A non-monotone trust-region method with noisy oracles and additional sampling
In this work, we introduce a novel stochastic second-order method, within the framework of a non-monotone trust-region approach, for solving the unconstrained, nonlinear, and non-convex optimization problems arising in the training of deep neural networks. The proposed algorithm makes use of subsamp...
Uložené v:
| Vydané v: | Computational optimization and applications Ročník 89; číslo 1; s. 247 - 278 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!