A non-monotone trust-region method with noisy oracles and additional sampling
In this work, we introduce a novel stochastic second-order method, within the framework of a non-monotone trust-region approach, for solving the unconstrained, nonlinear, and non-convex optimization problems arising in the training of deep neural networks. The proposed algorithm makes use of subsamp...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 89; číslo 1; s. 247 - 278 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we introduce a novel stochastic second-order method, within the framework of a non-monotone trust-region approach, for solving the unconstrained, nonlinear, and non-convex optimization problems arising in the training of deep neural networks. The proposed algorithm makes use of subsampling strategies that yield noisy approximations of the finite sum objective function and its gradient. We introduce an adaptive sample size strategy based on inexpensive additional sampling to control the resulting approximation error. Depending on the estimated progress of the algorithm, this can yield sample size scenarios ranging from mini-batch to full sample functions. We provide convergence analysis for all possible scenarios and show that the proposed method achieves almost sure convergence under standard assumptions for the trust-region framework. We report numerical experiments showing that the proposed algorithm outperforms its state-of-the-art counterpart in deep neural network training for image classification and regression tasks while requiring a significantly smaller number of gradient evaluations. |
|---|---|
| AbstractList | In this work, we introduce a novel stochastic second-order method, within the framework of a non-monotone trust-region approach, for solving the unconstrained, nonlinear, and non-convex optimization problems arising in the training of deep neural networks. The proposed algorithm makes use of subsampling strategies that yield noisy approximations of the finite sum objective function and its gradient. We introduce an adaptive sample size strategy based on inexpensive additional sampling to control the resulting approximation error. Depending on the estimated progress of the algorithm, this can yield sample size scenarios ranging from mini-batch to full sample functions. We provide convergence analysis for all possible scenarios and show that the proposed method achieves almost sure convergence under standard assumptions for the trust-region framework. We report numerical experiments showing that the proposed algorithm outperforms its state-of-the-art counterpart in deep neural network training for image classification and regression tasks while requiring a significantly smaller number of gradient evaluations. |
| Author | Yousefi, Mahsa Krklec Jerinkić, Nataša Krejić, Nataša Martínez, Ángeles |
| Author_xml | – sequence: 1 givenname: Nataša orcidid: 0000-0003-3348-7233 surname: Krejić fullname: Krejić, Nataša organization: Department of Mathematics and Informatics, University of Novi Sad – sequence: 2 givenname: Nataša orcidid: 0000-0001-5195-9295 surname: Krklec Jerinkić fullname: Krklec Jerinkić, Nataša organization: Department of Mathematics and Informatics, University of Novi Sad – sequence: 3 givenname: Ángeles orcidid: 0000-0003-4826-1114 surname: Martínez fullname: Martínez, Ángeles organization: Department of Mathematics, Informatics, and Geosciences, University of Trieste – sequence: 4 givenname: Mahsa orcidid: 0000-0002-2937-9654 surname: Yousefi fullname: Yousefi, Mahsa email: mahsa.yousefi@unifi.it, mahsa.yousefi@phd.units.it organization: Department of Industrial Engineering (DIEF), University of Florence, Department of Mathematics, Informatics, and Geosciences, University of Trieste |
| BookMark | eNp9kEtLQzEQhYNUsK3-AVcB19FJ0vtaluILKm50HdI82pR7b2qSUvrvTb2C4KKrOYvznZk5EzTqfW8QuqVwTwGqh0ihqBsCbEYgKyCHCzSmRcUJq5vZCI2hYSUpAfgVmsS4BYCm4myM3uY4R5HO9z7lSJzCPiYSzNr5HncmbbzGB5c22eXiEfsgVWsilr3GUmuXsk22OMpu17p-fY0urWyjufmdU_T59PixeCHL9-fXxXxJFC95IrVelcwyZbksCmhkYa2xWlvGDeeqYlQxYFRXUlPJVpzNeJmV5Lq2hkrV8Cm6G3J3wX_tTUxi6_chXxIFh7oBXlW0zi42uFTwMQZjxS64ToajoCBOtYmhNpFrEz-1iUOG6n-Qckme_kxBuvY8ygc05j392oS_q85Q37vUheg |
| CitedBy_id | crossref_primary_10_1007_s10589_025_00664_1 crossref_primary_10_1007_s10589_025_00720_w crossref_primary_10_1016_j_cam_2025_117059 |
| Cites_doi | 10.1109/SITIS57111.2022.00084 10.1137/1.9781611975673.79 10.1093/imanum/dry009 10.1080/10556788.2019.1624747 10.1016/j.cam.2010.10.044 10.1090/mcom/3802 10.1137/16M1080173 10.1007/978-3-030-64583-0_5 10.1137/0723046 10.1007/978-3-031-10464-0_2 10.1007/s10589-022-00430-7 10.1080/10556788.2021.1977806 10.1080/10556788.2019.1658107 10.1007/s10107-016-1030-6 10.1016/j.apm.2011.07.021 10.1007/s10107-017-1141-8 10.1007/s10589-016-9868-3 10.1137/1.9780898719857 10.1007/978-3-642-35289-8_27 10.1007/s10107-023-01941-9 10.1007/BF00939608 10.1137/17M1144799 10.1007/s10107-023-01999-5 10.1007/978-0-387-40065-5 10.1080/10556788.2015.1025403 10.1109/CVPR.2016.90 10.1214/aoms/1177729586 10.1137/15M1053141 10.3390/a16100490 10.1109/5.726791 10.1007/s11075-014-9869-1 10.1137/1.9781611976236.23 10.1109/ICMLA.2018.00081 10.1287/ijoo.2019.0016 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10589-024-00580-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 278 |
| ExternalDocumentID | 10_1007_s10589_024_00580_w |
| GrantInformation_xml | – fundername: Università degli Studi di Firenze – fundername: Provincial Secretariat for Higher Education and Scientific Research, Autonomous Province of Vojvodina grantid: 142-451-2593/2021-01/2; 142-451-2593/2021-01/2 – fundername: Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni grantid: CUP E53C22001930001; CUP E53C22001930001 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c363t-8db62f2cf3a5509a5ffefddf23e33c721c2021d7ad1a2b32436d1aa3d8fe1ac93 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236119000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Wed Nov 26 14:52:12 EST 2025 Sat Nov 29 01:51:31 EST 2025 Tue Nov 18 22:02:20 EST 2025 Fri Feb 21 02:38:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 90C53 90C30 65K05 Adaptive sampling Second-order methods Deep neural networks training 90C06 90C90 Stochastic optimization Non-monotone trust-region Quasi-Newton |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-8db62f2cf3a5509a5ffefddf23e33c721c2021d7ad1a2b32436d1aa3d8fe1ac93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4826-1114 0000-0002-2937-9654 0000-0003-3348-7233 0000-0001-5195-9295 |
| OpenAccessLink | https://link.springer.com/10.1007/s10589-024-00580-w |
| PQID | 3089037718 |
| PQPubID | 30811 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_3089037718 crossref_primary_10_1007_s10589_024_00580_w crossref_citationtrail_10_1007_s10589_024_00580_w springer_journals_10_1007_s10589_024_00580_w |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | SunSNocedalJA trust-region method for noisy unconstrained optimizationMath. Program.2023465345810.1007/s10107-023-01941-9 KrejićNLužaninZOvcinZStojkovskaIDescent direction method with line search for unconstrained optimization in noisy environmentOptim. Methods Softw.201530611641184340109110.1080/10556788.2015.1025403 AhookhoshMAminiKPeyghamiMRA non-monotone trust-region line search method for large-scale unconstrained optimizationAppl. Math. Model.2012361478487283502510.1016/j.apm.2011.07.021 Yousefi, M., Martínez Calomardo, Á.: A stochastic modified limited memory BFGS for training deep neural networks. In: Intelligent Computing: Proceedings of the 2022 Computing Conference, Volume 2, pp. 9–28 (2022). Springer. https://doi.org/10.1007/978-3-031-10464-0_2 YousefiMMartínezÁDeep neural networks training by stochastic quasi-newton trust-region methodsAlgorithms2023161049010.3390/a16100490 CuiZWuBQuSCombining non-monotone conic trust-region and line search techniques for unconstrained optimizationJ. Comput. Appl. Math.2011235824322441276315610.1016/j.cam.2010.10.044 Bottou, L., LeCun, Y.: Large scale online learning. In: Advances in Neural Information Processing Systems, vol. 16, pp. 217–224 (2004). Available at: https://proceedings.neurips.cc/paper_files/paper/2003 BerahasASTakáčMA robust multi-batch L-BFGS method for machine learningOptim. Methods Softw.2020351191219403294610.1080/10556788.2019.1658107 DengNXiaoYZhouFNonmonotonic trust-region algorithmJ. Optim. Theory Appl.1993762259285120390310.1007/BF00939608 BellaviaSKrejićNMoriniBRebegoldiSA stochastic first-order trust-region method with inexact restoration for finite-sum minimizationComput. Optim. Appl.20238415384453028610.1007/s10589-022-00430-7 BollapragadaRByrdRHNocedalJExact and inexact subsampled Newton methods for optimizationIMA J. Numer. Anal.2019392545578394187710.1093/imanum/dry009 Krizhevsky, A.: Learning multiple layers of features from tiny images (2009). Available at: https://api.semanticscholar.org/CorpusID:18268744 Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: A novel method for machine learning problems using stochastic recursive gradient. In: International Conference on Machine Learning, pp. 2613–2621 (2017). PMLR. Available at: https://proceedings.mlr.press/v70 Martens, J.: Deep learning via Hessian-free optimization. In: Proceedings of the 27th International Conference on Machine Learning, pp. 735–742 (2010). Available at: https://www.icml2010.org/abstracts.html LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791 Gower, R., Goldfarb, D., Richtárik, P.: Stochastic block BFGS: Squeezing more curvature out of data. In: International Conference on Machine Learning, pp. 1869–1878 (2016). PMLR. Available at: https://proceedings.mlr.press/v48 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 KrejićNKrklec JerinkićNNon-monotone line search methods with variable sample sizeNumer. Algor.201568471173910.1007/s11075-014-9869-1 GrippoLLamparielloFLucidiSA non-monotone line search technique for Newton’s methodSIAM J. Numer. Anal.198623470771684927810.1137/0723046 BottouLCurtisFENocedalJOptimization methods for large-scale machine learningSIAM Rev.2018602223311379771910.1137/16M1080173 Martens, J., Grosse, R.: Optimizing neural networks with Kronecker-factored approximate curvature. In: International Conference on Machine Learning, pp. 2408–2417 (2015). PMLR. Available at: https://proceedings.mlr.press/v37 Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.-J., Tang, P.T.P.: A progressive batching L-BFGS method for machine learning. In: International Conference on Machine Learning, pp. 620–629 (2018). PMLR. Available at: https://proceedings.mlr.press/v80 Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York, NY (2006). https://doi.org/10.1007/978-0-387-40065-5 BlanchetJCartisCMenickellyMScheinbergKConvergence rate analysis of a stochastic trust-region method via supermartingalesINFORMS J. Optim.20191292119415131910.1287/ijoo.2019.0016 CaoLBerahasASScheinbergKFirst- and second-order high probability complexity bounds for trust-region methods with noisy oraclesMath. Program.202310.1007/s10107-023-01999-5 Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia, PA (2000). https://doi.org/10.1137/1.9780898719857 ErwayJBGriffinJMarciaRFOmheniRTrust-region algorithms for training responses: machine learning methods using indefinite Hessian approximationsOptim. Methods Softw.2020353460487409716310.1080/10556788.2019.1624747 Di SerafinoDKrejićNKrklec JerinkićNViolaMLSOS: line-search second-order stochastic optimization methods for nonconvex finite sumsMath. Comput.20239234112731299455032610.1090/mcom/3802 WangXMaSGoldfarbDLiuWStochastic quasi-Newton methods for nonconvex stochastic optimizationSIAM J. Optim.2017272927956365148910.1137/15M1053141 Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7) (2011). Available at: https://www.jmlr.org/papers/v12 MokhtariARibeiroAGlobal convergence of online limited memory BFGSJ. Mach. Learn. Res.2015161315131813450536 LeCun, Y.: The MNIST Database of Handwritten Digits (1998). Available at: https://www.kaggle.com/datasets/hojjatk/mnist-dataset Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems, pp. 1646–1654 (2014). Available at: https://proceedings.neurips.cc/paper_files/paper/2014 Rafati, J., Marcia, R.F.: Improving L-BFGS initialization for trust-region methods in deep learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 501–508 (2018). https://doi.org/10.1109/ICMLA.2018.00081 . IEEE BrustJErwayJBMarciaRFOn solving L-SR1 trust-region subproblemsComput. Optim. Appl.2017662245266360405310.1007/s10589-016-9868-3 BerahasASJahaniMRichtárikPTakáčMQuasi-newton methods for machine learning: forget the past, just sampleOptim. Methods Softw.202237516681704452210010.1080/10556788.2021.1977806 Yousefi, M., Martínez Calomardo, Á.: A stochastic nonmonotone trust-region training algorithm for image classification. In: 2022 16th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 522–529 (2022). IEEE. https://doi.org/10.1109/SITIS57111.2022.00084 Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015). Available at: http://arxiv.org/abs/1412.6980 Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, pp. 249–256 (2010). Available at: https://proceedings.mlr.press/v9 SchmidtMLe RouxNBachFMinimizing finite sums with the stochastic average gradientMath. Program.20171621–283112361293310.1007/s10107-016-1030-6 Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in Neural Information Processing Systems, vol. 26, pp. 315–323 (2013). Available at: https://proceedings.neurips.cc/paper_files/paper/2013 IusemANJofréAOliveiraRIThompsonPVariance-based extra gradient methods with line search for stochastic variational inequalitiesSIAM J. Optim.2019291175206390080110.1137/17M1144799 Martens, J., Sutskever, I.: Training deep and recurrent networks with Hessian-free optimization. In: Neural Networks: Tricks of the Trade, pp. 479–535. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_27 Jahani, M., Nazari, M., Rusakov, S., Berahas, A.S., Takáč, M.: Scaling up quasi-newton algorithms: communication efficient distributed SR1. In: Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science, vol. 12565, pp. 41–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0_5 GoodfellowIBengioYCourvilleADeep Learning2016Cambridge, MAMIT Press Xu, P., Roosta, F., Mahoney, M.W.: Second-order optimization for non-convex machine learning: An empirical study. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 199–207 (2020). https://doi.org/10.1137/1.9781611976236.23 . SIAM ChenRMenickellyMScheinbergKStochastic optimization using a trust-region method and random modelsMath. Program.20181692447487380086710.1007/s10107-017-1141-8 Goldfarb, D., Ren, Y., Bahamou, A.: Practical quasi-newton methods for training deep neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 2386–2396 (2020). Available at: https://proceedings.neurips.cc/paper_files/paper/2020 RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586 Kylasa, S., Roosta, F., Mahoney, M.W., Grama, A.: GPU accelerated sub-sampled Newton’s method for convex classification problems. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 702–710 (2019). https://doi.org/10.1137/1.9781611975673.79 . SIAM A Mokhtari (580_CR21) 2015; 16 AN Iusem (580_CR38) 2019; 29 N Krejić (580_CR39) 2015; 30 AS Berahas (580_CR24) 2020; 35 J Brust (580_CR44) 2017; 66 Y LeCun (580_CR48) 1998; 86 M Yousefi (580_CR47) 2023; 16 I Goodfellow (580_CR45) 2016 L Bottou (580_CR13) 2018; 60 580_CR35 R Bollapragada (580_CR17) 2019; 39 Z Cui (580_CR33) 2011; 235 X Wang (580_CR23) 2017; 27 L Grippo (580_CR31) 1986; 23 N Krejić (580_CR34) 2015; 68 580_CR29 AS Berahas (580_CR27) 2022; 37 580_CR28 N Deng (580_CR32) 1993; 76 580_CR25 580_CR26 M Ahookhosh (580_CR3) 2012; 36 JB Erway (580_CR30) 2020; 35 R Chen (580_CR41) 2018; 169 580_CR22 S Sun (580_CR36) 2023 580_CR20 580_CR18 L Cao (580_CR37) 2023 580_CR19 580_CR16 580_CR1 H Robbins (580_CR5) 1951; 22 580_CR14 580_CR2 580_CR15 580_CR7 580_CR12 580_CR8 580_CR10 D Di Serafino (580_CR4) 2023; 92 580_CR6 580_CR11 580_CR50 S Bellavia (580_CR42) 2023; 84 J Blanchet (580_CR40) 2019; 1 M Schmidt (580_CR9) 2017; 162 580_CR49 580_CR46 580_CR43 |
| References_xml | – reference: Martens, J.: Deep learning via Hessian-free optimization. In: Proceedings of the 27th International Conference on Machine Learning, pp. 735–742 (2010). Available at: https://www.icml2010.org/abstracts.html – reference: Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York, NY (2006). https://doi.org/10.1007/978-0-387-40065-5 – reference: BellaviaSKrejićNMoriniBRebegoldiSA stochastic first-order trust-region method with inexact restoration for finite-sum minimizationComput. Optim. Appl.20238415384453028610.1007/s10589-022-00430-7 – reference: GoodfellowIBengioYCourvilleADeep Learning2016Cambridge, MAMIT Press – reference: YousefiMMartínezÁDeep neural networks training by stochastic quasi-newton trust-region methodsAlgorithms2023161049010.3390/a16100490 – reference: KrejićNLužaninZOvcinZStojkovskaIDescent direction method with line search for unconstrained optimization in noisy environmentOptim. Methods Softw.201530611641184340109110.1080/10556788.2015.1025403 – reference: Yousefi, M., Martínez Calomardo, Á.: A stochastic nonmonotone trust-region training algorithm for image classification. In: 2022 16th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 522–529 (2022). IEEE. https://doi.org/10.1109/SITIS57111.2022.00084 – reference: Rafati, J., Marcia, R.F.: Improving L-BFGS initialization for trust-region methods in deep learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 501–508 (2018). https://doi.org/10.1109/ICMLA.2018.00081 . IEEE – reference: Yousefi, M., Martínez Calomardo, Á.: A stochastic modified limited memory BFGS for training deep neural networks. In: Intelligent Computing: Proceedings of the 2022 Computing Conference, Volume 2, pp. 9–28 (2022). Springer. https://doi.org/10.1007/978-3-031-10464-0_2 – reference: BollapragadaRByrdRHNocedalJExact and inexact subsampled Newton methods for optimizationIMA J. Numer. Anal.2019392545578394187710.1093/imanum/dry009 – reference: Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015). Available at: http://arxiv.org/abs/1412.6980 – reference: Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, pp. 249–256 (2010). Available at: https://proceedings.mlr.press/v9/ – reference: Jahani, M., Nazari, M., Rusakov, S., Berahas, A.S., Takáč, M.: Scaling up quasi-newton algorithms: communication efficient distributed SR1. In: Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science, vol. 12565, pp. 41–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0_5 – reference: Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems, pp. 1646–1654 (2014). Available at: https://proceedings.neurips.cc/paper_files/paper/2014 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791 – reference: Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in Neural Information Processing Systems, vol. 26, pp. 315–323 (2013). Available at: https://proceedings.neurips.cc/paper_files/paper/2013 – reference: Goldfarb, D., Ren, Y., Bahamou, A.: Practical quasi-newton methods for training deep neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 2386–2396 (2020). Available at: https://proceedings.neurips.cc/paper_files/paper/2020 – reference: CaoLBerahasASScheinbergKFirst- and second-order high probability complexity bounds for trust-region methods with noisy oraclesMath. Program.202310.1007/s10107-023-01999-5 – reference: BlanchetJCartisCMenickellyMScheinbergKConvergence rate analysis of a stochastic trust-region method via supermartingalesINFORMS J. Optim.20191292119415131910.1287/ijoo.2019.0016 – reference: Kylasa, S., Roosta, F., Mahoney, M.W., Grama, A.: GPU accelerated sub-sampled Newton’s method for convex classification problems. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 702–710 (2019). https://doi.org/10.1137/1.9781611975673.79 . SIAM – reference: BerahasASJahaniMRichtárikPTakáčMQuasi-newton methods for machine learning: forget the past, just sampleOptim. Methods Softw.202237516681704452210010.1080/10556788.2021.1977806 – reference: Krizhevsky, A.: Learning multiple layers of features from tiny images (2009). Available at: https://api.semanticscholar.org/CorpusID:18268744 – reference: GrippoLLamparielloFLucidiSA non-monotone line search technique for Newton’s methodSIAM J. Numer. Anal.198623470771684927810.1137/0723046 – reference: Gower, R., Goldfarb, D., Richtárik, P.: Stochastic block BFGS: Squeezing more curvature out of data. In: International Conference on Machine Learning, pp. 1869–1878 (2016). PMLR. Available at: https://proceedings.mlr.press/v48/ – reference: ErwayJBGriffinJMarciaRFOmheniRTrust-region algorithms for training responses: machine learning methods using indefinite Hessian approximationsOptim. Methods Softw.2020353460487409716310.1080/10556788.2019.1624747 – reference: SchmidtMLe RouxNBachFMinimizing finite sums with the stochastic average gradientMath. Program.20171621–283112361293310.1007/s10107-016-1030-6 – reference: Xu, P., Roosta, F., Mahoney, M.W.: Second-order optimization for non-convex machine learning: An empirical study. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 199–207 (2020). https://doi.org/10.1137/1.9781611976236.23 . SIAM – reference: Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: A novel method for machine learning problems using stochastic recursive gradient. In: International Conference on Machine Learning, pp. 2613–2621 (2017). PMLR. Available at: https://proceedings.mlr.press/v70/ – reference: LeCun, Y.: The MNIST Database of Handwritten Digits (1998). Available at: https://www.kaggle.com/datasets/hojjatk/mnist-dataset – reference: Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7) (2011). Available at: https://www.jmlr.org/papers/v12/ – reference: Martens, J., Sutskever, I.: Training deep and recurrent networks with Hessian-free optimization. In: Neural Networks: Tricks of the Trade, pp. 479–535. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_27 – reference: AhookhoshMAminiKPeyghamiMRA non-monotone trust-region line search method for large-scale unconstrained optimizationAppl. Math. Model.2012361478487283502510.1016/j.apm.2011.07.021 – reference: Martens, J., Grosse, R.: Optimizing neural networks with Kronecker-factored approximate curvature. In: International Conference on Machine Learning, pp. 2408–2417 (2015). PMLR. Available at: https://proceedings.mlr.press/v37/ – reference: MokhtariARibeiroAGlobal convergence of online limited memory BFGSJ. Mach. Learn. Res.2015161315131813450536 – reference: CuiZWuBQuSCombining non-monotone conic trust-region and line search techniques for unconstrained optimizationJ. Comput. Appl. Math.2011235824322441276315610.1016/j.cam.2010.10.044 – reference: IusemANJofréAOliveiraRIThompsonPVariance-based extra gradient methods with line search for stochastic variational inequalitiesSIAM J. Optim.2019291175206390080110.1137/17M1144799 – reference: Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia, PA (2000). https://doi.org/10.1137/1.9780898719857 – reference: Bottou, L., LeCun, Y.: Large scale online learning. In: Advances in Neural Information Processing Systems, vol. 16, pp. 217–224 (2004). Available at: https://proceedings.neurips.cc/paper_files/paper/2003 – reference: BottouLCurtisFENocedalJOptimization methods for large-scale machine learningSIAM Rev.2018602223311379771910.1137/16M1080173 – reference: ChenRMenickellyMScheinbergKStochastic optimization using a trust-region method and random modelsMath. Program.20181692447487380086710.1007/s10107-017-1141-8 – reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 – reference: Di SerafinoDKrejićNKrklec JerinkićNViolaMLSOS: line-search second-order stochastic optimization methods for nonconvex finite sumsMath. Comput.20239234112731299455032610.1090/mcom/3802 – reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586 – reference: WangXMaSGoldfarbDLiuWStochastic quasi-Newton methods for nonconvex stochastic optimizationSIAM J. Optim.2017272927956365148910.1137/15M1053141 – reference: BerahasASTakáčMA robust multi-batch L-BFGS method for machine learningOptim. Methods Softw.2020351191219403294610.1080/10556788.2019.1658107 – reference: KrejićNKrklec JerinkićNNon-monotone line search methods with variable sample sizeNumer. Algor.201568471173910.1007/s11075-014-9869-1 – reference: BrustJErwayJBMarciaRFOn solving L-SR1 trust-region subproblemsComput. Optim. Appl.2017662245266360405310.1007/s10589-016-9868-3 – reference: Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.-J., Tang, P.T.P.: A progressive batching L-BFGS method for machine learning. In: International Conference on Machine Learning, pp. 620–629 (2018). PMLR. Available at: https://proceedings.mlr.press/v80/ – reference: SunSNocedalJA trust-region method for noisy unconstrained optimizationMath. Program.2023465345810.1007/s10107-023-01941-9 – reference: DengNXiaoYZhouFNonmonotonic trust-region algorithmJ. Optim. Theory Appl.1993762259285120390310.1007/BF00939608 – ident: 580_CR35 doi: 10.1109/SITIS57111.2022.00084 – volume: 16 start-page: 3151 issue: 1 year: 2015 ident: 580_CR21 publication-title: J. Mach. Learn. Res. – ident: 580_CR14 doi: 10.1137/1.9781611975673.79 – volume: 39 start-page: 545 issue: 2 year: 2019 ident: 580_CR17 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dry009 – ident: 580_CR25 – volume: 35 start-page: 460 issue: 3 year: 2020 ident: 580_CR30 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2019.1624747 – volume: 235 start-page: 2432 issue: 8 year: 2011 ident: 580_CR33 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.10.044 – ident: 580_CR8 – ident: 580_CR22 – volume: 92 start-page: 1273 issue: 341 year: 2023 ident: 580_CR4 publication-title: Math. Comput. doi: 10.1090/mcom/3802 – volume-title: Deep Learning year: 2016 ident: 580_CR45 – ident: 580_CR49 – ident: 580_CR50 – ident: 580_CR12 – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 580_CR13 publication-title: SIAM Rev. doi: 10.1137/16M1080173 – ident: 580_CR26 doi: 10.1007/978-3-030-64583-0_5 – volume: 23 start-page: 707 issue: 4 year: 1986 ident: 580_CR31 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0723046 – ident: 580_CR29 doi: 10.1007/978-3-031-10464-0_2 – volume: 84 start-page: 53 issue: 1 year: 2023 ident: 580_CR42 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-022-00430-7 – ident: 580_CR6 – volume: 37 start-page: 1668 issue: 5 year: 2022 ident: 580_CR27 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2021.1977806 – volume: 35 start-page: 191 issue: 1 year: 2020 ident: 580_CR24 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2019.1658107 – ident: 580_CR19 – volume: 162 start-page: 83 issue: 1–2 year: 2017 ident: 580_CR9 publication-title: Math. Program. doi: 10.1007/s10107-016-1030-6 – volume: 36 start-page: 478 issue: 1 year: 2012 ident: 580_CR3 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.07.021 – ident: 580_CR15 – ident: 580_CR11 – volume: 169 start-page: 447 issue: 2 year: 2018 ident: 580_CR41 publication-title: Math. Program. doi: 10.1007/s10107-017-1141-8 – volume: 66 start-page: 245 issue: 2 year: 2017 ident: 580_CR44 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-016-9868-3 – ident: 580_CR2 doi: 10.1137/1.9780898719857 – ident: 580_CR20 – ident: 580_CR16 doi: 10.1007/978-3-642-35289-8_27 – ident: 580_CR43 – year: 2023 ident: 580_CR36 publication-title: Math. Program. doi: 10.1007/s10107-023-01941-9 – volume: 76 start-page: 259 issue: 2 year: 1993 ident: 580_CR32 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939608 – volume: 29 start-page: 175 issue: 1 year: 2019 ident: 580_CR38 publication-title: SIAM J. Optim. doi: 10.1137/17M1144799 – year: 2023 ident: 580_CR37 publication-title: Math. Program. doi: 10.1007/s10107-023-01999-5 – ident: 580_CR1 doi: 10.1007/978-0-387-40065-5 – volume: 30 start-page: 1164 issue: 6 year: 2015 ident: 580_CR39 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2015.1025403 – ident: 580_CR46 doi: 10.1109/CVPR.2016.90 – ident: 580_CR10 – volume: 22 start-page: 400 year: 1951 ident: 580_CR5 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – volume: 27 start-page: 927 issue: 2 year: 2017 ident: 580_CR23 publication-title: SIAM J. Optim. doi: 10.1137/15M1053141 – volume: 16 start-page: 490 issue: 10 year: 2023 ident: 580_CR47 publication-title: Algorithms doi: 10.3390/a16100490 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 580_CR48 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 68 start-page: 711 issue: 4 year: 2015 ident: 580_CR34 publication-title: Numer. Algor. doi: 10.1007/s11075-014-9869-1 – ident: 580_CR18 doi: 10.1137/1.9781611976236.23 – ident: 580_CR7 – ident: 580_CR28 doi: 10.1109/ICMLA.2018.00081 – volume: 1 start-page: 92 issue: 2 year: 2019 ident: 580_CR40 publication-title: INFORMS J. Optim. doi: 10.1287/ijoo.2019.0016 |
| SSID | ssj0009732 |
| Score | 2.4344246 |
| Snippet | In this work, we introduce a novel stochastic second-order method, within the framework of a non-monotone trust-region approach, for solving the unconstrained,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 247 |
| SubjectTerms | Adaptive algorithms Adaptive sampling Algorithms Approximation Artificial neural networks Convergence Convex and Discrete Geometry Convexity Error analysis Image classification Management Science Mathematics Mathematics and Statistics Neural networks Operations Research Operations Research/Decision Theory Optimization Sample size State-of-the-art reviews Statistics |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAHH6vi6io5eNNA2_SRHBdx8bKL-GJvJU0TEaQrVlz8907SdruKCnpraRLCzKTzJZn5BuBExELrLNLUUoXQkCtNueA2ilCwHF0GIlruik0k4zGfTMRVnRRWNtHuzZWk-1MvJLtFNrwnCKmthefR2TKsoLvjdjle39y3VLuJK0vmiSCm6M5ZnSrz_Rif3VGLMb9cizpvM9z83zy3YKNGl2RQmcM2LOmiC-sLnIP4NpoTtZZdWLNgs-Jq3oHRgBTTgqJhTi1FN3H5GNSWbpgWpCo1Tey5LbZ6LN8JGo8NqSOyyIkNS6pOFUkpbZB68bALd8OL2_NLWpdboIrF7JXyPIsDEyjDJG5bhIyM0SbPTcA0Ywp3iipAQJAnMvdlkCEQYzE-SZZzo32pBNuDDs5S7wNJeCSMMX4ijQ595UlEPZFv4sxTMjah7oHfSD1VNRe5LYnxlLYsylaKKUoxdVJMZz04nfd5rpg4fm3db5SZ1quyTJnHhccSdMc9OGuU137-ebSDvzU_hLXA6d-GovWhg-rSR7Cq3lChL8fOWj8AuHXkyA priority: 102 providerName: Springer Nature |
| Title | A non-monotone trust-region method with noisy oracles and additional sampling |
| URI | https://link.springer.com/article/10.1007/s10589-024-00580-w https://www.proquest.com/docview/3089037718 |
| Volume | 89 |
| WOSCitedRecordID | wos001236119000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEceLRFLIWVD9xaq4m9ie1TRREICbFaQR-0l8jrB0JCWSAIxL_vTNZLKFK5cBlFim1ZmYlnPP48H8COKU0I4yJwKhXCB9oFro0mFKGRHl0GRrS6JZtQw6E-OzOjlHBrEqxytia2C7WfOMqRf5GZNplUuJR-vbrmxBpFp6uJQmMeFnMhcrLzI8W7oruqJSjLjCg5OnaZLs2kq3MFgYXEgBOzXsbv_3VMXbT57IC09TsHK6-d8Sosp4iT7U5NZA3mQv0Olp7UIXwPx7usntQcO0yoNjdrL2Jw4myY1GzKMc0oYYutLpoHhlZDWDpma88IjzRNJ7LGEjq9Pv8APw72v-8d8sSzwJ0s5S3XflyKKFyUFvcrxhYxhuh9FDJI6XCL6ARGAl5Zn1sxxghMlvhkpdcx5NYZuQ4LOMuwAUzpwsQYc2VjGOQusxjuFHksx5mzZRyEHuSzj1y5VIScuDAuq658MimmQsVUrWKq-x58euxzNS3B8WLrrZk2qvQ7NlWnih58numze_3_0TZfHu0jvBWtCRHmbAsWUD1hG964u9uL5qYP8-rX7z4sftsfjk76rWmiPM72SIoRSXWKclT8QXly-vMvbcfsbg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWgk4tIVSdctSfKCn1iKx87APCCFaBAJWHKjELXj9qFaqskAQq_1T_Y3M5NGUSuXGobdISSwn87T9zXwA2zrT3o9Tz6lVCE-U9VxpRShCLR2GDMxoVU02kY9G6vJSny_Ar64WhmCVnU-sHbWbWtoj35GR0pHM0ZXuXd9wYo2i09WOQqNRixM_n-GSrdo9_ory_STE4beLgyPesgpwKzN5x5UbZyIIG6TB7FybNAQfnAtCeiktLoiswLjncuNiI8aYb8gMr4x0KvjYWGq-hC7_RZKgORBUMDrom_zmNSFapEXGMZGQbZFOW6qXEjhJJJyY_CI-exwI--z2rwPZOs4dvv7f_tAbeNVm1Gy_MYFVWPDlGqz80WfxLZzts3JacpzglHqPs7rQhBMnxbRkDYc2ow1pfGpSzRlaBWEFmSkdI7xVs13KKkPo-_LHOnx_lu95B4s4S_8eWK5SHUKIcxN8EtvIYDqXxiEbR9ZkIfEDiDuhFrZtsk5cHz-Lvj00KUKBilDUilDMBvD59zvXTYuRJ58edtIvWndTFb3oB_Cl05_-9r9H-_D0aFuwdHRxdlqcHo9ONmBZ1OpL-LohLKKo_Ca8tPd3k-r2Y20IDK6eW68eAJ3NRLQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CtKrKogVa1ClT8AJWYJHYk8ReIIRKR6CBEYtWYpd6_EAjVRloUEfza_067s2jgUplx6K7SEksJz73Yfv4HoAdnWrvJ4nnVCqED5T1XGlFLEItHYYMzGhVJTaRjcfq6kpfLsHv9iwM0Spbn1g5ajeztEZ-ICOlI5mhKz0IDS3i8mR4dHPLSUGKdlpbOY0aIiO_mOP0rTw8O8Gx3hVi-OXr51PeKAxwK1N5x5WbpCIIG6TBTF2bJAQfnAtCeiktTo6swBjoMuNiIyaYe8gUr4x0KvjYWCrEhO7_BUbhhGxslPGu4G9WiaNFWqQckwrZHNhpju0lRFQSA06qfhGfPw6KXab71-ZsFfOGb__nv7UKb5pMmx3XprEGS75Yh5UH9RffwcUxK2YFxw7OqCY5qw6gcNKqmBWs1tZmtFCNT03LBUNrIQ4hM4VjxMOql1FZaYiVX1y_h2_P8j0bsIy99B-AZSrRIYQ4M8EPYhsZTPOSOKSTyJo0DHwP4naAc9sUXycNkB95VzaaQJEjKPIKFPm8B3t_3rmpS488-XS_RULeuKEy72DQg_0WS93tf7f28enWtuEVwik_PxuPNuG1qJBMtLs-LONI-U_w0v66m5Y_tyqbYPD9uWF1D_9tTVo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-monotone+trust-region+method+with+noisy+oracles+and+additional+sampling&rft.jtitle=Computational+optimization+and+applications&rft.au=Kreji%C4%87%2C+Nata%C5%A1a&rft.au=Krklec+Jerinki%C4%87%2C+Nata%C5%A1a&rft.au=Mart%C3%ADnez%2C+%C3%81ngeles&rft.au=Yousefi%2C+Mahsa&rft.date=2024-09-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=89&rft.issue=1&rft.spage=247&rft.epage=278&rft_id=info:doi/10.1007%2Fs10589-024-00580-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_024_00580_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |