Application of Improved Whale Algorithm to Optimize Dephosphorization Process Parameters in Converter Steelmaking

Regulating the process parameters in converter steelmaking is crucial for reducing the phosphorus content in molten steel and enhancing its quality. However, immoderate alteration may result in raised production costs and the occurrence of phosphorus return. This study addresses process parameter op...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 15; no. 8; p. 4277
Main Authors: Wu, Congrui, Kong, Yueping
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2025
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regulating the process parameters in converter steelmaking is crucial for reducing the phosphorus content in molten steel and enhancing its quality. However, immoderate alteration may result in raised production costs and the occurrence of phosphorus return. This study addresses process parameter optimization challenges in converter steelmaking by proposing an improved multi-objective whale optimization algorithm (IMOWOA) that synergistically integrates metallurgical thermodynamics with data-driven modeling. The methodology constructs a physics-informed objective function linking process parameters to optimization targets, thereby resolving the disconnect between mechanistic and data-driven modeling approaches. The algorithm innovatively combines Sobol quasi-random sequences with grey wolf social hierarchy strategies to prevent premature convergence in high-dimensional search spaces while maintaining Pareto front diversity, supplemented by a reward mechanism to ensure strict adherence to multi-objective constraints. Experimental validation using steel plant production data demonstrates IMOWOA’s efficacy, achieving a 10.8% reduction in endpoint phosphorus content and a 5.79% decrease in production costs per ton of steel. Comparative analyses further confirm its superior feasibility and stability in quality-cost co-optimization, evidenced by a 12.6% improvement in hypervolume (HV) over conventional swarm intelligence benchmarks, establishing a robust framework for industrial metallurgical process optimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app15084277