abbasi fullname: Abbasi, Aaqif Afzaal organization: Department of Software Engineering, Foundation University – sequence: 3 givenname: Hong surname: Fan fullname: Fan, Hong organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University – sequence: 4 givenname: Rehab Ali surname: Ibrahim fullname: Ibrahim, Rehab Ali organization: Department of Mathematics, Faculty of Science, Zagazig University – sequence: 5 givenname: Saeed H. surname: Alsamhi fullname: Alsamhi, Saeed H. organization: Software Research Institute, Athlone Institute of Technology – sequence: 6 givenname: Ammar surname: Hawbani fullname: Hawbani, Ammar organization: School of Computer Science and Technology, University of Science and Technology of China |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB19GTyWWSZSneoNCNgq5CZiaRlM6kJlOhb2_qCIKLrs5Z_N-5fDM06UNvEbomcEsAqrsEIKDCUAIGkEJheYamhFGBOfBqgqYABDCT_O0CzVLaAEBJpZoivugL3-1i-LJt8b5erXFtUm5jMG0xROOcb4ou9H4I0fcfRTqkwXaX6NyZbbJXv3WOXh_uX5ZPeLV-fF4uVrihgg5YUdsyaq2DtgZnhFUVBdo0jFPXykoqbp0FJThxBqC2NWetEYbXzDjVVCWdo5txbj7wc2_ToDdhH_u8UpdMEUE5MJJT5ZhqYkgpWqd30XcmHjQBfdSjRz0669E_erTMkPwHNX4wgw99_tpvT6N0RNPu6MTGv6tOUN_fzXtD |
| CitedBy_id | crossref_primary_10_3390_a14040114 crossref_primary_10_1016_j_jvcir_2025_104477 crossref_primary_10_1155_2021_1020044 crossref_primary_10_3390_su162410964 crossref_primary_10_3390_fi13120306 crossref_primary_10_1007_s00779_023_01737_w crossref_primary_10_1007_s11760_024_03560_z crossref_primary_10_1007_s40313_023_01023_3 crossref_primary_10_1155_2022_4219249 crossref_primary_10_1155_2023_5537122 crossref_primary_10_1007_s10115_021_01641_w crossref_primary_10_3389_feart_2022_992571 crossref_primary_10_3390_s22218480 crossref_primary_10_46604_ijeti_2021_7342 crossref_primary_10_1109_ACCESS_2024_3417267 crossref_primary_10_1016_j_advengsoft_2022_103402 crossref_primary_10_1016_j_autcon_2025_105971 crossref_primary_10_3390_electronics11223828 crossref_primary_10_1002_net_22263 crossref_primary_10_1109_ACCESS_2023_3234281 crossref_primary_10_1109_TIM_2024_3350120 crossref_primary_10_32604_cmes_2024_054735 crossref_primary_10_3390_ai5030077 crossref_primary_10_3390_app142210270 crossref_primary_10_1155_2022_2019257 crossref_primary_10_3390_robotics11040069 crossref_primary_10_1016_j_eij_2025_100680 crossref_primary_10_1038_s41598_024_57799_0 crossref_primary_10_3390_info14100581 crossref_primary_10_1016_j_apenergy_2025_126638 crossref_primary_10_1145_3699963 crossref_primary_10_1007_s00607_024_01379_7 crossref_primary_10_3390_app12052403 crossref_primary_10_37391_ijeer_130212 crossref_primary_10_1007_s00371_025_04064_8 crossref_primary_10_3390_s22010140 crossref_primary_10_1016_j_jpdc_2025_105040 crossref_primary_10_1016_j_engappai_2022_105333 crossref_primary_10_1109_TIM_2024_3379397 crossref_primary_10_3390_su151914326 crossref_primary_10_1155_2021_5237568 crossref_primary_10_3390_electronics11040563 crossref_primary_10_3233_JIFS_233501 crossref_primary_10_4018_IJSWIS_330015 crossref_primary_10_1109_TCC_2024_3525076 crossref_primary_10_1002_cav_70051 crossref_primary_10_3233_JIFS_223694 crossref_primary_10_3390_s24134272 crossref_primary_10_3390_sym15030583 crossref_primary_10_1007_s44150_022_00060_x crossref_primary_10_32604_cmc_2023_038910 crossref_primary_10_1109_ACCESS_2025_3596026 crossref_primary_10_3390_agronomy14040760 crossref_primary_10_1155_2022_6473507 crossref_primary_10_3390_app12188927 crossref_primary_10_1007_s00530_024_01407_8 crossref_primary_10_1038_s41598_025_04336_2 crossref_primary_10_1007_s41870_023_01574_3 crossref_primary_10_3390_jimaging11080285 |
| Cites_doi | 10.1109/TENCON.2016.7848395 10.1109/TITS.2010.2040177 10.1155/2008/782432 10.3390/s20072025 10.1007/3-540-44690-7_22 10.1109/CVPRW.2010.5543787 10.1109/25.467963 10.1007/978-3-642-23141-4_24 10.1049/iet-its.2011.0019 10.1109/CIS.2008.194 10.1109/TITS.2012.2187894 10.1109/IVS.2005.1505083 10.1109/CVPR.2010.5539939 10.1109/ICIP.2016.7533003 10.1109/ITSC.2006.1706793 10.1016/j.ijleo.2016.05.092 10.1109/ICTAI.2013.126 10.1109/TIP.2006.877062 10.1109/78.978396 10.1109/CVPR.2015.7298640 10.3390/app9183781 10.1109/MRA.2005.1411419 10.1109/ROBIO.2009.4913180 10.1109/JSTARS.2013.2273871 10.1007/978-3-662-46469-4_47 10.1007/978-3-642-21593-3_42 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2021 Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
| Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2021 – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s00607-020-00869-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1436-5057 |
| EndPage | 230 |
| ExternalDocumentID | 10_1007_s00607_020_00869_8 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M0N M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKWF AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c363t-93ed43eef0db0fa6e97303cc453fd87895efe09651fa00beb54da6a5b4af9c723 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605535400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-485X |
| IngestDate | Wed Nov 26 13:51:54 EST 2025 Tue Nov 18 21:09:27 EST 2025 Sat Nov 29 03:51:38 EST 2025 Fri Feb 21 02:49:15 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Computer vision Intelligent traffic YOLOv3 Neural network Traffic analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-93ed43eef0db0fa6e97303cc453fd87895efe09651fa00beb54da6a5b4af9c723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6956-7641 |
| OpenAccessLink | https://hdl.handle.net/10447/641574 |
| PQID | 2491635041 |
| PQPubID | 48322 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2491635041 crossref_primary_10_1007_s00607_020_00869_8 crossref_citationtrail_10_1007_s00607_020_00869_8 springer_journals_10_1007_s00607_020_00869_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20210200 2021-02-00 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Computing |
| PublicationTitleAbbrev | Computing |
| PublicationYear | 2021 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | De Oliveira MB, Neto ADA (2013) Optimization of traffic lights timing based on multiple neural networks. In: Proceedings of the 2013 IEEE 25th international conference on tools with artificial intelligence, pp 825–832. IEEE. SivaramanSTrivediMMA general active-learning framework for on-road vehicle recognition and trackingIEEE Trans Intell Transp Syst201011226727610.1109/TITS.2010.2040177 RabiuHVehicle detection and classification for cluttered urban intersectionInt J Comput Sci Eng Appl20133137 SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153 ChanYMHuangSSFuLCHsiaoPYLoMFVehicle detection and tracking under various lighting conditions using a particle filterIET Intell Transp Syst2012611810.1049/iet-its.2011.0019 SekarGDeepikaMComplex background subtraction using kalman filterInt J Eng Res Appl2015531520 Vivacity traffic management system (2016). https://vivacitylabs.com/technology/. Accessed 26 Jan 2020 Hilario CH, Collado JM, Armingol JM, De La Escalera A (2005) Pyramidal image analysis for vehicle detection. In: Proceedings of the IEEE intelligent vehicles symposium, 2005, pp 88–93. IEEE. Junior OL, Nunes U (2008) Improving the generalization properties of neural networks: an application to vehicle detection. In Proceedings of the 2008 11th international IEEE conference on intelligent transportation systems, pp 310–315. IEEE. Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. In: Proceedings of the 2016 IEEE international conference on image processing (ICIP), pp 3464–3468. IEEE. McIvorAZangQKletteRThe background subtraction problem for video surveillance systemsInternational workshop on robot vision2001Berlin, HeidelbergSpringer17618310.1007/3-540-44690-7_22 Withopf D, Jahne B (2006) Learning algorithm for real-time vehicle tracking. In: Proceedings of the 2006 IEEE intelligent transportation systems conference, pp 516–521. IEEE. COCO Dataset. http://cocodataset.org. Accessed 20 Feb 2020. Open Images Dataset. https://storage.googleapis.com/openimages/web/index.html. Accessed 11 March 2020 Wang K, Liang Y, Xing X, Zhang R (2015) Target detection algorithm based on gaussian mixture background subtraction model. In: Proceedings of the 2015 Chinese intelligent automation conference, pp 439–447. Springer, Berlin, Heidelberg. Traffic Congestion Survey (2015). https://www.reuters.com/article/us-usa-traffic-study/u-s-commuters-spend-about-42-hours-a-year-stuck-in-traffic-jams-idUSKCN0QV0A820150826, 2015. Accessed 26 Jan 2020. Zhu Y, Wang J, Lu H (2008) A study on urban traffic congestion dynamic predict method based on advanced fuzzy clustering model. In: Proceedings of the 2008 international conference on computational intelligence and security, vol 2, pp 96–100. IEEE. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767. Pascal VOC Dataset. http://host.robots.ox.ac.uk/pascal/VOC/. Accessed 14 March 2020. Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 427–436. NiknejadHTTakeuchiAMitaSMcAllesterDOn-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimationIEEE Trans Intell Transp Syst201213274875810.1109/TITS.2012.2187894 LongTJiaoWHeGWangWAutomatic line segment registration using Gaussian mixture model and expectation-maximization algorithmIEEE J Sel Top Appl Earth Obs Remote Sens2013751688169910.1109/JSTARS.2013.2273871 Lee HJ, Chen SY, Wang SZ (2004) Extraction and recognition of license plates of motorcycles and vehicles on highways. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 4, pp 356–359. IEEE. Stanford Cars Dataset. https://ai.stanford.edu/~jkrause/cars/car_dataset.html. Accessed 26 Feb 2020. ComelliPFerraginaPGranieriMNStabileFOptical recognition of motor vehicle license platesIEEE Trans Veh Technol199544479079910.1109/25.467963 ChenSCShyuMLPeetaSZhangCSpatiotemporal vehicle tracking: the use of unsupervised learning-based segmentation and object trackingIEEE Robot Autom Mag2005121505810.1109/MRA.2005.1411419 Kim G, Kim H, Park J, Yu Y (2011) Vehicle tracking based on kalman filter in tunnel. In: Proceedings of the international conference on information security and assurance, pp 250–256. Springer, Berlin, Heidelberg. KulikajevasAMaskeliunasRDamaseviciusRHoES3D object reconstruction from imperfect depth data using extended YOLOv3 networkSensors2020207202510.3390/s20072025 Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2432–2439. IEEE. YanGYuMYuYFanLReal-time vehicle detection using histograms of oriented gradients and AdaBoost classificationOptik2016127197941795110.1016/j.ijleo.2016.05.092 Exner D, Bruns E, Kurz D, Grundhöfer A, Bimber O (2010) Fast and robust CAMShift tracking. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp 9–16. IEEE. Dharamadhat T, Thanasoontornlerk K, Kanongchaiyos P (2009) Tracking object in video pictures based on background subtraction and image matching. In: Proceedings of the 2008 IEEE international conference on robotics and biomimetics, pp 1255–1260. IEEE. DuttaTPalGPulmonary function test in traffic police personnel in PondicherryIndian J Physiol Pharmacol2010544329336 NegriPCladyXHanifSMPrevostLA cascade of boosted generative and discriminative classifiers for vehicle detectionEURASIP J Adv Signal Process2008200811210.1155/2008/782432 SunZBebisGMillerRMonocular precrash vehicle detection: features and classifiersIEEE Trans Image Process20061572019203410.1109/TIP.2006.877062 GustafssonFGunnarssonFBergmanNForssellUJanssonJKarlssonRNordlundPJParticle filters for positioning, navigation, and trackingIEEE Trans Signal Process200250242543710.1109/78.978396 LiYHanZXuHLiuLLiXZhangKYOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutionsAppl Sci2019918378110.3390/app9183781 CancelaBOrtegaMPenedoMGFernándezASolving multiple-target tracking using adaptive filtersInternational conference image analysis and recognition2011Berlin, HeidelbergSpringer41642510.1007/978-3-642-21593-3_42 City Brain project (2016). https://www.alibabacloud.com/solutions/intelligence-brain/city. Accessed 26 Jan 2020 Uy ACP, Quiros ARF, Bedruz RA, Abad A, Bandala A, Sybingco E, Dadios EP (2016) Automated traffic violation apprehension system using genetic algorithm and artificial neural network. In: Proceedings of the 2016 IEEE region 10 conference (TENCON), pp 2094–2099. IEEE. YazdiMBagherzadehMAJokarMAbasiMABlock-wise background subtraction based on gaussian mixture modelsApplied mechanics and materials2014SwitzerlandTrans Tech Publications Ltd12211227 ChenYLWuBFLinCTFanCJHsiehCMReal-time vision-based vehicle detection and tracking on a moving vehicle for nighttime driver assistanceInt J Robot Autom200924289102 N Srivastava (869_CR40) 2014; 15 869_CR20 869_CR22 P Comelli (869_CR4) 1995; 44 Z Sun (869_CR16) 2006; 15 869_CR23 869_CR24 869_CR25 P Negri (869_CR19) 2008; 2008 T Dutta (869_CR26) 2010; 54 869_CR27 869_CR28 869_CR29 869_CR1 869_CR2 B Cancela (869_CR6) 2011 G Sekar (869_CR8) 2015; 5 T Long (869_CR14) 2013; 7 YM Chan (869_CR12) 2012; 6 H Rabiu (869_CR9) 2013; 3 YL Chen (869_CR15) 2009; 24 869_CR30 A McIvor (869_CR7) 2001 869_CR10 M Yazdi (869_CR11) 2014 869_CR32 869_CR33 869_CR34 869_CR35 A Kulikajevas (869_CR41) 2020; 20 SC Chen (869_CR21) 2005; 12 869_CR36 869_CR37 869_CR17 869_CR39 Y Li (869_CR42) 2019; 9 HT Niknejad (869_CR13) 2012; 13 869_CR5 S Sivaraman (869_CR38) 2010; 11 869_CR3 G Yan (869_CR18) 2016; 127 F Gustafsson (869_CR31) 2002; 50 |
| References_xml | – reference: NiknejadHTTakeuchiAMitaSMcAllesterDOn-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimationIEEE Trans Intell Transp Syst201213274875810.1109/TITS.2012.2187894 – reference: Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767. – reference: ComelliPFerraginaPGranieriMNStabileFOptical recognition of motor vehicle license platesIEEE Trans Veh Technol199544479079910.1109/25.467963 – reference: Wang K, Liang Y, Xing X, Zhang R (2015) Target detection algorithm based on gaussian mixture background subtraction model. In: Proceedings of the 2015 Chinese intelligent automation conference, pp 439–447. Springer, Berlin, Heidelberg. – reference: Zhu Y, Wang J, Lu H (2008) A study on urban traffic congestion dynamic predict method based on advanced fuzzy clustering model. In: Proceedings of the 2008 international conference on computational intelligence and security, vol 2, pp 96–100. IEEE. – reference: COCO Dataset. http://cocodataset.org. Accessed 20 Feb 2020. – reference: SekarGDeepikaMComplex background subtraction using kalman filterInt J Eng Res Appl2015531520 – reference: YazdiMBagherzadehMAJokarMAbasiMABlock-wise background subtraction based on gaussian mixture modelsApplied mechanics and materials2014SwitzerlandTrans Tech Publications Ltd12211227 – reference: Dharamadhat T, Thanasoontornlerk K, Kanongchaiyos P (2009) Tracking object in video pictures based on background subtraction and image matching. In: Proceedings of the 2008 IEEE international conference on robotics and biomimetics, pp 1255–1260. IEEE. – reference: DuttaTPalGPulmonary function test in traffic police personnel in PondicherryIndian J Physiol Pharmacol2010544329336 – reference: KulikajevasAMaskeliunasRDamaseviciusRHoES3D object reconstruction from imperfect depth data using extended YOLOv3 networkSensors2020207202510.3390/s20072025 – reference: SivaramanSTrivediMMA general active-learning framework for on-road vehicle recognition and trackingIEEE Trans Intell Transp Syst201011226727610.1109/TITS.2010.2040177 – reference: Junior OL, Nunes U (2008) Improving the generalization properties of neural networks: an application to vehicle detection. In Proceedings of the 2008 11th international IEEE conference on intelligent transportation systems, pp 310–315. IEEE. – reference: NegriPCladyXHanifSMPrevostLA cascade of boosted generative and discriminative classifiers for vehicle detectionEURASIP J Adv Signal Process2008200811210.1155/2008/782432 – reference: Pascal VOC Dataset. http://host.robots.ox.ac.uk/pascal/VOC/. Accessed 14 March 2020. – reference: LiYHanZXuHLiuLLiXZhangKYOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutionsAppl Sci2019918378110.3390/app9183781 – reference: Uy ACP, Quiros ARF, Bedruz RA, Abad A, Bandala A, Sybingco E, Dadios EP (2016) Automated traffic violation apprehension system using genetic algorithm and artificial neural network. In: Proceedings of the 2016 IEEE region 10 conference (TENCON), pp 2094–2099. IEEE. – reference: Open Images Dataset. https://storage.googleapis.com/openimages/web/index.html. Accessed 11 March 2020 – reference: CancelaBOrtegaMPenedoMGFernándezASolving multiple-target tracking using adaptive filtersInternational conference image analysis and recognition2011Berlin, HeidelbergSpringer41642510.1007/978-3-642-21593-3_42 – reference: De Oliveira MB, Neto ADA (2013) Optimization of traffic lights timing based on multiple neural networks. In: Proceedings of the 2013 IEEE 25th international conference on tools with artificial intelligence, pp 825–832. IEEE. – reference: LongTJiaoWHeGWangWAutomatic line segment registration using Gaussian mixture model and expectation-maximization algorithmIEEE J Sel Top Appl Earth Obs Remote Sens2013751688169910.1109/JSTARS.2013.2273871 – reference: ChenYLWuBFLinCTFanCJHsiehCMReal-time vision-based vehicle detection and tracking on a moving vehicle for nighttime driver assistanceInt J Robot Autom200924289102 – reference: Kim G, Kim H, Park J, Yu Y (2011) Vehicle tracking based on kalman filter in tunnel. In: Proceedings of the international conference on information security and assurance, pp 250–256. Springer, Berlin, Heidelberg. – reference: Exner D, Bruns E, Kurz D, Grundhöfer A, Bimber O (2010) Fast and robust CAMShift tracking. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp 9–16. IEEE. – reference: Lee HJ, Chen SY, Wang SZ (2004) Extraction and recognition of license plates of motorcycles and vehicles on highways. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 4, pp 356–359. IEEE. – reference: SunZBebisGMillerRMonocular precrash vehicle detection: features and classifiersIEEE Trans Image Process20061572019203410.1109/TIP.2006.877062 – reference: Withopf D, Jahne B (2006) Learning algorithm for real-time vehicle tracking. In: Proceedings of the 2006 IEEE intelligent transportation systems conference, pp 516–521. IEEE. – reference: GustafssonFGunnarssonFBergmanNForssellUJanssonJKarlssonRNordlundPJParticle filters for positioning, navigation, and trackingIEEE Trans Signal Process200250242543710.1109/78.978396 – reference: RabiuHVehicle detection and classification for cluttered urban intersectionInt J Comput Sci Eng Appl20133137 – reference: ChanYMHuangSSFuLCHsiaoPYLoMFVehicle detection and tracking under various lighting conditions using a particle filterIET Intell Transp Syst2012611810.1049/iet-its.2011.0019 – reference: Stanford Cars Dataset. https://ai.stanford.edu/~jkrause/cars/car_dataset.html. Accessed 26 Feb 2020. – reference: McIvorAZangQKletteRThe background subtraction problem for video surveillance systemsInternational workshop on robot vision2001Berlin, HeidelbergSpringer17618310.1007/3-540-44690-7_22 – reference: Vivacity traffic management system (2016). https://vivacitylabs.com/technology/. Accessed 26 Jan 2020 – reference: Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. In: Proceedings of the 2016 IEEE international conference on image processing (ICIP), pp 3464–3468. IEEE. – reference: Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2432–2439. IEEE. – reference: City Brain project (2016). https://www.alibabacloud.com/solutions/intelligence-brain/city. Accessed 26 Jan 2020 – reference: YanGYuMYuYFanLReal-time vehicle detection using histograms of oriented gradients and AdaBoost classificationOptik2016127197941795110.1016/j.ijleo.2016.05.092 – reference: Hilario CH, Collado JM, Armingol JM, De La Escalera A (2005) Pyramidal image analysis for vehicle detection. In: Proceedings of the IEEE intelligent vehicles symposium, 2005, pp 88–93. IEEE. – reference: Traffic Congestion Survey (2015). https://www.reuters.com/article/us-usa-traffic-study/u-s-commuters-spend-about-42-hours-a-year-stuck-in-traffic-jams-idUSKCN0QV0A820150826, 2015. Accessed 26 Jan 2020. – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153 – reference: ChenSCShyuMLPeetaSZhangCSpatiotemporal vehicle tracking: the use of unsupervised learning-based segmentation and object trackingIEEE Robot Autom Mag2005121505810.1109/MRA.2005.1411419 – reference: Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 427–436. – ident: 869_CR22 doi: 10.1109/TENCON.2016.7848395 – volume: 11 start-page: 267 issue: 2 year: 2010 ident: 869_CR38 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2010.2040177 – ident: 869_CR37 – volume: 3 start-page: 37 issue: 1 year: 2013 ident: 869_CR9 publication-title: Int J Comput Sci Eng Appl – start-page: 1221 volume-title: Applied mechanics and materials year: 2014 ident: 869_CR11 – volume: 2008 start-page: 1 year: 2008 ident: 869_CR19 publication-title: EURASIP J Adv Signal Process doi: 10.1155/2008/782432 – ident: 869_CR35 – volume: 54 start-page: 329 issue: 4 year: 2010 ident: 869_CR26 publication-title: Indian J Physiol Pharmacol – volume: 20 start-page: 2025 issue: 7 year: 2020 ident: 869_CR41 publication-title: Sensors doi: 10.3390/s20072025 – start-page: 176 volume-title: International workshop on robot vision year: 2001 ident: 869_CR7 doi: 10.1007/3-540-44690-7_22 – ident: 869_CR32 doi: 10.1109/CVPRW.2010.5543787 – volume: 44 start-page: 790 issue: 4 year: 1995 ident: 869_CR4 publication-title: IEEE Trans Veh Technol doi: 10.1109/25.467963 – ident: 869_CR30 doi: 10.1007/978-3-642-23141-4_24 – volume: 6 start-page: 1 issue: 1 year: 2012 ident: 869_CR12 publication-title: IET Intell Transp Syst doi: 10.1049/iet-its.2011.0019 – ident: 869_CR1 doi: 10.1109/CIS.2008.194 – volume: 13 start-page: 748 issue: 2 year: 2012 ident: 869_CR13 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2012.2187894 – ident: 869_CR27 – ident: 869_CR28 doi: 10.1109/IVS.2005.1505083 – ident: 869_CR29 doi: 10.1109/CVPR.2010.5539939 – ident: 869_CR33 doi: 10.1109/ICIP.2016.7533003 – ident: 869_CR25 – ident: 869_CR23 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 869_CR40 publication-title: J Mach Learn Res – ident: 869_CR20 doi: 10.1109/ITSC.2006.1706793 – volume: 127 start-page: 7941 issue: 19 year: 2016 ident: 869_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2016.05.092 – ident: 869_CR17 – ident: 869_CR2 doi: 10.1109/ICTAI.2013.126 – volume: 15 start-page: 2019 issue: 7 year: 2006 ident: 869_CR16 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.877062 – ident: 869_CR36 – volume: 50 start-page: 425 issue: 2 year: 2002 ident: 869_CR31 publication-title: IEEE Trans Signal Process doi: 10.1109/78.978396 – ident: 869_CR39 doi: 10.1109/CVPR.2015.7298640 – volume: 9 start-page: 3781 issue: 18 year: 2019 ident: 869_CR42 publication-title: Appl Sci doi: 10.3390/app9183781 – ident: 869_CR34 – volume: 12 start-page: 50 issue: 1 year: 2005 ident: 869_CR21 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2005.1411419 – ident: 869_CR5 doi: 10.1109/ROBIO.2009.4913180 – volume: 7 start-page: 1688 issue: 5 year: 2013 ident: 869_CR14 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2013.2273871 – volume: 24 start-page: 89 issue: 2 year: 2009 ident: 869_CR15 publication-title: Int J Robot Autom – volume: 5 start-page: 15 issue: 3 year: 2015 ident: 869_CR8 publication-title: Int J Eng Res Appl – ident: 869_CR10 doi: 10.1007/978-3-662-46469-4_47 – ident: 869_CR24 – ident: 869_CR3 – start-page: 416 volume-title: International conference image analysis and recognition year: 2011 ident: 869_CR6 doi: 10.1007/978-3-642-21593-3_42 |
| SSID | ssj0002389 |
| Score | 2.5421636 |
| Snippet | The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 211 |
| SubjectTerms | Artificial Intelligence Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Information Systems Applications (incl.Internet) Infrared detectors Modernization Monitoring Neural networks Roads & highways Sensors Sequences Software Engineering Special Issue Article Tracking systems Traffic Traffic management Traffic surveillance Transportation networks Vehicles |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDNw3smmQ3ORaxeNBWfFFPS5oHFHQr2-rvN0l3tygq6HmzQ5hkZr5JJt8AHDOlTayTBNuUGUytTjAX1CUrnCmptLRSqtBsIu33-XAobspHYdOq2r26kgyeun7s5qlDUuzTHY_DBebLsOLCHffmeHv3WPtfF4TmoNd5GMrZsHwq872Mz-FogTG_XIuGaNNr_m-em7BRokvUnW-HLVgyeQuaVecGVBpyC9ava7bW6Tawbo7G4XDBaPQ0uBpgH9s0KiZSo1khPcsEegnG72eC5uzPO_DQu7g_v8RlOwWsSEJmWBCjKTHGRnoUWZkY4aybKEUZsZqnXDBjjSeDia2MopEZMaplItmISitUekZ2oZFPcrMHiDIbC2tdbCeKCpezpTZKjQnwwslmbYgrrWaq5Br3LS-es5olOWgpc1rKgpYy3oaT-p_XOdPGr6M71WJlpdVNM5dKOnjJIhq34bRanMXnn6Xt_234Aayd-dKWULzdgcaseDOHsKreZ-NpcRR24we5Vte3 priority: 102 providerName: Springer Nature |
| Title | An improved YOLO-based road traffic monitoring system |
| URI | https://link.springer.com/article/10.1007/s00607-020-00869-8 https://www.proquest.com/docview/2491635041 |
| Volume | 103 |
| WOSCitedRecordID | wos000605535400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Complete customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH64HfTgLlZrycGbBmdJJpOTVFEEtS2u1cuQZoGCttpWf79JmmlR0IuXd5mZR5i3Jy_fA9inUulYZRk2jGpMjMpwzoktVnIqhVTCCCH9sAnWaOTtNm-FDbdhaKssfaJ31Kov3R75kS0TbOpAIxIfv71jNzXKna6GERqzMB8nSez0_JLhiSe24Wic_lpfQ3LaDpdm_NU5B0TCsCueXFbPcf49ME2zzR8HpD7unK_8d8WrsBwyTlQfq8gazOjeOqyU0xxQMO51WLqeILgON4DWe6jrNxy0Qk_NqyZ28U6hQV8oNBoIhzyBXr1DcOtGY0ToTbg_P7s7vcBhxAKWaZaOME-1IqnWJlKdyIhMc2vxqZSEpkblLOdUG-0AYmIjoqijO5QokQnaIcJwyZJ0C-Z6_Z7eBkSoibkxNt6nknBbxzETMa19ymF50wrE5f8tZMAfd2MwXooJcrKXSWFlUniZFHkFDibfvI3RN_58u1oKogiWOCymUqjAYSnK6ePfue38zW0XFhPX3uIbuKswNxp86D1YkJ-j7nBQg1n2-FSD-ZOzRuum5rXS0uvo1NGkaWmLPlt6c_vwBUgw5-I |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED0hQAIGPgqIQgEPMIFF0thJPCBUFSoQpTAUqUzB9YdUCVpoC4g_xW_EdpJWINGtA3MSS_E9v7uzz-8ADqiQypdhiHVEFSZahjhmxCQrMRVcSK45F67ZRNRoxK0Wu5uBr_wujC2rzDnREbXsCbtHfmLSBBM6UI_4Zy-v2HaNsqereQuNFBbX6vPDpGyD06tzY9_Dcrl20axe4qyrABZBGAwxC5QkgVLak21P81AxA_JACEIDLeMoZlRpZTVRfM09r63alEgectomXDMRWaEDQ_lzhJjlYEsFveqI-Y37S8Ntw20kpq3sko67qmeFTyJskzWbRTAc_3SE4-j214Gs83O1lf82Q6uwnEXUqJIugTWYUd0CrOTdKlBGXgVYuhkp1A7WgVa6qOM2VJRED7f1W2z9uUT9Hpdo2OdWWQM9O8Kz84RSxesNuJ_Kr2zCbLfXVVuACNU-09rEM4EgzOSpkfYipVxIZcamRfBzeyYi01e3bT6ekpEytMNAYjCQOAwkcRGORt-8pOoiE98u5YZPMqYZJGOrF-E4h8748d-jbU8ebR8WLps39aR-1bjegcWyLeVxxeolmB3239QuzIv3YWfQ33NrAMHjtCH1Dec_QQY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED2hghAMlE9RKOABJrCaNHYSDwhVQEXVUhhAKlNw_SEhQQttAfHX-HXYTtIKJNg6MCexFPv53Z199w5gnwqpfBmGWEdUYaJliGNGTLASU8GF5Jpz4ZpNRO123Omw6xn4zGthbFplzomOqGVf2DPyigkTjOtAPeJXdJYWcX1WP3l-wbaDlL1pzdtppBBpqo93E74NjxtnZq0PqtX6-c3pBc46DGARhMEIs0BJEiilPdn1NA8VM4APhCA00DKOYkaVVlYfxdfc87qqS4nkIaddwjUTkRU9MPQ_a6wwtXusGeGxFTCmMHW9Dc-RmHaygh1XtmdFUCJsAzcbUTAcfzeKE0_3x-Wss3n14n-erWVYyjxtVEu3xgrMqN4qFPMuFigjtVVYvBwr1w7XgNZ66MEdtCiJ7q5aV9jaeYkGfS7RaMCt4gZ6ckRo5wylStjrcDuVX9mAQq_fU5uACNU-09r4OYEgzMSvkfYipZyrZcamJfDztU1Eprtu2388JmPFaIeHxOAhcXhI4hIcjr95TlVH_ny7nIMgyRhomEwQUIKjHEaTx7-PtvX3aHswb5CUtBrt5jYsVG2Gj8thL0NhNHhVOzAn3kYPw8Gu2w4I7qeNqC9Gokms |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+YOLO-based+road+traffic+monitoring+system&rft.jtitle=Computing&rft.au=Al-qaness+Mohammed+A+A&rft.au=Abbasi+Aaqif+Afzaal&rft.au=Fan%2C+Hong&rft.au=Ibrahim%2C+Rehab+Ali&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=103&rft.issue=2&rft.spage=211&rft.epage=230&rft_id=info:doi/10.1007%2Fs00607-020-00869-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |