Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques

To enable multi-query analyses, such as optimisations of large-scale crashworthiness problems, a numerically efficient model is crucial for the development process. Therefore, data-driven Model Order Reduction (MOR) aims at generating low-fidelity models that approximate the solution while strongly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Structural and multidisciplinary optimization Ročník 65; číslo 7
Hlavní autoři: Czech, Catharina, Lesjak, Mathias, Bach, Christopher, Duddeck, Fabian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Témata:
ISSN:1615-147X, 1615-1488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To enable multi-query analyses, such as optimisations of large-scale crashworthiness problems, a numerically efficient model is crucial for the development process. Therefore, data-driven Model Order Reduction (MOR) aims at generating low-fidelity models that approximate the solution while strongly reducing the computational cost. MOR methods for crashworthiness became only available in recent years; a detailed and comparative assessment of their potential is still lacking. Hence, this work evaluates the advantages and drawbacks of intrusive and non-intrusive projection based MOR methods in the framework of non-linear structural transient analysis. Both schemes rely on the collection of full-order training simulations and a subsequent subspace construction via Singular Value Decomposition. The intrusive MOR is based on a Galerkin projection and a consecutive hyper-reduction step. In this work, its inter-and extrapolation abilities are compared to the non-intrusive technique, which combines the subspace approach with machine learning methods. Moreover, an optimisation analysis incorporating the MOR methods is proposed and discussed for a crashworthiness example.
AbstractList To enable multi-query analyses, such as optimisations of large-scale crashworthiness problems, a numerically efficient model is crucial for the development process. Therefore, data-driven Model Order Reduction (MOR) aims at generating low-fidelity models that approximate the solution while strongly reducing the computational cost. MOR methods for crashworthiness became only available in recent years; a detailed and comparative assessment of their potential is still lacking. Hence, this work evaluates the advantages and drawbacks of intrusive and non-intrusive projection based MOR methods in the framework of non-linear structural transient analysis. Both schemes rely on the collection of full-order training simulations and a subsequent subspace construction via Singular Value Decomposition. The intrusive MOR is based on a Galerkin projection and a consecutive hyper-reduction step. In this work, its inter-and extrapolation abilities are compared to the non-intrusive technique, which combines the subspace approach with machine learning methods. Moreover, an optimisation analysis incorporating the MOR methods is proposed and discussed for a crashworthiness example.
ArticleNumber 190
Author Duddeck, Fabian
Bach, Christopher
Czech, Catharina
Lesjak, Mathias
Author_xml – sequence: 1
  givenname: Catharina
  orcidid: 0000-0001-8628-7492
  surname: Czech
  fullname: Czech, Catharina
  email: catharina.czech@tum.de
  organization: TUM School of Engineering and Design, Technical University of Munich
– sequence: 2
  givenname: Mathias
  surname: Lesjak
  fullname: Lesjak, Mathias
  organization: TUM School of Engineering and Design, Technical University of Munich, BMW Group, Research and Innovation Centre
– sequence: 3
  givenname: Christopher
  surname: Bach
  fullname: Bach, Christopher
  organization: BMW Group, Research and Innovation Centre
– sequence: 4
  givenname: Fabian
  surname: Duddeck
  fullname: Duddeck, Fabian
  organization: TUM School of Engineering and Design, Technical University of Munich
BookMark eNp9kE1PAyEQhompibX6BzyReEZh2QXWm6mfSRMvmngjFFhL00ILVOO_l3aNTTz0NJOZ95mP9xQMfPAWgAuCrwjG_DphTBqBcFUhTCtRIXIEhoSRBpFaiMFfzt9PwGlKc4yxwHU7BOs7lRUy0X1aD5fB2EWCXYhQR5VmXyHmmfM2JRhW2S1dUtkFfwOdz3GTCgOVN7DcgvaV3RAYorERRms2eovAbPXMu_XGpjNw3KlFsue_cQTeHu5fx09o8vL4PL6dIE0ZzUh0DTc1s4bXtia65pSzyrRcKIE1pVp0Zjqlre3aprQ075TQ2La1tlPMcNvSEbjs565i2O7Nch420ZeVsmKCMNqwtioq0at0DClF20nt8u7LHJVbSILl1mDZGyyLwXJnsCQFrf6hq-iWKn4fhmgPpSL2HzburzpA_QCVBpKz
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3525851
crossref_primary_10_1088_1361_6463_adc271
crossref_primary_10_1080_10255842_2023_2165879
crossref_primary_10_1109_ACCESS_2022_3210525
crossref_primary_10_1016_j_cma_2024_117532
crossref_primary_10_2514_1_J063885
crossref_primary_10_1007_s00466_024_02553_6
crossref_primary_10_1016_j_cma_2024_117074
crossref_primary_10_1108_EC_06_2024_0511
crossref_primary_10_1016_j_jocs_2024_102400
Cites_doi 10.1007/s00158-016-1592-1
10.1002/nme.5801
10.1177/0954410019890721
10.1137/090766498
10.1186/s40323-020-00151-8
10.1007/978-3-319-67988-4_137
10.1007/s00158-007-0130-6
10.1007/s00158-015-1315-z
10.1002/nme.167
10.1090/qam/910462
10.1007/s11831-018-9258-3
10.1016/j.cma.2020.113192
10.1002/nme.5535
10.1016/j.jcp.2016.10.033
10.1016/j.cma.2018.07.017
10.1002/nme.4668
10.1145/1457515.1409118
10.1016/j.compfluid.2018.07.021
10.1002/nme.6243
10.1177/0954407019893841
10.1007/s40324-019-00208-8
10.1016/j.cma.2016.10.022
10.1016/j.cma.2019.112650
10.1007/s12239-019-0026-7
10.1016/j.cma.2018.03.005
10.1002/nme.5283
10.1002/nme.6712
10.1080/13873954.2016.1198385
10.1016/j.compfluid.2004.11.006
10.1023/A:1008202821328
10.1016/j.cma.2020.112947
10.1002/nme.4820
10.1115/1.1760540
10.1007/BF02288367
10.1016/j.cma.2018.10.029
10.1002/nme.6009
10.1007/s00158-019-02485-3
10.1145/355744.355745
10.1016/j.tws.2013.08.021
10.1093/qmath/11.1.50
10.1007/s00158-016-1579-y
10.1002/nme.6303
10.2514/1.35374
10.2514/6.2004-889
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-022-03282-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10_1007_s00158_022_03282_1
GrantInformation_xml – fundername: Technische Universität München (1025)
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-8f57d46ed74e41c473762d978a80c33c8fdbb39ef95737c7fa8c0e94ceb060993
IEDL.DBID M7S
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819009600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Wed Nov 05 06:29:50 EST 2025
Tue Nov 18 22:12:41 EST 2025
Sat Nov 29 02:50:18 EST 2025
Fri Feb 21 02:45:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Intrusive reduced order modelling
Reduced order model
Optimisation
Crashworthiness
Nonlinear model order reduction
Non-intrusive modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-8f57d46ed74e41c473762d978a80c33c8fdbb39ef95737c7fa8c0e94ceb060993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8628-7492
OpenAccessLink https://link.springer.com/10.1007/s00158-022-03282-1
PQID 2681635692
PQPubID 2043658
ParticipantIDs proquest_journals_2681635692
crossref_citationtrail_10_1007_s00158_022_03282_1
crossref_primary_10_1007_s00158_022_03282_1
springer_journals_10_1007_s00158_022_03282_1
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Friedman, Bentley, Finkel (CR20) 1977; 3
Rocha, van der Meer, Sluys (CR37) 2020; 358
Willcox (CR46) 2006; 35
Mirsky (CR31) 1960; 11
Taylor, Glauser (CR44) 2004; 126
CR39
Bach, Ceglia, Song, Duddeck (CR7) 2019; 118
CR38
Carlberg, Barone, Antil (CR10) 2017; 330
Klinke, Schumacher (CR27) 2018; 1
Kast, Guo, Hesthaven (CR26) 2020; 364
Guo, Hesthaven (CR23) 2019; 345
Caicedo, Mroginski, Toro, Raschi, Huespe, Oliver (CR9) 2019; 26
Guo, Hesthaven (CR22) 2017; 341
Duan, Sun, Cui, Chen, Cheng, Li (CR13) 2016; 53
Phalippou, Bouabdallah, Breitkopf, Villon, Zarroug (CR33) 2020; 121
Swischuk, Mainini, Peherstorfer, Willcox (CR43) 2019; 179
Xiao, Lu, Breitkopf, Raghavan, Dutta, Zhang (CR47) 2020
CR6
Hernández, Caicedo, Ferrer (CR25) 2017; 313
CR5
CR8
Farhat, Avery, Chapman, Cortial (CR17) 2014; 98
Rasmussen, Williams (CR34) 2006
Storn, Price (CR41) 1997; 11
CR45
Eckart, Young (CR15) 1936; 1
Hernández (CR24) 2020; 368
Fehr, Holzwarth, Eberhard (CR19) 2016; 22
An, Kim, James (CR3) 2008; 27
Sirovich (CR40) 1987; 45
Rocha, van der Meer, Mororó, Sluys (CR36) 2020
Oxberry, Kostova-Vassilevska, Arrighi, Chand (CR32) 2017; 109
Krysl, Lall, Marsden (CR29) 2001; 51
Amsallem, Farhat (CR2) 2008; 46
Kneifl, Grunert, Fehr (CR28) 2021
Zahr, Avery, Farhat (CR50) 2017; 112
Le Guennec, Brunet, Daim, Chau, Tourbier (CR30) 2018; 338
Ren, Min, Ma, Wang (CR35) 2020; 234
Sun, Zhang, Fang, Li, Li (CR42) 2017; 55
Fang, Sun, Qiu, Kim, Li (CR16) 2017; 55
Alaimo, Auricchio, Bianchini, Lanzarone (CR1) 2018; 115
Farhat, Chapman, Avery (CR18) 2015; 102
Assou, Tourbier, Gstalter, Charrier, Dessombz, Jézéquel (CR4) 2019
Duddeck (CR14) 2008; 35
Xu, Sun, Li, Li (CR48) 2014; 74
Gstalter, Assou, Tourbier, De Vuyst (CR21) 2020
Yu, Yan, Guo (CR49) 2019; 233
Chaturantabut, Sorensen (CR11) 2010; 32
Chen, Xu, Zhang, Wu, Dong (CR12) 2019; 20
JH Friedman (3282_CR20) 1977; 3
L Mirsky (3282_CR31) 1960; 11
GM Oxberry (3282_CR32) 2017; 109
M Guo (3282_CR23) 2019; 345
R Storn (3282_CR41) 1997; 11
P Krysl (3282_CR29) 2001; 51
M Xiao (3282_CR47) 2020
Y Chen (3282_CR12) 2019; 20
IB Rocha (3282_CR37) 2020; 358
D Amsallem (3282_CR2) 2008; 46
J Taylor (3282_CR44) 2004; 126
G Sun (3282_CR42) 2017; 55
3282_CR45
M Guo (3282_CR22) 2017; 341
G Alaimo (3282_CR1) 2018; 115
K Carlberg (3282_CR10) 2017; 330
F Duddeck (3282_CR14) 2008; 35
SS An (3282_CR3) 2008; 27
E Gstalter (3282_CR21) 2020
K Willcox (3282_CR46) 2006; 35
S Chaturantabut (3282_CR11) 2010; 32
C Ren (3282_CR35) 2020; 234
J Yu (3282_CR49) 2019; 233
S Assou (3282_CR4) 2019
M Caicedo (3282_CR9) 2019; 26
3282_CR8
3282_CR6
J Fang (3282_CR16) 2017; 55
Y Le Guennec (3282_CR30) 2018; 338
3282_CR5
JA Hernández (3282_CR24) 2020; 368
L Sirovich (3282_CR40) 1987; 45
P Phalippou (3282_CR33) 2020; 121
CE Rasmussen (3282_CR34) 2006
C Farhat (3282_CR17) 2014; 98
3282_CR38
3282_CR39
JA Hernández (3282_CR25) 2017; 313
J Kneifl (3282_CR28) 2021
IB Rocha (3282_CR36) 2020
M Kast (3282_CR26) 2020; 364
L Duan (3282_CR13) 2016; 53
N Klinke (3282_CR27) 2018; 1
J Fehr (3282_CR19) 2016; 22
R Swischuk (3282_CR43) 2019; 179
C Eckart (3282_CR15) 1936; 1
C Farhat (3282_CR18) 2015; 102
C Bach (3282_CR7) 2019; 118
F Xu (3282_CR48) 2014; 74
MJ Zahr (3282_CR50) 2017; 112
References_xml – volume: 55
  start-page: 1899
  issue: 5
  year: 2017
  end-page: 1916
  ident: CR42
  article-title: Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-016-1592-1
– ident: CR45
– volume: 115
  start-page: 189
  issue: 2
  year: 2018
  end-page: 208
  ident: CR1
  article-title: Applying functional principal components to structural topology optimization
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5801
– volume: 233
  start-page: 5896
  issue: 16
  year: 2019
  end-page: 5912
  ident: CR49
  article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
  doi: 10.1177/0954410019890721
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  end-page: 2764
  ident: CR11
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J Sci Comput
  doi: 10.1137/090766498
– year: 2006
  ident: CR34
  publication-title: Gaussain processes for machine learning
– ident: CR39
– year: 2020
  ident: CR21
  article-title: Toward new methods for optimization study in automotive industry including recent reduction techniques
  publication-title: Adv Model Simul Eng Sci
  doi: 10.1186/s40323-020-00151-8
– volume: 1
  start-page: 1833
  year: 2018
  end-page: 1850
  ident: CR27
  article-title: Parameterization setup for metamodel based optimizations of tailor rolled blanks
  publication-title: Adv Struct Multidisc Optim
  doi: 10.1007/978-3-319-67988-4_137
– ident: CR8
– volume: 35
  start-page: 375
  issue: 4
  year: 2008
  end-page: 389
  ident: CR14
  article-title: Multidisciplinary optimization of car bodies
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-007-0130-6
– volume: 53
  start-page: 321
  issue: 2
  year: 2016
  end-page: 338
  ident: CR13
  article-title: Crashworthiness design of vehicle structure with tailor rolled blank
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-015-1315-z
– volume: 51
  start-page: 479
  issue: 4
  year: 2001
  end-page: 504
  ident: CR29
  article-title: Dimensional model reduction in non-linear finite element dynamics of solids and structures
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.167
– volume: 45
  start-page: 561
  issue: 10
  year: 1987
  end-page: 571
  ident: CR40
  article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures
  publication-title: Q Appl Math
  doi: 10.1090/qam/910462
– volume: 26
  start-page: 771
  issue: 4
  year: 2019
  end-page: 792
  ident: CR9
  article-title: High performance reduced order modeling techniques based on optimal energy quadrature: application to geometrically non-linear multiscale inelastic material modeling
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-018-9258-3
– volume: 368
  year: 2020
  ident: CR24
  article-title: A multiscale method for periodic structures using domain decomposition and ECM-hyperreduction
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113192
– volume: 112
  start-page: 855
  issue: 8
  year: 2017
  end-page: 881
  ident: CR50
  article-title: A multilevel projection-based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5535
– volume: 330
  start-page: 693
  year: 2017
  end-page: 734
  ident: CR10
  article-title: Galerkin v. least-squares petrov-galerkin projection in nonlinear model reduction
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.10.033
– volume: 341
  start-page: 807
  year: 2017
  end-page: 826
  ident: CR22
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.07.017
– volume: 98
  start-page: 625
  issue: 9
  year: 2014
  end-page: 662
  ident: CR17
  article-title: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency
  publication-title: Numer Methods Eng
  doi: 10.1002/nme.4668
– volume: 27
  start-page: 165
  issue: 5
  year: 2008
  ident: CR3
  article-title: Optimizing cubature for efficient integration of subspace deformations
  publication-title: ACM Trans Gr
  doi: 10.1145/1457515.1409118
– ident: CR5
– volume: 179
  start-page: 704
  issue: August
  year: 2019
  end-page: 717
  ident: CR43
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 121
  start-page: 763
  year: 2020
  end-page: 777
  ident: CR33
  article-title: Sparse POD modal subsets for reduced-order nonlinear explicit dynamics
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6243
– volume: 234
  start-page: 1897
  issue: 7
  year: 2020
  end-page: 1911
  ident: CR35
  article-title: Efficient structure crash topology optimization strategy using a model order reduction method combined with equivalent static loads
  publication-title: Proc Inst Mech Eng Part D J Automob Eng
  doi: 10.1177/0954407019893841
– year: 2019
  ident: CR4
  article-title: A reduced model using random forest: application on car crash optimization
  publication-title: SeMA J
  doi: 10.1007/s40324-019-00208-8
– volume: 313
  start-page: 687
  year: 2017
  end-page: 722
  ident: CR25
  article-title: Dimensional hyper-reduction of nonlinear finite element models via empirical cubature
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.10.022
– volume: 358
  year: 2020
  ident: CR37
  article-title: An adaptive domain-based POD/ECM hyper-reduced modeling framework without offline training
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112650
– volume: 20
  start-page: 265
  issue: 2
  year: 2019
  end-page: 275
  ident: CR12
  article-title: Discrete optimization design of tailor-welded blanks (TWBs) thin-walled structures under dynamic crashing
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-019-0026-7
– volume: 338
  start-page: 186
  year: 2018
  end-page: 207
  ident: CR30
  article-title: A parametric and non-intrusive reduced order model of car crash simulation
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.03.005
– volume: 109
  start-page: 198
  issue: 2
  year: 2017
  end-page: 217
  ident: CR32
  article-title: Limited-memory adaptive snapshot selection for proper orthogonal decomposition
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5283
– year: 2021
  ident: CR28
  article-title: A nonintrusive nonlinear model reduction method for structural dynamical problems based on machine learning
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6712
– volume: 22
  start-page: 380
  issue: 4
  year: 2016
  end-page: 396
  ident: CR19
  article-title: Interface and model reduction for efficient explicit simulations-a case study with nonlinear vehicle crash models
  publication-title: Math Comput Model Dyn Syst
  doi: 10.1080/13873954.2016.1198385
– volume: 35
  start-page: 208
  issue: 2
  year: 2006
  end-page: 226
  ident: CR46
  article-title: Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2004.11.006
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR41
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous space
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– ident: CR6
– volume: 364
  year: 2020
  ident: CR26
  article-title: A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.112947
– volume: 102
  start-page: 1077
  year: 2015
  end-page: 1110
  ident: CR18
  article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
  publication-title: Numer Methods Eng
  doi: 10.1002/nme.4820
– volume: 126
  start-page: 337
  issue: 3
  year: 2004
  end-page: 345
  ident: CR44
  article-title: Towards practical flow sensing and control via POD and LSE based low-dimensional tools
  publication-title: J Fluids Eng
  doi: 10.1115/1.1760540
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  end-page: 218
  ident: CR15
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 345
  start-page: 75
  year: 2019
  end-page: 99
  ident: CR23
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.029
– volume: 118
  start-page: 209
  issue: 4
  year: 2019
  end-page: 241
  ident: CR7
  article-title: Randomized low-rank approximation methods for projection-based model order reduction of large nonlinear dynamical problems
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6009
– ident: CR38
– year: 2020
  ident: CR47
  article-title: On-the-fly model reduction for large-scale structural topology optimization using principal components analysis
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02485-3
– volume: 3
  start-page: 209
  issue: 3
  year: 1977
  end-page: 226
  ident: CR20
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355744.355745
– volume: 74
  start-page: 12
  year: 2014
  end-page: 27
  ident: CR48
  article-title: Experimental study on crashworthiness of tailor-welded blank (TWB) thin-walled high-strength steel (HSS) tubular structures
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2013.08.021
– volume: 11
  start-page: 50
  issue: 1
  year: 1960
  end-page: 59
  ident: CR31
  article-title: Symmetric gauge functions and unitarily invariant norms
  publication-title: Q J Math
  doi: 10.1093/qmath/11.1.50
– volume: 55
  start-page: 1091
  issue: 3
  year: 2017
  end-page: 1119
  ident: CR16
  article-title: On design optimization for structural crashworthiness and its state of the art
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-016-1579-y
– year: 2020
  ident: CR36
  article-title: Accelerating crack growth simulations through adaptive model order reduction
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6303
– volume: 46
  start-page: 1803
  issue: 7
  year: 2008
  end-page: 1813
  ident: CR2
  article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity
  publication-title: AIAA J
  doi: 10.2514/1.35374
– volume: 102
  start-page: 1077
  year: 2015
  ident: 3282_CR18
  publication-title: Numer Methods Eng
  doi: 10.1002/nme.4820
– volume: 233
  start-page: 5896
  issue: 16
  year: 2019
  ident: 3282_CR49
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
  doi: 10.1177/0954410019890721
– volume: 27
  start-page: 165
  issue: 5
  year: 2008
  ident: 3282_CR3
  publication-title: ACM Trans Gr
  doi: 10.1145/1457515.1409118
– ident: 3282_CR6
– volume: 358
  year: 2020
  ident: 3282_CR37
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112650
– volume: 26
  start-page: 771
  issue: 4
  year: 2019
  ident: 3282_CR9
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-018-9258-3
– volume: 330
  start-page: 693
  year: 2017
  ident: 3282_CR10
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.10.033
– ident: 3282_CR38
– volume-title: Gaussain processes for machine learning
  year: 2006
  ident: 3282_CR34
– volume: 364
  year: 2020
  ident: 3282_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.112947
– ident: 3282_CR39
  doi: 10.2514/6.2004-889
– year: 2019
  ident: 3282_CR4
  publication-title: SeMA J
  doi: 10.1007/s40324-019-00208-8
– volume: 341
  start-page: 807
  year: 2017
  ident: 3282_CR22
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.07.017
– year: 2020
  ident: 3282_CR47
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02485-3
– volume: 35
  start-page: 375
  issue: 4
  year: 2008
  ident: 3282_CR14
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-007-0130-6
– volume: 345
  start-page: 75
  year: 2019
  ident: 3282_CR23
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.029
– volume: 115
  start-page: 189
  issue: 2
  year: 2018
  ident: 3282_CR1
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5801
– volume: 74
  start-page: 12
  year: 2014
  ident: 3282_CR48
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2013.08.021
– ident: 3282_CR5
– volume: 45
  start-page: 561
  issue: 10
  year: 1987
  ident: 3282_CR40
  publication-title: Q Appl Math
  doi: 10.1090/qam/910462
– ident: 3282_CR45
  doi: 10.1115/1.1760540
– volume: 121
  start-page: 763
  year: 2020
  ident: 3282_CR33
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6243
– volume: 98
  start-page: 625
  issue: 9
  year: 2014
  ident: 3282_CR17
  publication-title: Numer Methods Eng
  doi: 10.1002/nme.4668
– volume: 22
  start-page: 380
  issue: 4
  year: 2016
  ident: 3282_CR19
  publication-title: Math Comput Model Dyn Syst
  doi: 10.1080/13873954.2016.1198385
– volume: 112
  start-page: 855
  issue: 8
  year: 2017
  ident: 3282_CR50
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5535
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  ident: 3282_CR11
  publication-title: SIAM J Sci Comput
  doi: 10.1137/090766498
– volume: 3
  start-page: 209
  issue: 3
  year: 1977
  ident: 3282_CR20
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355744.355745
– year: 2020
  ident: 3282_CR21
  publication-title: Adv Model Simul Eng Sci
  doi: 10.1186/s40323-020-00151-8
– volume: 179
  start-page: 704
  issue: August
  year: 2019
  ident: 3282_CR43
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  ident: 3282_CR15
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 1
  start-page: 1833
  year: 2018
  ident: 3282_CR27
  publication-title: Adv Struct Multidisc Optim
  doi: 10.1007/978-3-319-67988-4_137
– volume: 55
  start-page: 1899
  issue: 5
  year: 2017
  ident: 3282_CR42
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-016-1592-1
– volume: 11
  start-page: 50
  issue: 1
  year: 1960
  ident: 3282_CR31
  publication-title: Q J Math
  doi: 10.1093/qmath/11.1.50
– ident: 3282_CR8
– volume: 55
  start-page: 1091
  issue: 3
  year: 2017
  ident: 3282_CR16
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-016-1579-y
– year: 2021
  ident: 3282_CR28
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6712
– volume: 51
  start-page: 479
  issue: 4
  year: 2001
  ident: 3282_CR29
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.167
– volume: 368
  year: 2020
  ident: 3282_CR24
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113192
– volume: 126
  start-page: 337
  issue: 3
  year: 2004
  ident: 3282_CR44
  publication-title: J Fluids Eng
  doi: 10.1115/1.1760540
– volume: 35
  start-page: 208
  issue: 2
  year: 2006
  ident: 3282_CR46
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2004.11.006
– volume: 109
  start-page: 198
  issue: 2
  year: 2017
  ident: 3282_CR32
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5283
– volume: 46
  start-page: 1803
  issue: 7
  year: 2008
  ident: 3282_CR2
  publication-title: AIAA J
  doi: 10.2514/1.35374
– volume: 234
  start-page: 1897
  issue: 7
  year: 2020
  ident: 3282_CR35
  publication-title: Proc Inst Mech Eng Part D J Automob Eng
  doi: 10.1177/0954407019893841
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 3282_CR41
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 118
  start-page: 209
  issue: 4
  year: 2019
  ident: 3282_CR7
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6009
– year: 2020
  ident: 3282_CR36
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6303
– volume: 20
  start-page: 265
  issue: 2
  year: 2019
  ident: 3282_CR12
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-019-0026-7
– volume: 53
  start-page: 321
  issue: 2
  year: 2016
  ident: 3282_CR13
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-015-1315-z
– volume: 313
  start-page: 687
  year: 2017
  ident: 3282_CR25
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.10.022
– volume: 338
  start-page: 186
  year: 2018
  ident: 3282_CR30
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.03.005
SSID ssj0008049
Score 2.4441335
Snippet To enable multi-query analyses, such as optimisations of large-scale crashworthiness problems, a numerically efficient model is crucial for the development...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Crashworthiness
Decomposition
Engineering
Engineering Design
Impact strength
Machine learning
Methods
Model reduction
Optimization
Partial differential equations
Research Paper
Singular value decomposition
Theoretical and Applied Mechanics
Transient analysis
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQ4AAH3ojBQDlwg0hLk6YpNwRMnCbES7tVeVVMgg7aid9PkrUdIECCaxNbke3ajmJ_Bjiy1IVRKVLMheWY0b5vVuYaa6NIbAynSqowbCIZDsVolF7XTWFVU-3ePEkGT902u_nwLrCvPvcYcBF2d55FF-6EH9hwc_vQ-l8xS3p9KoMJS0Z1q8z3PD6Ho3mO-eVZNESbwdr_zrkOq3V2ic5m5rABC7bYhJUPmINb8HohpxKb0ns5FObgVMglrkiXsnoMBYOhEB5NnC95rmt9TtG48M0ZjgbJwqBiUuD5l8AEBQxPVHokWE-CWnDYahvuB5d351e4nruANeV0ikUeJ4ZxaxJmGdEscU4oMu66KUVfU6pFbpSiqc3T2C3pJJdC923KtFV97jJOugMddxC7C0jJlGuS64RY6YFrlLV5zFQcxTJWgqoukEb8ma5Byf1sjKeshVMO4sycOLMgzox04bileZlBcvy6u9doNat_zyqLuCAemC-NunDSaHG-_DO3vb9t34flKBiCL-_tQccpxh7Akn6bjqvyMJjtO3s66Ls
  priority: 102
  providerName: Springer Nature
Title Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques
URI https://link.springer.com/article/10.1007/s00158-022-03282-1
https://www.proquest.com/docview/2681635692
Volume 65
WOSCitedRecordID wos000819009600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHeDAjiibfOAGFnWcOA4XxCpOFWJTb5G3CCRIoan4fjyu2wISXLjkkMSWpeeMX-w3bwD2HffLqJIFFdIJmvI2JisLQ43VLLNWcK10KDaRdzqy2y1u4oZbE2WVo5gYArXtGdwjP0qEZOilViQnb-8Uq0bh6WosoTENs-iSwIJ0724cieWQ_iKpoSzNuzFpJqTOIVmQFLXs6CiXUPZ9YZqwzR8HpGHduVr674iXYTEyTnI6nCIrMOXqVVj44kO4Bu8XaqCo7WPkI6E2TkM8mSWmr5qnICIM4njS8_HlNep_jslzjQkbvg1RtSV1r6aTO6ETEnw9SR_dYbEJGRvGNuvwcHV5f35NYy0GarjgAyqrLLepcDZPXcpMmvvAlFj_C6pk23BuZGW15oWrisw_MnmlpGm7IjVOt4VnoXwDZvxA3CYQrQphWGVy5hSa2WjnqizVWZKpTEuuW8BGQJQmGpVjvYyXcmyxHMArPXhlAK9kLTgYt3kb2nT8-fbOCLEyfrJNOYGrBYcjzCePf-9t6-_etmE-CdMMJb47MOOBcLswZz4Gz01_D2bPLjs3t3th4vrr7d3jJ4Ih9as
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7qxqTBgbEBorAxH7bTsFbbieMgIYQ2qk0r1SSG1Fvwr4hJkG5NBeKf4m_Ez03aDYnedtg1jp-S-PPz5_i97wHseRGWUa1yKpWXNBE9TFaWllpnWOqcFEabWGwiGw7VaJSfd-BPmwuDYZWtT4yO2o0t_iM_5FIx1FLL-fura4pVo_B0tS2hMYPFmf_9K2zZ6nenx2F89znvf7w4OqFNVQFqhRRTqso0c4n0Lkt8wmyShSnGXdhMadWzQlhVOmNE7ss8DU02K7WyPZ8n1pueDHxKBLsr8CDQCJ7HUMHPc8-vZnQbSRRlSTZqknRiqh6SE0Uxdh4V7DhltxfCBbv950A2rnP9jfv2hZ7A44ZRkw-zKbAJHV9twaMbOotP4fpYTzV1E_TsJNb-qUkg68ROdP0tBknG4H8yDv7zRxPf9JZcVpiQEvoQXTlSjSu6uBKNkKhbSiaofotdyFwQt34GX-7knZ_DangQ_wKI0bm0rLQZ8xrFeoz3ZZqYlKc6NUqYLrB24AvbCLFjPZDvxVxCOoKlCGApIlgK1oWDeZ-rmQzJ0ru3W4QUjUuqiwU8uvCmxdii-f_WXi63tgvrJxefBsXgdHj2Ch7yCHEMZ96G1TAofgfW7M_pZT15HScLga93jb2_yXFQMQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBuzidmgffNKxt0jT1TZxDUcbAC3sruRUH2s12-PtNsrabooL42iSHkJOeC_nOdwA40di4Uc5iRJmmiGDPFitTiaQSfqgUxYIL12wi6vXYYBD356r4Hdq9epKc1jRYlqZs0h6rtF0XvllXz5BFols-uACZ_GeRWCC9zdfvn2pbzKYBsA1rkE-iQVk2872Mz65pFm9-eSJ1nqe7_v89b4C1MuqEF9NrsgkWdLYFVue4CLfBW4dPOFK5tX7Q9ccpoAloocx58eyAhA4gD0fGxryWGKBzOMxs0YZZA3mmYDbK0OyLEwIdtyfMLUOsXQJr0thiBzx2rx4ur1HZjwFJTPEEsTSMFKFaRUQTX5LIGKdAmTSUM09iLFmqhMCxTuPQDMko5Ux6OiZSC4-aSBTvgobZiN4DUPCYSj-Vka-5JbQRWqchEWEQ8lAwLJrAr1SRyJKs3PbMeElqmmV3nIk5zsQdZ-I3wWm9Zjyl6vh1dqvScFL-tkUSUOZbwr44aIKzSqOz4Z-l7f9t-jFY7ne6yd1N7_YArATuTlgEcAs0jI70IViS75NhkR-52_wBzhf0gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+models+for+crashworthiness+optimisation%3A+intrusive+and+non-intrusive+model+order+reduction+techniques&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Czech%2C+Catharina&rft.au=Lesjak%2C+Mathias&rft.au=Bach%2C+Christopher&rft.au=Duddeck%2C+Fabian&rft.date=2022-07-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=7&rft_id=info:doi/10.1007%2Fs00158-022-03282-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_022_03282_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon