High-dimensional approximation with kernel-based multilevel methods on sparse grids
Moderately high-dimensional approximation problems can successfully be solved by combining univariate approximation processes using an intelligent combination technique. While this has so far predominantly been done with either polynomials or splines, we suggest to employ a multilevel kernel-based a...
Uložené v:
| Vydané v: | Numerische Mathematik Ročník 154; číslo 3-4; s. 485 - 519 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0029-599X, 0945-3245 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Moderately high-dimensional approximation problems can successfully be solved by combining univariate approximation processes using an intelligent combination technique. While this has so far predominantly been done with either polynomials or splines, we suggest to employ a multilevel kernel-based approximation scheme. In contrast to those schemes built upon polynomials and splines, this new method is capable of combining arbitrary low-dimensional domains instead of just intervals and arbitrarily distributed points in these low-dimensional domains. We introduce the method and analyse its convergence in the so-called isotropic and anisotropic cases. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0029-599X 0945-3245 |
| DOI: | 10.1007/s00211-023-01363-x |