Mutual-Visibility Sets in Cartesian Products of Paths and Cycles
For a given graph G , the mutual-visibility problem asks for the largest set of vertices M ⊆ V ( G ) with the property that for any pair of vertices u , v ∈ M there exists a shortest u , v -path of G that does not pass through any other vertex in M . The mutual-visibility problem for Cartesian prod...
Uložené v:
| Vydané v: | Resultate der Mathematik Ročník 79; číslo 3; s. 116 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.05.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1422-6383, 1420-9012 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For a given graph
G
, the mutual-visibility problem asks for the largest set of vertices
M
⊆
V
(
G
)
with the property that for any pair of vertices
u
,
v
∈
M
there exists a shortest
u
,
v
-path of
G
that does not pass through any other vertex in
M
. The mutual-visibility problem for Cartesian products of a cycle and a path, as well as for Cartesian products of two cycles, is considered. Optimal solutions are provided for the majority of Cartesian products of a cycle and a path, while for the other family of graphs, the problem is completely solved. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1422-6383 1420-9012 |
| DOI: | 10.1007/s00025-024-02139-x |