Non-uniformly parabolic equations and applications to the random conductance model

We study local regularity properties of linear, non-uniformly parabolic finite-difference operators in divergence form related to the random conductance model on Z d . In particular, we provide an oscillation decay assuming only certain summability properties of the conductances and their inverse, t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Probability theory and related fields Ročník 182; číslo 1-2; s. 353 - 397
Hlavní autoři: Bella, Peter, Schäffner, Mathias
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Témata:
ISSN:0178-8051, 1432-2064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study local regularity properties of linear, non-uniformly parabolic finite-difference operators in divergence form related to the random conductance model on Z d . In particular, we provide an oscillation decay assuming only certain summability properties of the conductances and their inverse, thus improving recent results in that direction. As an application, we provide a local limit theorem for the random walk in a random degenerate and unbounded environment.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-021-01081-1