Existence of minimizers for causal variational principles on compact subsets of momentum space in the homogeneous setting
We prove the existence of minimizers for the causal action in the class of negative definite measures on compact subsets of momentum space in the homogeneous setting under several side conditions (constraints). The method is to employ Prohorov’s theorem. Given a minimizing sequence of negative defin...
Uloženo v:
| Vydáno v: | Calculus of variations and partial differential equations Ročník 61; číslo 4 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove the existence of minimizers for the causal action in the class of negative definite measures on compact subsets of momentum space in the homogeneous setting under several side conditions (constraints). The method is to employ Prohorov’s theorem. Given a minimizing sequence of negative definite measures, we show that, under suitable side conditions, a unitarily equivalent subsequence thereof is bounded. By restricting attention to compact subsets, from Prohorov’s theorem we deduce the existence of minimizers in the class of negative definite measures. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0944-2669 1432-0835 |
| DOI: | 10.1007/s00526-022-02233-4 |