Classification of silicon content variation trend based on fusion of multilevel features in blast furnace ironmaking

•A data-driven model is proposed based on multilevel features fusion to classify the variation trend of silicon content.•Multilevel features are extracted through variable analysis, statistical information, and stacked denoising autoencoder, respectively.•Silicon content trend labels are quantitativ...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 521; pp. 32 - 45
Main Authors: Jiang, Ke, Jiang, Zhaohui, Xie, Yongfang, Chen, Zhipeng, Pan, Dong, Gui, Weihua
Format: Journal Article
Language:English
Published: Elsevier Inc 01.06.2020
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A data-driven model is proposed based on multilevel features fusion to classify the variation trend of silicon content.•Multilevel features are extracted through variable analysis, statistical information, and stacked denoising autoencoder, respectively.•Silicon content trend labels are quantitative descripted by seven different primitives.•Both experimental simulation and industrial application verify the effectiveness and feasibility of the proposed model. The silicon content variation trend, which can reflect the quality of molten iron, provides significant information that can assist in ensuring the smooth operation of a blast furnace. This paper proposes a novel dynamic data-driven model for the online classification of the variation trend for the silicon content. Typically, a dynamic model for the silicon content variation trend primarily relies on process data feature extraction. First, a multilevel features fusion algorithm based on mutual information is developed to extract a rich and robust feature representation. Subsequently, the fused multilevel feature vectors and their corresponding trend labels are fed into a recurrent neural network model to capture the process dynamics and classify the variation trend. An experimental simulation and industrial application verified the effectiveness and feasibility of the proposed method. The classification results can provide guidance to ensure that the quality of molten iron is maintained within the desired range in the ironmaking process.
AbstractList •A data-driven model is proposed based on multilevel features fusion to classify the variation trend of silicon content.•Multilevel features are extracted through variable analysis, statistical information, and stacked denoising autoencoder, respectively.•Silicon content trend labels are quantitative descripted by seven different primitives.•Both experimental simulation and industrial application verify the effectiveness and feasibility of the proposed model. The silicon content variation trend, which can reflect the quality of molten iron, provides significant information that can assist in ensuring the smooth operation of a blast furnace. This paper proposes a novel dynamic data-driven model for the online classification of the variation trend for the silicon content. Typically, a dynamic model for the silicon content variation trend primarily relies on process data feature extraction. First, a multilevel features fusion algorithm based on mutual information is developed to extract a rich and robust feature representation. Subsequently, the fused multilevel feature vectors and their corresponding trend labels are fed into a recurrent neural network model to capture the process dynamics and classify the variation trend. An experimental simulation and industrial application verified the effectiveness and feasibility of the proposed method. The classification results can provide guidance to ensure that the quality of molten iron is maintained within the desired range in the ironmaking process.
Author Xie, Yongfang
Gui, Weihua
Chen, Zhipeng
Jiang, Ke
Jiang, Zhaohui
Pan, Dong
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0002-2642-7948
  surname: Jiang
  fullname: Jiang, Ke
– sequence: 2
  givenname: Zhaohui
  surname: Jiang
  fullname: Jiang, Zhaohui
– sequence: 3
  givenname: Yongfang
  orcidid: 0000-0002-2060-6574
  surname: Xie
  fullname: Xie, Yongfang
– sequence: 4
  givenname: Zhipeng
  orcidid: 0000-0002-5890-3072
  surname: Chen
  fullname: Chen, Zhipeng
  email: chenzhipeng0803@163.com
– sequence: 5
  givenname: Dong
  orcidid: 0000-0002-1876-3108
  surname: Pan
  fullname: Pan, Dong
– sequence: 6
  givenname: Weihua
  surname: Gui
  fullname: Gui, Weihua
BookMark eNp9kMtKAzEUhoNUsK0-gLu8wIy5zBVXUrxBwY2uQyY5kVOnGUnSgm9varty0cXhXL8fzr8gMz95IOSWs5Iz3txtSvSxFEywkomSyf6CzHnXiqIRPZ-ROcubgom6viKLGDeMsaptmjlJq1HHiA6NTjh5OjkacUSTyxwJfKJ7HfC4TAG8pYOOYGlu3S6ekO1uTDjCHkbqQKddgEjR0yFrp3wWvDZAMUx-q7_Qf16TS6fHCDenvCQfT4_vq5di_fb8unpYF0Y2MhWdNH1thbWca3A175wwtWSuNz3oRrLegtWVsI2ohrbT2ug-DwYmnKhsDVIuSXvUNWGKMYBTBtPfKyloHBVn6mCe2qhsnjqYp5hQ2bxM8n_kd8CtDj9nmfsjA_mlPUJQ0SB4AxYDmKTshGfoX47Kjdk
CitedBy_id crossref_primary_10_1109_TII_2023_3268740
crossref_primary_10_1016_j_dche_2023_100085
crossref_primary_10_1109_TIM_2020_3038285
crossref_primary_10_3390_met12101624
crossref_primary_10_1109_TIE_2020_3031525
crossref_primary_10_1016_j_ins_2023_120084
crossref_primary_10_1109_TII_2021_3084911
crossref_primary_10_1109_TNNLS_2023_3340741
crossref_primary_10_1016_j_heliyon_2024_e32901
crossref_primary_10_1109_TIM_2025_3551036
crossref_primary_10_1038_s41598_025_04542_y
crossref_primary_10_1016_j_procs_2023_10_211
crossref_primary_10_1016_j_ins_2020_06_062
crossref_primary_10_1109_TII_2023_3333841
crossref_primary_10_1109_TIM_2022_3185325
crossref_primary_10_1007_s00170_024_13214_6
crossref_primary_10_3390_s24041254
crossref_primary_10_1016_j_psep_2024_04_124
crossref_primary_10_1631_FITEE_2200366
crossref_primary_10_1016_j_engappai_2022_105180
crossref_primary_10_3390_s22093516
crossref_primary_10_1016_j_ifacol_2020_12_2854
Cites_doi 10.1016/j.ins.2015.07.002
10.1109/TNNLS.2017.2749412
10.2355/isijinternational.ISIJINT-2019-119
10.1016/j.ins.2019.04.018
10.1016/0952-1976(91)90001-M
10.1016/j.ins.2011.12.031
10.1109/78.650093
10.1109/TCYB.2017.2734043
10.1109/TII.2012.2226897
10.1109/TIE.2011.2159693
10.1109/TII.2012.2214394
10.1016/j.ins.2019.01.062
10.3390/s18113792
10.1109/TFUZZ.2013.2269145
10.1109/TII.2018.2868364
10.1109/TFUZZ.2017.2692203
10.1109/TIE.2017.2772141
10.1016/j.ins.2019.06.039
10.1016/j.ins.2017.07.003
10.1109/TIE.2012.2206336
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.02.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 45
ExternalDocumentID 10_1016_j_ins_2020_02_039
S0020025520301237
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-83c95d2dd11aef518f2c530f9c9ea6309deda42d624b78aaca9edab02f24d5e33
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527015900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:09:45 EST 2025
Sat Nov 29 07:31:04 EST 2025
Fri Feb 23 02:47:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Denoising autoencoder (DAE)
Multilevel features fusion
Variation trend for silicon content
Recurrent neural network (RNN)
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-83c95d2dd11aef518f2c530f9c9ea6309deda42d624b78aaca9edab02f24d5e33
ORCID 0000-0002-5890-3072
0000-0002-2642-7948
0000-0002-2060-6574
0000-0002-1876-3108
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2020_02_039
crossref_primary_10_1016_j_ins_2020_02_039
elsevier_sciencedirect_doi_10_1016_j_ins_2020_02_039
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pan, Jiang, Chen, Gui, Xie, Yang (bib0013) 2018
Wang, Pan, Yuan, Yang, Gui (bib0022) 2019
Zhou, Yuan, Wang, Wang, Chai (bib0030) 2015; 325
Bengio, Yao, Alain, Vincent (bib0001) 2013
Pan, Jiang, Chen, Gui, Xie, Yang (bib0014) 2018; 18
Zhou, Li, Guo, Wang, Chai (bib0031) 2016; 33
Ding, Yin, Peng, Hao, Shen (bib0003) 2013; 9
Zhou, Zhang, Yang (bib0028) 2019
Yuan, Li, Wang (bib0025) 2019
Wang, Cui (bib0021) 2017; 417
Vincent, Larochelle, Bengio, Manzagol (bib0018) 2008
Dai, Li, Zhou, Chai (bib0020) 2019; 484
Saxén, Gao, Gao (bib0016) 2013; 9
Jian, Gao (bib0009) 2013; 60
Li, Hua, Yang, Guan (bib0010) 2018; 65
Wang, Li (bib0019) 2017; 47
Zhou, Li, Wang, Li, Chai (bib0029) 2019
Gao, Yan, Zhou, Varshney, Liu (bib0006) 2019; 502
Zhou, Guo, Wang, Chai (bib0027) 2018; 29
Hashimoto, Okamoto, Kaise, Sawa, Kana (bib0007) 2019; 59
Yang, Nataliani (bib0026) 2018; 26
Chen, Guestrin (bib0002) 2016
Gao, Jian, Luo (bib0005) 2012; 59
Gao, Ge, Jian (bib0004) 2014; 22
Yuan, Zhou, Huang, Wang, Yang, Gui (bib0024) 2019
Xie, Wang, Jiang, Xu (bib0023) 2019; 493
Liu, Zeng, Xie, Luo, Song (bib0012) 2018; 15
Liu, Liu, Wang, Zhao, Leung (bib0011) 2012; 193
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0017) 2010; 11
Schuster, Paliwal (bib0015) 1997; 45
Janusz, Venkatasubramanian (bib0008) 1991; 4
Ding (10.1016/j.ins.2020.02.039_bib0003) 2013; 9
Li (10.1016/j.ins.2020.02.039_bib0010) 2018; 65
Vincent (10.1016/j.ins.2020.02.039_bib0018) 2008
Jian (10.1016/j.ins.2020.02.039_bib0009) 2013; 60
Liu (10.1016/j.ins.2020.02.039_bib0012) 2018; 15
Gao (10.1016/j.ins.2020.02.039_bib0006) 2019; 502
Pan (10.1016/j.ins.2020.02.039_bib0014) 2018; 18
Dai (10.1016/j.ins.2020.02.039_bib0020) 2019; 484
Vincent (10.1016/j.ins.2020.02.039_bib0017) 2010; 11
Bengio (10.1016/j.ins.2020.02.039_bib0001) 2013
Xie (10.1016/j.ins.2020.02.039_bib0023) 2019; 493
Yuan (10.1016/j.ins.2020.02.039_bib0025) 2019
Zhou (10.1016/j.ins.2020.02.039_bib0027) 2018; 29
Wang (10.1016/j.ins.2020.02.039_bib0021) 2017; 417
Chen (10.1016/j.ins.2020.02.039_bib0002) 2016
Pan (10.1016/j.ins.2020.02.039_bib0013) 2018
Gao (10.1016/j.ins.2020.02.039_bib0004) 2014; 22
Liu (10.1016/j.ins.2020.02.039_bib0011) 2012; 193
Hashimoto (10.1016/j.ins.2020.02.039_bib0007) 2019; 59
Janusz (10.1016/j.ins.2020.02.039_bib0008) 1991; 4
Wang (10.1016/j.ins.2020.02.039_bib0022) 2019
Zhou (10.1016/j.ins.2020.02.039_bib0030) 2015; 325
Yuan (10.1016/j.ins.2020.02.039_bib0024) 2019
Zhou (10.1016/j.ins.2020.02.039_bib0028) 2019
Saxén (10.1016/j.ins.2020.02.039_bib0016) 2013; 9
Yang (10.1016/j.ins.2020.02.039_bib0026) 2018; 26
Gao (10.1016/j.ins.2020.02.039_bib0005) 2012; 59
Zhou (10.1016/j.ins.2020.02.039_bib0029) 2019
Zhou (10.1016/j.ins.2020.02.039_bib0031) 2016; 33
Schuster (10.1016/j.ins.2020.02.039_bib0015) 1997; 45
Wang (10.1016/j.ins.2020.02.039_bib0019) 2017; 47
References_xml – volume: 59
  start-page: 1134
  year: 2012
  end-page: 1145
  ident: bib0005
  article-title: Modeling of the thermal state change of blast furnace hearth with support vector machines
  publication-title: IEEE Trans. Ind. Electron.
– volume: 502
  start-page: 279
  year: 2019
  end-page: 296
  ident: bib0006
  article-title: Long short-term memory-based deep recurrent neural networks for target tracking
  publication-title: Inf. Sci.
– volume: 325
  start-page: 237
  year: 2015
  end-page: 255
  ident: bib0030
  article-title: Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections
  publication-title: Inf. Sci.
– year: 2018
  ident: bib0013
  article-title: Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2019
  ident: bib0024
  article-title: Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy
  publication-title: IEEE Trans. Ind. Inform.
– volume: 9
  start-page: 2213
  year: 2013
  end-page: 2225
  ident: bib0016
  article-title: Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—a review
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib0002
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proc. 22th Int. Conf. Knowl. Discov. Data Min.
– year: 2019
  ident: bib0025
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE Trans. Ind. Inform.
– volume: 60
  start-page: 3846
  year: 2013
  end-page: 3856
  ident: bib0009
  article-title: Binary coding SVMs for the multiclass problem of blast furnace system
  publication-title: IEEE Trans. Ind. Electron.
– volume: 484
  start-page: 367
  year: 2019
  end-page: 386
  ident: bib0020
  article-title: Stochastic configuration networks with block increments for data modeling in process industries
  publication-title: Inf. Sci.
– volume: 493
  start-page: 75
  year: 2019
  end-page: 90
  ident: bib0023
  article-title: High-performance community detection in social networks using a deep transitive autoencoder
  publication-title: Inf. Sci
– volume: 193
  start-page: 104
  year: 2012
  end-page: 114
  ident: bib0011
  article-title: Data-driven based model for flow prediction of steam system in steel industry
  publication-title: Inf. Sci.
– year: 2019
  ident: bib0028
  article-title: Hybrid model based intelligent optimization of ironmaking process
  publication-title: IEEE Trans. Ind. Electron
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0018
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proc. 25th Int. Conf. Mach. Learn.
– volume: 65
  start-page: 4933
  year: 2018
  end-page: 4942
  ident: bib0010
  article-title: Bayesian block structure sparse based t–s fuzzy modeling for dynamic prediction of hot metal silicon content in the blast furnace
  publication-title: IEEE Trans. Ind. Electron.
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: bib0015
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 2239
  year: 2013
  end-page: 2247
  ident: bib0003
  article-title: A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
  publication-title: IEEE Trans. Ind. Inform
– start-page: 899
  year: 2013
  end-page: 907
  ident: bib0001
  article-title: Generalized denoising auto-encoders as generative models
  publication-title: Proc. Adv. Neural Inform. Process. Syst.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0017
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion, j
  publication-title: Mach. Learn. Res.
– volume: 22
  start-page: 586
  year: 2014
  end-page: 596
  ident: bib0004
  article-title: Rule extraction from fuzzy-based blast furnace svm multiclassifier for decision-making
  publication-title: IEEE Trans. Fuzzy Syst
– year: 2019
  ident: bib0029
  article-title: Robust online sequential RVFLNs for data modeling of dynamic time-varying systems with application of an ironmaking blast furnace
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 3466
  year: 2017
  end-page: 3479
  ident: bib0019
  article-title: Stochastic configuration networks: fundamentals and algorithms
  publication-title: IEEE T. Cybern.
– volume: 59
  start-page: 1573
  year: 2019
  end-page: 1581
  ident: bib0007
  article-title: Practical operation guidance on thermal control of blast furnace
  publication-title: ISIJ Int
– volume: 417
  start-page: 55
  year: 2017
  end-page: 71
  ident: bib0021
  article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics
  publication-title: Inf. Sci
– volume: 26
  start-page: 817
  year: 2018
  end-page: 835
  ident: bib0026
  article-title: A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 4
  start-page: 329
  year: 1991
  end-page: 339
  ident: bib0008
  article-title: Automatic generation of qualitative descriptions of process trends for fault detection and diagnosis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 15
  start-page: 2721
  year: 2018
  end-page: 2731
  ident: bib0012
  article-title: Structured joint sparse principal component analysis for fault detection and isolation
  publication-title: IEEE Trans. Ind. Inform.
– volume: 29
  start-page: 4007
  year: 2018
  end-page: 4021
  ident: bib0027
  article-title: Data-Driven robust M-LS-SVR-Based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2019
  ident: bib0022
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
– volume: 18
  start-page: 3792
  year: 2018
  ident: bib0014
  article-title: Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model
  publication-title: Sensors
– volume: 33
  start-page: 727
  year: 2016
  end-page: 734
  ident: bib0031
  article-title: Multi-output support vector regression modeling for multivariate molten iron quality indices in blast furnace ironmaking process
  publication-title: J. Control Theory Appl.
– volume: 325
  start-page: 237
  year: 2015
  ident: 10.1016/j.ins.2020.02.039_bib0030
  article-title: Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.07.002
– year: 2018
  ident: 10.1016/j.ins.2020.02.039_bib0013
  article-title: Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 899
  year: 2013
  ident: 10.1016/j.ins.2020.02.039_bib0001
  article-title: Generalized denoising auto-encoders as generative models
– year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0024
  article-title: Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy
  publication-title: IEEE Trans. Ind. Inform.
– volume: 29
  start-page: 4007
  issue: 9
  year: 2018
  ident: 10.1016/j.ins.2020.02.039_bib0027
  article-title: Data-Driven robust M-LS-SVR-Based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2749412
– volume: 59
  start-page: 1573
  issue: 9
  year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0007
  article-title: Practical operation guidance on thermal control of blast furnace
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.ISIJINT-2019-119
– start-page: 1096
  year: 2008
  ident: 10.1016/j.ins.2020.02.039_bib0018
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 493
  start-page: 75
  year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0023
  article-title: High-performance community detection in social networks using a deep transitive autoencoder
  publication-title: Inf. Sci
  doi: 10.1016/j.ins.2019.04.018
– volume: 4
  start-page: 329
  issue: 5
  year: 1991
  ident: 10.1016/j.ins.2020.02.039_bib0008
  article-title: Automatic generation of qualitative descriptions of process trends for fault detection and diagnosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/0952-1976(91)90001-M
– volume: 193
  start-page: 104
  year: 2012
  ident: 10.1016/j.ins.2020.02.039_bib0011
  article-title: Data-driven based model for flow prediction of steam system in steel industry
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.12.031
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.ins.2020.02.039_bib0015
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 47
  start-page: 3466
  issue: 10
  year: 2017
  ident: 10.1016/j.ins.2020.02.039_bib0019
  article-title: Stochastic configuration networks: fundamentals and algorithms
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TCYB.2017.2734043
– volume: 9
  start-page: 2213
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2020.02.039_bib0016
  article-title: Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—a review
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2012.2226897
– volume: 59
  start-page: 1134
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2020.02.039_bib0005
  article-title: Modeling of the thermal state change of blast furnace hearth with support vector machines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2159693
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.ins.2020.02.039_bib0017
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion, j
  publication-title: Mach. Learn. Res.
– volume: 9
  start-page: 2239
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2020.02.039_bib0003
  article-title: A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
  publication-title: IEEE Trans. Ind. Inform
  doi: 10.1109/TII.2012.2214394
– start-page: 785
  year: 2016
  ident: 10.1016/j.ins.2020.02.039_bib0002
  article-title: Xgboost: a scalable tree boosting system
– volume: 484
  start-page: 367
  year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0020
  article-title: Stochastic configuration networks with block increments for data modeling in process industries
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.062
– year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0025
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE Trans. Ind. Inform.
– volume: 33
  start-page: 727
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2020.02.039_bib0031
  article-title: Multi-output support vector regression modeling for multivariate molten iron quality indices in blast furnace ironmaking process
  publication-title: J. Control Theory Appl.
– volume: 18
  start-page: 3792
  issue: 11
  year: 2018
  ident: 10.1016/j.ins.2020.02.039_bib0014
  article-title: Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model
  publication-title: Sensors
  doi: 10.3390/s18113792
– volume: 22
  start-page: 586
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2020.02.039_bib0004
  article-title: Rule extraction from fuzzy-based blast furnace svm multiclassifier for decision-making
  publication-title: IEEE Trans. Fuzzy Syst
  doi: 10.1109/TFUZZ.2013.2269145
– volume: 15
  start-page: 2721
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2020.02.039_bib0012
  article-title: Structured joint sparse principal component analysis for fault detection and isolation
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2868364
– volume: 26
  start-page: 817
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2020.02.039_bib0026
  article-title: A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2692203
– volume: 65
  start-page: 4933
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2020.02.039_bib0010
  article-title: Bayesian block structure sparse based t–s fuzzy modeling for dynamic prediction of hot metal silicon content in the blast furnace
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2772141
– year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0022
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
– year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0029
  article-title: Robust online sequential RVFLNs for data modeling of dynamic time-varying systems with application of an ironmaking blast furnace
  publication-title: IEEE Trans. Cybern.
– volume: 502
  start-page: 279
  year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0006
  article-title: Long short-term memory-based deep recurrent neural networks for target tracking
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.06.039
– volume: 417
  start-page: 55
  year: 2017
  ident: 10.1016/j.ins.2020.02.039_bib0021
  article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics
  publication-title: Inf. Sci
  doi: 10.1016/j.ins.2017.07.003
– volume: 60
  start-page: 3846
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2020.02.039_bib0009
  article-title: Binary coding SVMs for the multiclass problem of blast furnace system
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2206336
– year: 2019
  ident: 10.1016/j.ins.2020.02.039_bib0028
  article-title: Hybrid model based intelligent optimization of ironmaking process
  publication-title: IEEE Trans. Ind. Electron
SSID ssj0004766
Score 2.4315615
Snippet •A data-driven model is proposed based on multilevel features fusion to classify the variation trend of silicon content.•Multilevel features are extracted...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Classification
Denoising autoencoder (DAE)
Multilevel features fusion
Recurrent neural network (RNN)
Variation trend for silicon content
Title Classification of silicon content variation trend based on fusion of multilevel features in blast furnace ironmaking
URI https://dx.doi.org/10.1016/j.ins.2020.02.039
Volume 521
WOSCitedRecordID wos000527015900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEBQQBYr2gDhQRVqvvbb3WKEiXqo4FBR6sdb7IK4iJ2qcqD-Dn8zsy05biuiBixVPvOPHfDv7-mYWodc1q4tSEz3JeK5ggAJVUWQGRikkV6UwCatdnu3vX4rj43I65V9Ho18xFmYzL9q2vLjgy_9qapCBsW3o7C3M3SsFAfwGo8MRzA7HfzK82-bSEoD6zuCqmYO9W0dLt0v_Gxgf-z87y4g9sC2ZsqsGZr0KRRzPcG4JRQdGu9yfjjdbg-4OLoOnAH_gIuTcblbbXdwQ4OT0h_Z1oCk2YXr6s74mOp2JxWzdRPnUL5z8WLQ_jQh3cDQE7ydPZ81SB3GYtKBkIFf1QQQgoz5Db3TEzMdKB1capj19o-xTTl5z937m4QzGKDbzOiUu_apPjnQ5tfaVJq8nIkaO21kFKiqroiK0AhV30A4tGC_HaOfw49H00xBrW_j17_gCcaXccQavPMef-zpb_ZeTh-hBGHjgQw-YR2ik2110fysd5S7aD0Es-A3eMiIO7v8x6i5DCy8MDtDCAVq4hxZ20MIOWhhOPbRskQFaOEILNy120MIBWniA1hP07f3RybsPk7Brx0SmedpNylRypqhSSSK0YUlpqGQpMVxyLfKUcKWVyKjKaQZuQggpOAhqQg3NFNNp-hSN20WrnyFc05Ql0iS5JCorSlXzxCgmTaHTghc830Mkft9KhpT2dmeVeXWjXffQ277I0udz-dvFWTRaFSqM72hWAMCbiz2_zT1eoHtDBXmJxt35Wu-ju3LTNavzVwF9vwHHKrH9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+silicon+content+variation+trend+based+on+fusion+of+multilevel+features+in+blast+furnace+ironmaking&rft.jtitle=Information+sciences&rft.au=Jiang%2C+Ke&rft.au=Jiang%2C+Zhaohui&rft.au=Xie%2C+Yongfang&rft.au=Chen%2C+Zhipeng&rft.date=2020-06-01&rft.issn=0020-0255&rft.volume=521&rft.spage=32&rft.epage=45&rft_id=info:doi/10.1016%2Fj.ins.2020.02.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_02_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon