An improved YOLO-based road traffic monitoring system

The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent mon...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computing Ročník 103; číslo 2; s. 211 - 230
Hlavní autoři: Al-qaness, Mohammed A. A., Abbasi, Aaqif Afzaal, Fan, Hong, Ibrahim, Rehab Ali, Alsamhi, Saeed H., Hawbani, Ammar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.02.2021
Springer Nature B.V
Témata:
ISSN:0010-485X, 1436-5057
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent monitoring of traffic involves the detection and tracking of vehicles on roads and highways. There are various sensors for collecting motion information, such as transport video detectors, microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and others. In this paper, we present an intelligent video surveillance-based vehicle tracking system. The proposed system uses a combination of the neural network, image-based tracking, and You Only Look Once (YOLOv3) to track vehicles. We train the proposed system with different datasets. Moreover, we use real video sequences of road traffic to test the performance of the proposed system. The evaluation outcomes showed that the proposed system can detect, track, and count the vehicles with acceptable results in changing scenarios.
AbstractList The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely expansion, and modernization. In order to handle road traffic issues, an intelligent traffic management solution is required. Intelligent monitoring of traffic involves the detection and tracking of vehicles on roads and highways. There are various sensors for collecting motion information, such as transport video detectors, microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and others. In this paper, we present an intelligent video surveillance-based vehicle tracking system. The proposed system uses a combination of the neural network, image-based tracking, and You Only Look Once (YOLOv3) to track vehicles. We train the proposed system with different datasets. Moreover, we use real video sequences of road traffic to test the performance of the proposed system. The evaluation outcomes showed that the proposed system can detect, track, and count the vehicles with acceptable results in changing scenarios.
Author Alsamhi, Saeed H.
Abbasi, Aaqif Afzaal
Ibrahim, Rehab Ali
Al-qaness, Mohammed A. A.
Fan, Hong
Hawbani, Ammar
Author_xml – sequence: 1
  givenname: Mohammed A. A.
  orcidid: 0000-0002-6956-7641
  surname: Al-qaness
  fullname: Al-qaness, Mohammed A. A.
  email: alqaness@whu.edu.cn
  organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
– sequence: 2
  givenname: Aaqif Afzaal
  surname: Abbasi
  fullname: Abbasi, Aaqif Afzaal
  organization: Department of Software Engineering, Foundation University
– sequence: 3
  givenname: Hong
  surname: Fan
  fullname: Fan, Hong
  organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
– sequence: 4
  givenname: Rehab Ali
  surname: Ibrahim
  fullname: Ibrahim, Rehab Ali
  organization: Department of Mathematics, Faculty of Science, Zagazig University
– sequence: 5
  givenname: Saeed H.
  surname: Alsamhi
  fullname: Alsamhi, Saeed H.
  organization: Software Research Institute, Athlone Institute of Technology
– sequence: 6
  givenname: Ammar
  surname: Hawbani
  fullname: Hawbani, Ammar
  organization: School of Computer Science and Technology, University of Science and Technology of China
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19GTyWWSZSneoNCNgq5CZiaRlM6kJlOhb2_qCIKLrs5Z_N-5fDM06UNvEbomcEsAqrsEIKDCUAIGkEJheYamhFGBOfBqgqYABDCT_O0CzVLaAEBJpZoivugL3-1i-LJt8b5erXFtUm5jMG0xROOcb4ou9H4I0fcfRTqkwXaX6NyZbbJXv3WOXh_uX5ZPeLV-fF4uVrihgg5YUdsyaq2DtgZnhFUVBdo0jFPXykoqbp0FJThxBqC2NWetEYbXzDjVVCWdo5txbj7wc2_ToDdhH_u8UpdMEUE5MJJT5ZhqYkgpWqd30XcmHjQBfdSjRz0669E_erTMkPwHNX4wgw99_tpvT6N0RNPu6MTGv6tOUN_fzXtD
CitedBy_id crossref_primary_10_3390_a14040114
crossref_primary_10_1016_j_jvcir_2025_104477
crossref_primary_10_1155_2021_1020044
crossref_primary_10_3390_su162410964
crossref_primary_10_3390_fi13120306
crossref_primary_10_1007_s00779_023_01737_w
crossref_primary_10_1007_s11760_024_03560_z
crossref_primary_10_1007_s40313_023_01023_3
crossref_primary_10_1155_2022_4219249
crossref_primary_10_1155_2023_5537122
crossref_primary_10_1007_s10115_021_01641_w
crossref_primary_10_3389_feart_2022_992571
crossref_primary_10_3390_s22218480
crossref_primary_10_46604_ijeti_2021_7342
crossref_primary_10_1109_ACCESS_2024_3417267
crossref_primary_10_1016_j_advengsoft_2022_103402
crossref_primary_10_1016_j_autcon_2025_105971
crossref_primary_10_3390_electronics11223828
crossref_primary_10_1002_net_22263
crossref_primary_10_1109_ACCESS_2023_3234281
crossref_primary_10_1109_TIM_2024_3350120
crossref_primary_10_32604_cmes_2024_054735
crossref_primary_10_3390_ai5030077
crossref_primary_10_3390_app142210270
crossref_primary_10_1155_2022_2019257
crossref_primary_10_3390_robotics11040069
crossref_primary_10_1016_j_eij_2025_100680
crossref_primary_10_1038_s41598_024_57799_0
crossref_primary_10_3390_info14100581
crossref_primary_10_1016_j_apenergy_2025_126638
crossref_primary_10_1145_3699963
crossref_primary_10_1007_s00607_024_01379_7
crossref_primary_10_3390_app12052403
crossref_primary_10_37391_ijeer_130212
crossref_primary_10_1007_s00371_025_04064_8
crossref_primary_10_3390_s22010140
crossref_primary_10_1016_j_jpdc_2025_105040
crossref_primary_10_1016_j_engappai_2022_105333
crossref_primary_10_1109_TIM_2024_3379397
crossref_primary_10_3390_su151914326
crossref_primary_10_1155_2021_5237568
crossref_primary_10_3390_electronics11040563
crossref_primary_10_3233_JIFS_233501
crossref_primary_10_4018_IJSWIS_330015
crossref_primary_10_1109_TCC_2024_3525076
crossref_primary_10_1002_cav_70051
crossref_primary_10_3233_JIFS_223694
crossref_primary_10_3390_s24134272
crossref_primary_10_3390_sym15030583
crossref_primary_10_1007_s44150_022_00060_x
crossref_primary_10_32604_cmc_2023_038910
crossref_primary_10_1109_ACCESS_2025_3596026
crossref_primary_10_3390_agronomy14040760
crossref_primary_10_1155_2022_6473507
crossref_primary_10_3390_app12188927
crossref_primary_10_1007_s00530_024_01407_8
crossref_primary_10_1038_s41598_025_04336_2
crossref_primary_10_1007_s41870_023_01574_3
crossref_primary_10_3390_jimaging11080285
Cites_doi 10.1109/TENCON.2016.7848395
10.1109/TITS.2010.2040177
10.1155/2008/782432
10.3390/s20072025
10.1007/3-540-44690-7_22
10.1109/CVPRW.2010.5543787
10.1109/25.467963
10.1007/978-3-642-23141-4_24
10.1049/iet-its.2011.0019
10.1109/CIS.2008.194
10.1109/TITS.2012.2187894
10.1109/IVS.2005.1505083
10.1109/CVPR.2010.5539939
10.1109/ICIP.2016.7533003
10.1109/ITSC.2006.1706793
10.1016/j.ijleo.2016.05.092
10.1109/ICTAI.2013.126
10.1109/TIP.2006.877062
10.1109/78.978396
10.1109/CVPR.2015.7298640
10.3390/app9183781
10.1109/MRA.2005.1411419
10.1109/ROBIO.2009.4913180
10.1109/JSTARS.2013.2273871
10.1007/978-3-662-46469-4_47
10.1007/978-3-642-21593-3_42
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2021
Springer-Verlag GmbH Austria, part of Springer Nature 2021.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2021
– notice: Springer-Verlag GmbH Austria, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s00607-020-00869-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 230
ExternalDocumentID 10_1007_s00607_020_00869_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-93ed43eef0db0fa6e97303cc453fd87895efe09651fa00beb54da6a5b4af9c723
IEDL.DBID K7-
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605535400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Wed Nov 26 13:51:54 EST 2025
Tue Nov 18 21:09:27 EST 2025
Sat Nov 29 03:51:38 EST 2025
Fri Feb 21 02:49:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Computer vision
Intelligent traffic
YOLOv3
Neural network
Traffic analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-93ed43eef0db0fa6e97303cc453fd87895efe09651fa00beb54da6a5b4af9c723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6956-7641
OpenAccessLink https://hdl.handle.net/10447/641574
PQID 2491635041
PQPubID 48322
PageCount 20
ParticipantIDs proquest_journals_2491635041
crossref_primary_10_1007_s00607_020_00869_8
crossref_citationtrail_10_1007_s00607_020_00869_8
springer_journals_10_1007_s00607_020_00869_8
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2021
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References De Oliveira MB, Neto ADA (2013) Optimization of traffic lights timing based on multiple neural networks. In: Proceedings of the 2013 IEEE 25th international conference on tools with artificial intelligence, pp 825–832. IEEE.
SivaramanSTrivediMMA general active-learning framework for on-road vehicle recognition and trackingIEEE Trans Intell Transp Syst201011226727610.1109/TITS.2010.2040177
RabiuHVehicle detection and classification for cluttered urban intersectionInt J Comput Sci Eng Appl20133137
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153
ChanYMHuangSSFuLCHsiaoPYLoMFVehicle detection and tracking under various lighting conditions using a particle filterIET Intell Transp Syst2012611810.1049/iet-its.2011.0019
SekarGDeepikaMComplex background subtraction using kalman filterInt J Eng Res Appl2015531520
Vivacity traffic management system (2016). https://vivacitylabs.com/technology/. Accessed 26 Jan 2020
Hilario CH, Collado JM, Armingol JM, De La Escalera A (2005) Pyramidal image analysis for vehicle detection. In: Proceedings of the IEEE intelligent vehicles symposium, 2005, pp 88–93. IEEE.
Junior OL, Nunes U (2008) Improving the generalization properties of neural networks: an application to vehicle detection. In Proceedings of the 2008 11th international IEEE conference on intelligent transportation systems, pp 310–315. IEEE.
Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. In: Proceedings of the 2016 IEEE international conference on image processing (ICIP), pp 3464–3468. IEEE.
McIvorAZangQKletteRThe background subtraction problem for video surveillance systemsInternational workshop on robot vision2001Berlin, HeidelbergSpringer17618310.1007/3-540-44690-7_22
Withopf D, Jahne B (2006) Learning algorithm for real-time vehicle tracking. In: Proceedings of the 2006 IEEE intelligent transportation systems conference, pp 516–521. IEEE.
COCO Dataset. http://cocodataset.org. Accessed 20 Feb 2020.
Open Images Dataset. https://storage.googleapis.com/openimages/web/index.html. Accessed 11 March 2020
Wang K, Liang Y, Xing X, Zhang R (2015) Target detection algorithm based on gaussian mixture background subtraction model. In: Proceedings of the 2015 Chinese intelligent automation conference, pp 439–447. Springer, Berlin, Heidelberg.
Traffic Congestion Survey (2015). https://www.reuters.com/article/us-usa-traffic-study/u-s-commuters-spend-about-42-hours-a-year-stuck-in-traffic-jams-idUSKCN0QV0A820150826, 2015. Accessed 26 Jan 2020.
Zhu Y, Wang J, Lu H (2008) A study on urban traffic congestion dynamic predict method based on advanced fuzzy clustering model. In: Proceedings of the 2008 international conference on computational intelligence and security, vol 2, pp 96–100. IEEE.
Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767.
Pascal VOC Dataset. http://host.robots.ox.ac.uk/pascal/VOC/. Accessed 14 March 2020.
Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 427–436.
NiknejadHTTakeuchiAMitaSMcAllesterDOn-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimationIEEE Trans Intell Transp Syst201213274875810.1109/TITS.2012.2187894
LongTJiaoWHeGWangWAutomatic line segment registration using Gaussian mixture model and expectation-maximization algorithmIEEE J Sel Top Appl Earth Obs Remote Sens2013751688169910.1109/JSTARS.2013.2273871
Lee HJ, Chen SY, Wang SZ (2004) Extraction and recognition of license plates of motorcycles and vehicles on highways. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 4, pp 356–359. IEEE.
Stanford Cars Dataset. https://ai.stanford.edu/~jkrause/cars/car_dataset.html. Accessed 26 Feb 2020.
ComelliPFerraginaPGranieriMNStabileFOptical recognition of motor vehicle license platesIEEE Trans Veh Technol199544479079910.1109/25.467963
ChenSCShyuMLPeetaSZhangCSpatiotemporal vehicle tracking: the use of unsupervised learning-based segmentation and object trackingIEEE Robot Autom Mag2005121505810.1109/MRA.2005.1411419
Kim G, Kim H, Park J, Yu Y (2011) Vehicle tracking based on kalman filter in tunnel. In: Proceedings of the international conference on information security and assurance, pp 250–256. Springer, Berlin, Heidelberg.
KulikajevasAMaskeliunasRDamaseviciusRHoES3D object reconstruction from imperfect depth data using extended YOLOv3 networkSensors2020207202510.3390/s20072025
Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2432–2439. IEEE.
YanGYuMYuYFanLReal-time vehicle detection using histograms of oriented gradients and AdaBoost classificationOptik2016127197941795110.1016/j.ijleo.2016.05.092
Exner D, Bruns E, Kurz D, Grundhöfer A, Bimber O (2010) Fast and robust CAMShift tracking. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp 9–16. IEEE.
Dharamadhat T, Thanasoontornlerk K, Kanongchaiyos P (2009) Tracking object in video pictures based on background subtraction and image matching. In: Proceedings of the 2008 IEEE international conference on robotics and biomimetics, pp 1255–1260. IEEE.
DuttaTPalGPulmonary function test in traffic police personnel in PondicherryIndian J Physiol Pharmacol2010544329336
NegriPCladyXHanifSMPrevostLA cascade of boosted generative and discriminative classifiers for vehicle detectionEURASIP J Adv Signal Process2008200811210.1155/2008/782432
SunZBebisGMillerRMonocular precrash vehicle detection: features and classifiersIEEE Trans Image Process20061572019203410.1109/TIP.2006.877062
GustafssonFGunnarssonFBergmanNForssellUJanssonJKarlssonRNordlundPJParticle filters for positioning, navigation, and trackingIEEE Trans Signal Process200250242543710.1109/78.978396
LiYHanZXuHLiuLLiXZhangKYOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutionsAppl Sci2019918378110.3390/app9183781
CancelaBOrtegaMPenedoMGFernándezASolving multiple-target tracking using adaptive filtersInternational conference image analysis and recognition2011Berlin, HeidelbergSpringer41642510.1007/978-3-642-21593-3_42
City Brain project (2016). https://www.alibabacloud.com/solutions/intelligence-brain/city. Accessed 26 Jan 2020
Uy ACP, Quiros ARF, Bedruz RA, Abad A, Bandala A, Sybingco E, Dadios EP (2016) Automated traffic violation apprehension system using genetic algorithm and artificial neural network. In: Proceedings of the 2016 IEEE region 10 conference (TENCON), pp 2094–2099. IEEE.
YazdiMBagherzadehMAJokarMAbasiMABlock-wise background subtraction based on gaussian mixture modelsApplied mechanics and materials2014SwitzerlandTrans Tech Publications Ltd12211227
ChenYLWuBFLinCTFanCJHsiehCMReal-time vision-based vehicle detection and tracking on a moving vehicle for nighttime driver assistanceInt J Robot Autom200924289102
N Srivastava (869_CR40) 2014; 15
869_CR20
869_CR22
P Comelli (869_CR4) 1995; 44
Z Sun (869_CR16) 2006; 15
869_CR23
869_CR24
869_CR25
P Negri (869_CR19) 2008; 2008
T Dutta (869_CR26) 2010; 54
869_CR27
869_CR28
869_CR29
869_CR1
869_CR2
B Cancela (869_CR6) 2011
G Sekar (869_CR8) 2015; 5
T Long (869_CR14) 2013; 7
YM Chan (869_CR12) 2012; 6
H Rabiu (869_CR9) 2013; 3
YL Chen (869_CR15) 2009; 24
869_CR30
A McIvor (869_CR7) 2001
869_CR10
M Yazdi (869_CR11) 2014
869_CR32
869_CR33
869_CR34
869_CR35
A Kulikajevas (869_CR41) 2020; 20
SC Chen (869_CR21) 2005; 12
869_CR36
869_CR37
869_CR17
869_CR39
Y Li (869_CR42) 2019; 9
HT Niknejad (869_CR13) 2012; 13
869_CR5
S Sivaraman (869_CR38) 2010; 11
869_CR3
G Yan (869_CR18) 2016; 127
F Gustafsson (869_CR31) 2002; 50
References_xml – reference: NiknejadHTTakeuchiAMitaSMcAllesterDOn-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimationIEEE Trans Intell Transp Syst201213274875810.1109/TITS.2012.2187894
– reference: Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767.
– reference: ComelliPFerraginaPGranieriMNStabileFOptical recognition of motor vehicle license platesIEEE Trans Veh Technol199544479079910.1109/25.467963
– reference: Wang K, Liang Y, Xing X, Zhang R (2015) Target detection algorithm based on gaussian mixture background subtraction model. In: Proceedings of the 2015 Chinese intelligent automation conference, pp 439–447. Springer, Berlin, Heidelberg.
– reference: Zhu Y, Wang J, Lu H (2008) A study on urban traffic congestion dynamic predict method based on advanced fuzzy clustering model. In: Proceedings of the 2008 international conference on computational intelligence and security, vol 2, pp 96–100. IEEE.
– reference: COCO Dataset. http://cocodataset.org. Accessed 20 Feb 2020.
– reference: SekarGDeepikaMComplex background subtraction using kalman filterInt J Eng Res Appl2015531520
– reference: YazdiMBagherzadehMAJokarMAbasiMABlock-wise background subtraction based on gaussian mixture modelsApplied mechanics and materials2014SwitzerlandTrans Tech Publications Ltd12211227
– reference: Dharamadhat T, Thanasoontornlerk K, Kanongchaiyos P (2009) Tracking object in video pictures based on background subtraction and image matching. In: Proceedings of the 2008 IEEE international conference on robotics and biomimetics, pp 1255–1260. IEEE.
– reference: DuttaTPalGPulmonary function test in traffic police personnel in PondicherryIndian J Physiol Pharmacol2010544329336
– reference: KulikajevasAMaskeliunasRDamaseviciusRHoES3D object reconstruction from imperfect depth data using extended YOLOv3 networkSensors2020207202510.3390/s20072025
– reference: SivaramanSTrivediMMA general active-learning framework for on-road vehicle recognition and trackingIEEE Trans Intell Transp Syst201011226727610.1109/TITS.2010.2040177
– reference: Junior OL, Nunes U (2008) Improving the generalization properties of neural networks: an application to vehicle detection. In Proceedings of the 2008 11th international IEEE conference on intelligent transportation systems, pp 310–315. IEEE.
– reference: NegriPCladyXHanifSMPrevostLA cascade of boosted generative and discriminative classifiers for vehicle detectionEURASIP J Adv Signal Process2008200811210.1155/2008/782432
– reference: Pascal VOC Dataset. http://host.robots.ox.ac.uk/pascal/VOC/. Accessed 14 March 2020.
– reference: LiYHanZXuHLiuLLiXZhangKYOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutionsAppl Sci2019918378110.3390/app9183781
– reference: Uy ACP, Quiros ARF, Bedruz RA, Abad A, Bandala A, Sybingco E, Dadios EP (2016) Automated traffic violation apprehension system using genetic algorithm and artificial neural network. In: Proceedings of the 2016 IEEE region 10 conference (TENCON), pp 2094–2099. IEEE.
– reference: Open Images Dataset. https://storage.googleapis.com/openimages/web/index.html. Accessed 11 March 2020
– reference: CancelaBOrtegaMPenedoMGFernándezASolving multiple-target tracking using adaptive filtersInternational conference image analysis and recognition2011Berlin, HeidelbergSpringer41642510.1007/978-3-642-21593-3_42
– reference: De Oliveira MB, Neto ADA (2013) Optimization of traffic lights timing based on multiple neural networks. In: Proceedings of the 2013 IEEE 25th international conference on tools with artificial intelligence, pp 825–832. IEEE.
– reference: LongTJiaoWHeGWangWAutomatic line segment registration using Gaussian mixture model and expectation-maximization algorithmIEEE J Sel Top Appl Earth Obs Remote Sens2013751688169910.1109/JSTARS.2013.2273871
– reference: ChenYLWuBFLinCTFanCJHsiehCMReal-time vision-based vehicle detection and tracking on a moving vehicle for nighttime driver assistanceInt J Robot Autom200924289102
– reference: Kim G, Kim H, Park J, Yu Y (2011) Vehicle tracking based on kalman filter in tunnel. In: Proceedings of the international conference on information security and assurance, pp 250–256. Springer, Berlin, Heidelberg.
– reference: Exner D, Bruns E, Kurz D, Grundhöfer A, Bimber O (2010) Fast and robust CAMShift tracking. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp 9–16. IEEE.
– reference: Lee HJ, Chen SY, Wang SZ (2004) Extraction and recognition of license plates of motorcycles and vehicles on highways. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 4, pp 356–359. IEEE.
– reference: SunZBebisGMillerRMonocular precrash vehicle detection: features and classifiersIEEE Trans Image Process20061572019203410.1109/TIP.2006.877062
– reference: Withopf D, Jahne B (2006) Learning algorithm for real-time vehicle tracking. In: Proceedings of the 2006 IEEE intelligent transportation systems conference, pp 516–521. IEEE.
– reference: GustafssonFGunnarssonFBergmanNForssellUJanssonJKarlssonRNordlundPJParticle filters for positioning, navigation, and trackingIEEE Trans Signal Process200250242543710.1109/78.978396
– reference: RabiuHVehicle detection and classification for cluttered urban intersectionInt J Comput Sci Eng Appl20133137
– reference: ChanYMHuangSSFuLCHsiaoPYLoMFVehicle detection and tracking under various lighting conditions using a particle filterIET Intell Transp Syst2012611810.1049/iet-its.2011.0019
– reference: Stanford Cars Dataset. https://ai.stanford.edu/~jkrause/cars/car_dataset.html. Accessed 26 Feb 2020.
– reference: McIvorAZangQKletteRThe background subtraction problem for video surveillance systemsInternational workshop on robot vision2001Berlin, HeidelbergSpringer17618310.1007/3-540-44690-7_22
– reference: Vivacity traffic management system (2016). https://vivacitylabs.com/technology/. Accessed 26 Jan 2020
– reference: Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. In: Proceedings of the 2016 IEEE international conference on image processing (ICIP), pp 3464–3468. IEEE.
– reference: Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2432–2439. IEEE.
– reference: City Brain project (2016). https://www.alibabacloud.com/solutions/intelligence-brain/city. Accessed 26 Jan 2020
– reference: YanGYuMYuYFanLReal-time vehicle detection using histograms of oriented gradients and AdaBoost classificationOptik2016127197941795110.1016/j.ijleo.2016.05.092
– reference: Hilario CH, Collado JM, Armingol JM, De La Escalera A (2005) Pyramidal image analysis for vehicle detection. In: Proceedings of the IEEE intelligent vehicles symposium, 2005, pp 88–93. IEEE.
– reference: Traffic Congestion Survey (2015). https://www.reuters.com/article/us-usa-traffic-study/u-s-commuters-spend-about-42-hours-a-year-stuck-in-traffic-jams-idUSKCN0QV0A820150826, 2015. Accessed 26 Jan 2020.
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153
– reference: ChenSCShyuMLPeetaSZhangCSpatiotemporal vehicle tracking: the use of unsupervised learning-based segmentation and object trackingIEEE Robot Autom Mag2005121505810.1109/MRA.2005.1411419
– reference: Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 427–436.
– ident: 869_CR22
  doi: 10.1109/TENCON.2016.7848395
– volume: 11
  start-page: 267
  issue: 2
  year: 2010
  ident: 869_CR38
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2010.2040177
– ident: 869_CR37
– volume: 3
  start-page: 37
  issue: 1
  year: 2013
  ident: 869_CR9
  publication-title: Int J Comput Sci Eng Appl
– start-page: 1221
  volume-title: Applied mechanics and materials
  year: 2014
  ident: 869_CR11
– volume: 2008
  start-page: 1
  year: 2008
  ident: 869_CR19
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/2008/782432
– ident: 869_CR35
– volume: 54
  start-page: 329
  issue: 4
  year: 2010
  ident: 869_CR26
  publication-title: Indian J Physiol Pharmacol
– volume: 20
  start-page: 2025
  issue: 7
  year: 2020
  ident: 869_CR41
  publication-title: Sensors
  doi: 10.3390/s20072025
– start-page: 176
  volume-title: International workshop on robot vision
  year: 2001
  ident: 869_CR7
  doi: 10.1007/3-540-44690-7_22
– ident: 869_CR32
  doi: 10.1109/CVPRW.2010.5543787
– volume: 44
  start-page: 790
  issue: 4
  year: 1995
  ident: 869_CR4
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.467963
– ident: 869_CR30
  doi: 10.1007/978-3-642-23141-4_24
– volume: 6
  start-page: 1
  issue: 1
  year: 2012
  ident: 869_CR12
  publication-title: IET Intell Transp Syst
  doi: 10.1049/iet-its.2011.0019
– ident: 869_CR1
  doi: 10.1109/CIS.2008.194
– volume: 13
  start-page: 748
  issue: 2
  year: 2012
  ident: 869_CR13
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2012.2187894
– ident: 869_CR27
– ident: 869_CR28
  doi: 10.1109/IVS.2005.1505083
– ident: 869_CR29
  doi: 10.1109/CVPR.2010.5539939
– ident: 869_CR33
  doi: 10.1109/ICIP.2016.7533003
– ident: 869_CR25
– ident: 869_CR23
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 869_CR40
  publication-title: J Mach Learn Res
– ident: 869_CR20
  doi: 10.1109/ITSC.2006.1706793
– volume: 127
  start-page: 7941
  issue: 19
  year: 2016
  ident: 869_CR18
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.05.092
– ident: 869_CR17
– ident: 869_CR2
  doi: 10.1109/ICTAI.2013.126
– volume: 15
  start-page: 2019
  issue: 7
  year: 2006
  ident: 869_CR16
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.877062
– ident: 869_CR36
– volume: 50
  start-page: 425
  issue: 2
  year: 2002
  ident: 869_CR31
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.978396
– ident: 869_CR39
  doi: 10.1109/CVPR.2015.7298640
– volume: 9
  start-page: 3781
  issue: 18
  year: 2019
  ident: 869_CR42
  publication-title: Appl Sci
  doi: 10.3390/app9183781
– ident: 869_CR34
– volume: 12
  start-page: 50
  issue: 1
  year: 2005
  ident: 869_CR21
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/MRA.2005.1411419
– ident: 869_CR5
  doi: 10.1109/ROBIO.2009.4913180
– volume: 7
  start-page: 1688
  issue: 5
  year: 2013
  ident: 869_CR14
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2013.2273871
– volume: 24
  start-page: 89
  issue: 2
  year: 2009
  ident: 869_CR15
  publication-title: Int J Robot Autom
– volume: 5
  start-page: 15
  issue: 3
  year: 2015
  ident: 869_CR8
  publication-title: Int J Eng Res Appl
– ident: 869_CR10
  doi: 10.1007/978-3-662-46469-4_47
– ident: 869_CR24
– ident: 869_CR3
– start-page: 416
  volume-title: International conference image analysis and recognition
  year: 2011
  ident: 869_CR6
  doi: 10.1007/978-3-642-21593-3_42
SSID ssj0002389
Score 2.5421636
Snippet The growing population in large cities is creating traffic management issues. The metropolis road network management also requires constant monitoring, timely...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms Artificial Intelligence
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Information Systems Applications (incl.Internet)
Infrared detectors
Modernization
Monitoring
Neural networks
Roads & highways
Sensors
Sequences
Software Engineering
Special Issue Article
Tracking systems
Traffic
Traffic management
Traffic surveillance
Transportation networks
Vehicles
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDNw3smmQ3ORaxeNBWfFFPS5oHFHQr2-rvN0l3tygq6HmzQ5hkZr5JJt8AHDOlTayTBNuUGUytTjAX1CUrnCmptLRSqtBsIu33-XAobspHYdOq2r26kgyeun7s5qlDUuzTHY_DBebLsOLCHffmeHv3WPtfF4TmoNd5GMrZsHwq872Mz-FogTG_XIuGaNNr_m-em7BRokvUnW-HLVgyeQuaVecGVBpyC9ava7bW6Tawbo7G4XDBaPQ0uBpgH9s0KiZSo1khPcsEegnG72eC5uzPO_DQu7g_v8RlOwWsSEJmWBCjKTHGRnoUWZkY4aybKEUZsZqnXDBjjSeDia2MopEZMaplItmISitUekZ2oZFPcrMHiDIbC2tdbCeKCpezpTZKjQnwwslmbYgrrWaq5Br3LS-es5olOWgpc1rKgpYy3oaT-p_XOdPGr6M71WJlpdVNM5dKOnjJIhq34bRanMXnn6Xt_234Aayd-dKWULzdgcaseDOHsKreZ-NpcRR24we5Vte3
  priority: 102
  providerName: Springer Nature
Title An improved YOLO-based road traffic monitoring system
URI https://link.springer.com/article/10.1007/s00607-020-00869-8
https://www.proquest.com/docview/2491635041
Volume 103
WOSCitedRecordID wos000605535400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Complete
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH64HfTgLlZrycGbBmdJJpOTVFEEtS2u1cuQZoGCttpWf79JmmlR0IuXd5mZR5i3Jy_fA9inUulYZRk2jGpMjMpwzoktVnIqhVTCCCH9sAnWaOTtNm-FDbdhaKssfaJ31Kov3R75kS0TbOpAIxIfv71jNzXKna6GERqzMB8nSez0_JLhiSe24Wic_lpfQ3LaDpdm_NU5B0TCsCueXFbPcf49ME2zzR8HpD7unK_8d8WrsBwyTlQfq8gazOjeOqyU0xxQMO51WLqeILgON4DWe6jrNxy0Qk_NqyZ28U6hQV8oNBoIhzyBXr1DcOtGY0ToTbg_P7s7vcBhxAKWaZaOME-1IqnWJlKdyIhMc2vxqZSEpkblLOdUG-0AYmIjoqijO5QokQnaIcJwyZJ0C-Z6_Z7eBkSoibkxNt6nknBbxzETMa19ymF50wrE5f8tZMAfd2MwXooJcrKXSWFlUniZFHkFDibfvI3RN_58u1oKogiWOCymUqjAYSnK6ePfue38zW0XFhPX3uIbuKswNxp86D1YkJ-j7nBQg1n2-FSD-ZOzRuum5rXS0uvo1NGkaWmLPlt6c_vwBUgw5-I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED0hQAIGPgqIQgEPMIFF0thJPCBUFSoQpTAUqUzB9YdUCVpoC4g_xW_EdpJWINGtA3MSS_E9v7uzz-8ADqiQypdhiHVEFSZahjhmxCQrMRVcSK45F67ZRNRoxK0Wu5uBr_wujC2rzDnREbXsCbtHfmLSBBM6UI_4Zy-v2HaNsqereQuNFBbX6vPDpGyD06tzY9_Dcrl20axe4qyrABZBGAwxC5QkgVLak21P81AxA_JACEIDLeMoZlRpZTVRfM09r63alEgectomXDMRWaEDQ_lzhJjlYEsFveqI-Y37S8Ntw20kpq3sko67qmeFTyJskzWbRTAc_3SE4-j214Gs83O1lf82Q6uwnEXUqJIugTWYUd0CrOTdKlBGXgVYuhkp1A7WgVa6qOM2VJRED7f1W2z9uUT9Hpdo2OdWWQM9O8Kz84RSxesNuJ_Kr2zCbLfXVVuACNU-09rEM4EgzOSpkfYipVxIZcamRfBzeyYi01e3bT6ekpEytMNAYjCQOAwkcRGORt-8pOoiE98u5YZPMqYZJGOrF-E4h8748d-jbU8ebR8WLps39aR-1bjegcWyLeVxxeolmB3239QuzIv3YWfQ33NrAMHjtCH1Dec_QQY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED2hghAMlE9RKOABJrCaNHYSDwhVQEXVUhhAKlNw_SEhQQttAfHX-HXYTtIKJNg6MCexFPv53Z199w5gnwqpfBmGWEdUYaJliGNGTLASU8GF5Jpz4ZpNRO123Omw6xn4zGthbFplzomOqGVf2DPyigkTjOtAPeJXdJYWcX1WP3l-wbaDlL1pzdtppBBpqo93E74NjxtnZq0PqtX6-c3pBc46DGARhMEIs0BJEiilPdn1NA8VM4APhCA00DKOYkaVVlYfxdfc87qqS4nkIaddwjUTkRU9MPQ_a6wwtXusGeGxFTCmMHW9Dc-RmHaygh1XtmdFUCJsAzcbUTAcfzeKE0_3x-Wss3n14n-erWVYyjxtVEu3xgrMqN4qFPMuFigjtVVYvBwr1w7XgNZ66MEdtCiJ7q5aV9jaeYkGfS7RaMCt4gZ6ckRo5wylStjrcDuVX9mAQq_fU5uACNU-09r4OYEgzMSvkfYipZyrZcamJfDztU1Eprtu2388JmPFaIeHxOAhcXhI4hIcjr95TlVH_ny7nIMgyRhomEwQUIKjHEaTx7-PtvX3aHswb5CUtBrt5jYsVG2Gj8thL0NhNHhVOzAn3kYPw8Gu2w4I7qeNqC9Gokms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+YOLO-based+road+traffic+monitoring+system&rft.jtitle=Computing&rft.au=Al-qaness+Mohammed+A+A&rft.au=Abbasi+Aaqif+Afzaal&rft.au=Fan%2C+Hong&rft.au=Ibrahim%2C+Rehab+Ali&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=103&rft.issue=2&rft.spage=211&rft.epage=230&rft_id=info:doi/10.1007%2Fs00607-020-00869-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon