Non-uniformly parabolic equations and applications to the random conductance model
We study local regularity properties of linear, non-uniformly parabolic finite-difference operators in divergence form related to the random conductance model on Z d . In particular, we provide an oscillation decay assuming only certain summability properties of the conductances and their inverse, t...
Uloženo v:
| Vydáno v: | Probability theory and related fields Ročník 182; číslo 1-2; s. 353 - 397 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-8051, 1432-2064 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study local regularity properties of linear, non-uniformly parabolic finite-difference operators in divergence form related to the random conductance model on
Z
d
. In particular, we provide an oscillation decay assuming only certain summability properties of the conductances and their inverse, thus improving recent results in that direction. As an application, we provide a local limit theorem for the random walk in a random degenerate and unbounded environment. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-8051 1432-2064 |
| DOI: | 10.1007/s00440-021-01081-1 |